hc
2024-10-22 8ac6c7a54ed1b98d142dce24b11c6de6a1e239a5
kernel/arch/arm64/kvm/sys_regs.c
....@@ -1,3 +1,4 @@
1
+// SPDX-License-Identifier: GPL-2.0-only
12 /*
23 * Copyright (C) 2012,2013 - ARM Ltd
34 * Author: Marc Zyngier <marc.zyngier@arm.com>
....@@ -6,20 +7,9 @@
67 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
78 * Authors: Rusty Russell <rusty@rustcorp.com.au>
89 * Christoffer Dall <c.dall@virtualopensystems.com>
9
- *
10
- * This program is free software; you can redistribute it and/or modify
11
- * it under the terms of the GNU General Public License, version 2, as
12
- * published by the Free Software Foundation.
13
- *
14
- * This program is distributed in the hope that it will be useful,
15
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
16
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17
- * GNU General Public License for more details.
18
- *
19
- * You should have received a copy of the GNU General Public License
20
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
2110 */
2211
12
+#include <linux/bitfield.h>
2313 #include <linux/bsearch.h>
2414 #include <linux/kvm_host.h>
2515 #include <linux/mm.h>
....@@ -31,9 +21,7 @@
3121 #include <asm/debug-monitors.h>
3222 #include <asm/esr.h>
3323 #include <asm/kvm_arm.h>
34
-#include <asm/kvm_coproc.h>
3524 #include <asm/kvm_emulate.h>
36
-#include <asm/kvm_host.h>
3725 #include <asm/kvm_hyp.h>
3826 #include <asm/kvm_mmu.h>
3927 #include <asm/perf_event.h>
....@@ -46,7 +34,7 @@
4634 #include "trace.h"
4735
4836 /*
49
- * All of this file is extremly similar to the ARM coproc.c, but the
37
+ * All of this file is extremely similar to the ARM coproc.c, but the
5038 * types are different. My gut feeling is that it should be pretty
5139 * easy to merge, but that would be an ABI breakage -- again. VFP
5240 * would also need to be abstracted.
....@@ -55,6 +43,10 @@
5543 * that has to do with init and userspace access has to go via the
5644 * 64bit interface.
5745 */
46
+
47
+#define reg_to_encoding(x) \
48
+ sys_reg((u32)(x)->Op0, (u32)(x)->Op1, \
49
+ (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2)
5850
5951 static bool read_from_write_only(struct kvm_vcpu *vcpu,
6052 struct sys_reg_params *params,
....@@ -76,90 +68,23 @@
7668 return false;
7769 }
7870
79
-u64 vcpu_read_sys_reg(struct kvm_vcpu *vcpu, int reg)
71
+u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
8072 {
81
- if (!vcpu->arch.sysregs_loaded_on_cpu)
82
- goto immediate_read;
73
+ u64 val = 0x8badf00d8badf00d;
8374
84
- /*
85
- * System registers listed in the switch are not saved on every
86
- * exit from the guest but are only saved on vcpu_put.
87
- *
88
- * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
89
- * should never be listed below, because the guest cannot modify its
90
- * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
91
- * thread when emulating cross-VCPU communication.
92
- */
93
- switch (reg) {
94
- case CSSELR_EL1: return read_sysreg_s(SYS_CSSELR_EL1);
95
- case SCTLR_EL1: return read_sysreg_s(sctlr_EL12);
96
- case ACTLR_EL1: return read_sysreg_s(SYS_ACTLR_EL1);
97
- case CPACR_EL1: return read_sysreg_s(cpacr_EL12);
98
- case TTBR0_EL1: return read_sysreg_s(ttbr0_EL12);
99
- case TTBR1_EL1: return read_sysreg_s(ttbr1_EL12);
100
- case TCR_EL1: return read_sysreg_s(tcr_EL12);
101
- case ESR_EL1: return read_sysreg_s(esr_EL12);
102
- case AFSR0_EL1: return read_sysreg_s(afsr0_EL12);
103
- case AFSR1_EL1: return read_sysreg_s(afsr1_EL12);
104
- case FAR_EL1: return read_sysreg_s(far_EL12);
105
- case MAIR_EL1: return read_sysreg_s(mair_EL12);
106
- case VBAR_EL1: return read_sysreg_s(vbar_EL12);
107
- case CONTEXTIDR_EL1: return read_sysreg_s(contextidr_EL12);
108
- case TPIDR_EL0: return read_sysreg_s(SYS_TPIDR_EL0);
109
- case TPIDRRO_EL0: return read_sysreg_s(SYS_TPIDRRO_EL0);
110
- case TPIDR_EL1: return read_sysreg_s(SYS_TPIDR_EL1);
111
- case AMAIR_EL1: return read_sysreg_s(amair_EL12);
112
- case CNTKCTL_EL1: return read_sysreg_s(cntkctl_EL12);
113
- case PAR_EL1: return read_sysreg_s(SYS_PAR_EL1);
114
- case DACR32_EL2: return read_sysreg_s(SYS_DACR32_EL2);
115
- case IFSR32_EL2: return read_sysreg_s(SYS_IFSR32_EL2);
116
- case DBGVCR32_EL2: return read_sysreg_s(SYS_DBGVCR32_EL2);
117
- }
75
+ if (vcpu->arch.sysregs_loaded_on_cpu &&
76
+ __vcpu_read_sys_reg_from_cpu(reg, &val))
77
+ return val;
11878
119
-immediate_read:
12079 return __vcpu_sys_reg(vcpu, reg);
12180 }
12281
12382 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
12483 {
125
- if (!vcpu->arch.sysregs_loaded_on_cpu)
126
- goto immediate_write;
84
+ if (vcpu->arch.sysregs_loaded_on_cpu &&
85
+ __vcpu_write_sys_reg_to_cpu(val, reg))
86
+ return;
12787
128
- /*
129
- * System registers listed in the switch are not restored on every
130
- * entry to the guest but are only restored on vcpu_load.
131
- *
132
- * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
133
- * should never be listed below, because the the MPIDR should only be
134
- * set once, before running the VCPU, and never changed later.
135
- */
136
- switch (reg) {
137
- case CSSELR_EL1: write_sysreg_s(val, SYS_CSSELR_EL1); return;
138
- case SCTLR_EL1: write_sysreg_s(val, sctlr_EL12); return;
139
- case ACTLR_EL1: write_sysreg_s(val, SYS_ACTLR_EL1); return;
140
- case CPACR_EL1: write_sysreg_s(val, cpacr_EL12); return;
141
- case TTBR0_EL1: write_sysreg_s(val, ttbr0_EL12); return;
142
- case TTBR1_EL1: write_sysreg_s(val, ttbr1_EL12); return;
143
- case TCR_EL1: write_sysreg_s(val, tcr_EL12); return;
144
- case ESR_EL1: write_sysreg_s(val, esr_EL12); return;
145
- case AFSR0_EL1: write_sysreg_s(val, afsr0_EL12); return;
146
- case AFSR1_EL1: write_sysreg_s(val, afsr1_EL12); return;
147
- case FAR_EL1: write_sysreg_s(val, far_EL12); return;
148
- case MAIR_EL1: write_sysreg_s(val, mair_EL12); return;
149
- case VBAR_EL1: write_sysreg_s(val, vbar_EL12); return;
150
- case CONTEXTIDR_EL1: write_sysreg_s(val, contextidr_EL12); return;
151
- case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); return;
152
- case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); return;
153
- case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); return;
154
- case AMAIR_EL1: write_sysreg_s(val, amair_EL12); return;
155
- case CNTKCTL_EL1: write_sysreg_s(val, cntkctl_EL12); return;
156
- case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); return;
157
- case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); return;
158
- case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); return;
159
- case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); return;
160
- }
161
-
162
-immediate_write:
16388 __vcpu_sys_reg(vcpu, reg) = val;
16489 }
16590
....@@ -167,7 +92,7 @@
16792 static u32 cache_levels;
16893
16994 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
170
-#define CSSELR_MAX 12
95
+#define CSSELR_MAX 14
17196
17297 /* Which cache CCSIDR represents depends on CSSELR value. */
17398 static u32 get_ccsidr(u32 csselr)
....@@ -207,6 +132,24 @@
207132 return true;
208133 }
209134
135
+static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
136
+{
137
+ switch (r->aarch32_map) {
138
+ case AA32_LO:
139
+ *mask = GENMASK_ULL(31, 0);
140
+ *shift = 0;
141
+ break;
142
+ case AA32_HI:
143
+ *mask = GENMASK_ULL(63, 32);
144
+ *shift = 32;
145
+ break;
146
+ default:
147
+ *mask = GENMASK_ULL(63, 0);
148
+ *shift = 0;
149
+ break;
150
+ }
151
+}
152
+
210153 /*
211154 * Generic accessor for VM registers. Only called as long as HCR_TVM
212155 * is set. If the guest enables the MMU, we stop trapping the VM
....@@ -217,28 +160,38 @@
217160 const struct sys_reg_desc *r)
218161 {
219162 bool was_enabled = vcpu_has_cache_enabled(vcpu);
220
- u64 val;
221
- int reg = r->reg;
163
+ u64 val, mask, shift;
222164
223165 BUG_ON(!p->is_write);
224166
225
- /* See the 32bit mapping in kvm_host.h */
226
- if (p->is_aarch32)
227
- reg = r->reg / 2;
167
+ get_access_mask(r, &mask, &shift);
228168
229
- if (!p->is_aarch32 || !p->is_32bit) {
230
- val = p->regval;
169
+ if (~mask) {
170
+ val = vcpu_read_sys_reg(vcpu, r->reg);
171
+ val &= ~mask;
231172 } else {
232
- val = vcpu_read_sys_reg(vcpu, reg);
233
- if (r->reg % 2)
234
- val = (p->regval << 32) | (u64)lower_32_bits(val);
235
- else
236
- val = ((u64)upper_32_bits(val) << 32) |
237
- lower_32_bits(p->regval);
173
+ val = 0;
238174 }
239
- vcpu_write_sys_reg(vcpu, val, reg);
175
+
176
+ val |= (p->regval & (mask >> shift)) << shift;
177
+ vcpu_write_sys_reg(vcpu, val, r->reg);
240178
241179 kvm_toggle_cache(vcpu, was_enabled);
180
+ return true;
181
+}
182
+
183
+static bool access_actlr(struct kvm_vcpu *vcpu,
184
+ struct sys_reg_params *p,
185
+ const struct sys_reg_desc *r)
186
+{
187
+ u64 mask, shift;
188
+
189
+ if (p->is_write)
190
+ return ignore_write(vcpu, p);
191
+
192
+ get_access_mask(r, &mask, &shift);
193
+ p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
194
+
242195 return true;
243196 }
244197
....@@ -264,7 +217,7 @@
264217 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
265218 * group.
266219 */
267
- if (p->is_aarch32) {
220
+ if (p->Op0 == 0) { /* AArch32 */
268221 switch (p->Op1) {
269222 default: /* Keep GCC quiet */
270223 case 0: /* ICC_SGI1R */
....@@ -275,7 +228,7 @@
275228 g1 = false;
276229 break;
277230 }
278
- } else {
231
+ } else { /* AArch64 */
279232 switch (p->Op2) {
280233 default: /* Keep GCC quiet */
281234 case 5: /* ICC_SGI1R_EL1 */
....@@ -314,12 +267,28 @@
314267 return read_zero(vcpu, p);
315268 }
316269
317
-static bool trap_undef(struct kvm_vcpu *vcpu,
318
- struct sys_reg_params *p,
319
- const struct sys_reg_desc *r)
270
+/*
271
+ * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
272
+ * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
273
+ * system, these registers should UNDEF. LORID_EL1 being a RO register, we
274
+ * treat it separately.
275
+ */
276
+static bool trap_loregion(struct kvm_vcpu *vcpu,
277
+ struct sys_reg_params *p,
278
+ const struct sys_reg_desc *r)
320279 {
321
- kvm_inject_undefined(vcpu);
322
- return false;
280
+ u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
281
+ u32 sr = reg_to_encoding(r);
282
+
283
+ if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
284
+ kvm_inject_undefined(vcpu);
285
+ return false;
286
+ }
287
+
288
+ if (p->is_write && sr == SYS_LORID_EL1)
289
+ return write_to_read_only(vcpu, p, r);
290
+
291
+ return trap_raz_wi(vcpu, p, r);
323292 }
324293
325294 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
....@@ -400,26 +369,30 @@
400369 */
401370 static void reg_to_dbg(struct kvm_vcpu *vcpu,
402371 struct sys_reg_params *p,
372
+ const struct sys_reg_desc *rd,
403373 u64 *dbg_reg)
404374 {
405
- u64 val = p->regval;
375
+ u64 mask, shift, val;
406376
407
- if (p->is_32bit) {
408
- val &= 0xffffffffUL;
409
- val |= ((*dbg_reg >> 32) << 32);
410
- }
377
+ get_access_mask(rd, &mask, &shift);
411378
379
+ val = *dbg_reg;
380
+ val &= ~mask;
381
+ val |= (p->regval & (mask >> shift)) << shift;
412382 *dbg_reg = val;
383
+
413384 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
414385 }
415386
416387 static void dbg_to_reg(struct kvm_vcpu *vcpu,
417388 struct sys_reg_params *p,
389
+ const struct sys_reg_desc *rd,
418390 u64 *dbg_reg)
419391 {
420
- p->regval = *dbg_reg;
421
- if (p->is_32bit)
422
- p->regval &= 0xffffffffUL;
392
+ u64 mask, shift;
393
+
394
+ get_access_mask(rd, &mask, &shift);
395
+ p->regval = (*dbg_reg & mask) >> shift;
423396 }
424397
425398 static bool trap_bvr(struct kvm_vcpu *vcpu,
....@@ -429,9 +402,9 @@
429402 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
430403
431404 if (p->is_write)
432
- reg_to_dbg(vcpu, p, dbg_reg);
405
+ reg_to_dbg(vcpu, p, rd, dbg_reg);
433406 else
434
- dbg_to_reg(vcpu, p, dbg_reg);
407
+ dbg_to_reg(vcpu, p, rd, dbg_reg);
435408
436409 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
437410
....@@ -471,9 +444,9 @@
471444 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
472445
473446 if (p->is_write)
474
- reg_to_dbg(vcpu, p, dbg_reg);
447
+ reg_to_dbg(vcpu, p, rd, dbg_reg);
475448 else
476
- dbg_to_reg(vcpu, p, dbg_reg);
449
+ dbg_to_reg(vcpu, p, rd, dbg_reg);
477450
478451 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
479452
....@@ -514,9 +487,9 @@
514487 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
515488
516489 if (p->is_write)
517
- reg_to_dbg(vcpu, p, dbg_reg);
490
+ reg_to_dbg(vcpu, p, rd, dbg_reg);
518491 else
519
- dbg_to_reg(vcpu, p, dbg_reg);
492
+ dbg_to_reg(vcpu, p, rd, dbg_reg);
520493
521494 trace_trap_reg(__func__, rd->CRm, p->is_write,
522495 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
....@@ -557,9 +530,9 @@
557530 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
558531
559532 if (p->is_write)
560
- reg_to_dbg(vcpu, p, dbg_reg);
533
+ reg_to_dbg(vcpu, p, rd, dbg_reg);
561534 else
562
- dbg_to_reg(vcpu, p, dbg_reg);
535
+ dbg_to_reg(vcpu, p, rd, dbg_reg);
563536
564537 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
565538
....@@ -598,6 +571,12 @@
598571 vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
599572 }
600573
574
+static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
575
+{
576
+ u64 actlr = read_sysreg(actlr_el1);
577
+ vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
578
+}
579
+
601580 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
602581 {
603582 u64 mpidr;
....@@ -615,6 +594,15 @@
615594 vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
616595 }
617596
597
+static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
598
+ const struct sys_reg_desc *r)
599
+{
600
+ if (kvm_vcpu_has_pmu(vcpu))
601
+ return 0;
602
+
603
+ return REG_HIDDEN;
604
+}
605
+
618606 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
619607 {
620608 u64 pmcr, val;
....@@ -630,6 +618,8 @@
630618 */
631619 val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
632620 | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
621
+ if (!kvm_supports_32bit_el0())
622
+ val |= ARMV8_PMU_PMCR_LC;
633623 __vcpu_sys_reg(vcpu, r->reg) = val;
634624 }
635625
....@@ -669,9 +659,6 @@
669659 {
670660 u64 val;
671661
672
- if (!kvm_arm_pmu_v3_ready(vcpu))
673
- return trap_raz_wi(vcpu, p, r);
674
-
675662 if (pmu_access_el0_disabled(vcpu))
676663 return false;
677664
....@@ -680,8 +667,11 @@
680667 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
681668 val &= ~ARMV8_PMU_PMCR_MASK;
682669 val |= p->regval & ARMV8_PMU_PMCR_MASK;
670
+ if (!kvm_supports_32bit_el0())
671
+ val |= ARMV8_PMU_PMCR_LC;
683672 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
684673 kvm_pmu_handle_pmcr(vcpu, val);
674
+ kvm_vcpu_pmu_restore_guest(vcpu);
685675 } else {
686676 /* PMCR.P & PMCR.C are RAZ */
687677 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
....@@ -695,9 +685,6 @@
695685 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
696686 const struct sys_reg_desc *r)
697687 {
698
- if (!kvm_arm_pmu_v3_ready(vcpu))
699
- return trap_raz_wi(vcpu, p, r);
700
-
701688 if (pmu_access_event_counter_el0_disabled(vcpu))
702689 return false;
703690
....@@ -714,20 +701,18 @@
714701 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
715702 const struct sys_reg_desc *r)
716703 {
717
- u64 pmceid;
718
-
719
- if (!kvm_arm_pmu_v3_ready(vcpu))
720
- return trap_raz_wi(vcpu, p, r);
704
+ u64 pmceid, mask, shift;
721705
722706 BUG_ON(p->is_write);
723707
724708 if (pmu_access_el0_disabled(vcpu))
725709 return false;
726710
727
- if (!(p->Op2 & 1))
728
- pmceid = read_sysreg(pmceid0_el0);
729
- else
730
- pmceid = read_sysreg(pmceid1_el0);
711
+ get_access_mask(r, &mask, &shift);
712
+
713
+ pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
714
+ pmceid &= mask;
715
+ pmceid >>= shift;
731716
732717 p->regval = pmceid;
733718
....@@ -752,10 +737,7 @@
752737 struct sys_reg_params *p,
753738 const struct sys_reg_desc *r)
754739 {
755
- u64 idx;
756
-
757
- if (!kvm_arm_pmu_v3_ready(vcpu))
758
- return trap_raz_wi(vcpu, p, r);
740
+ u64 idx = ~0UL;
759741
760742 if (r->CRn == 9 && r->CRm == 13) {
761743 if (r->Op2 == 2) {
....@@ -771,8 +753,6 @@
771753 return false;
772754
773755 idx = ARMV8_PMU_CYCLE_IDX;
774
- } else {
775
- return false;
776756 }
777757 } else if (r->CRn == 0 && r->CRm == 9) {
778758 /* PMCCNTR */
....@@ -786,9 +766,10 @@
786766 return false;
787767
788768 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
789
- } else {
790
- return false;
791769 }
770
+
771
+ /* Catch any decoding mistake */
772
+ WARN_ON(idx == ~0UL);
792773
793774 if (!pmu_counter_idx_valid(vcpu, idx))
794775 return false;
....@@ -809,9 +790,6 @@
809790 const struct sys_reg_desc *r)
810791 {
811792 u64 idx, reg;
812
-
813
- if (!kvm_arm_pmu_v3_ready(vcpu))
814
- return trap_raz_wi(vcpu, p, r);
815793
816794 if (pmu_access_el0_disabled(vcpu))
817795 return false;
....@@ -837,6 +815,7 @@
837815 if (p->is_write) {
838816 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
839817 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
818
+ kvm_vcpu_pmu_restore_guest(vcpu);
840819 } else {
841820 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
842821 }
....@@ -849,9 +828,6 @@
849828 {
850829 u64 val, mask;
851830
852
- if (!kvm_arm_pmu_v3_ready(vcpu))
853
- return trap_raz_wi(vcpu, p, r);
854
-
855831 if (pmu_access_el0_disabled(vcpu))
856832 return false;
857833
....@@ -861,11 +837,12 @@
861837 if (r->Op2 & 0x1) {
862838 /* accessing PMCNTENSET_EL0 */
863839 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
864
- kvm_pmu_enable_counter(vcpu, val);
840
+ kvm_pmu_enable_counter_mask(vcpu, val);
841
+ kvm_vcpu_pmu_restore_guest(vcpu);
865842 } else {
866843 /* accessing PMCNTENCLR_EL0 */
867844 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
868
- kvm_pmu_disable_counter(vcpu, val);
845
+ kvm_pmu_disable_counter_mask(vcpu, val);
869846 }
870847 } else {
871848 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
....@@ -879,13 +856,8 @@
879856 {
880857 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
881858
882
- if (!kvm_arm_pmu_v3_ready(vcpu))
883
- return trap_raz_wi(vcpu, p, r);
884
-
885
- if (!vcpu_mode_priv(vcpu)) {
886
- kvm_inject_undefined(vcpu);
859
+ if (check_pmu_access_disabled(vcpu, 0))
887860 return false;
888
- }
889861
890862 if (p->is_write) {
891863 u64 val = p->regval & mask;
....@@ -907,9 +879,6 @@
907879 const struct sys_reg_desc *r)
908880 {
909881 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
910
-
911
- if (!kvm_arm_pmu_v3_ready(vcpu))
912
- return trap_raz_wi(vcpu, p, r);
913882
914883 if (pmu_access_el0_disabled(vcpu))
915884 return false;
....@@ -933,9 +902,6 @@
933902 {
934903 u64 mask;
935904
936
- if (!kvm_arm_pmu_v3_ready(vcpu))
937
- return trap_raz_wi(vcpu, p, r);
938
-
939905 if (!p->is_write)
940906 return read_from_write_only(vcpu, p, r);
941907
....@@ -950,9 +916,6 @@
950916 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
951917 const struct sys_reg_desc *r)
952918 {
953
- if (!kvm_arm_pmu_v3_ready(vcpu))
954
- return trap_raz_wi(vcpu, p, r);
955
-
956919 if (p->is_write) {
957920 if (!vcpu_mode_priv(vcpu)) {
958921 kvm_inject_undefined(vcpu);
....@@ -980,78 +943,151 @@
980943 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
981944 trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr }
982945
946
+#define PMU_SYS_REG(r) \
947
+ SYS_DESC(r), .reset = reset_unknown, .visibility = pmu_visibility
948
+
983949 /* Macro to expand the PMEVCNTRn_EL0 register */
984950 #define PMU_PMEVCNTR_EL0(n) \
985
- { SYS_DESC(SYS_PMEVCNTRn_EL0(n)), \
986
- access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
951
+ { PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)), \
952
+ .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
987953
988954 /* Macro to expand the PMEVTYPERn_EL0 register */
989955 #define PMU_PMEVTYPER_EL0(n) \
990
- { SYS_DESC(SYS_PMEVTYPERn_EL0(n)), \
991
- access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
956
+ { PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)), \
957
+ .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
992958
993
-static bool access_cntp_tval(struct kvm_vcpu *vcpu,
994
- struct sys_reg_params *p,
995
- const struct sys_reg_desc *r)
959
+static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
960
+ const struct sys_reg_desc *r)
996961 {
997
- u64 now = kvm_phys_timer_read();
998
- u64 cval;
962
+ kvm_inject_undefined(vcpu);
999963
1000
- if (p->is_write) {
1001
- kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL,
1002
- p->regval + now);
1003
- } else {
1004
- cval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
1005
- p->regval = cval - now;
964
+ return false;
965
+}
966
+
967
+/* Macro to expand the AMU counter and type registers*/
968
+#define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
969
+#define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
970
+#define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
971
+#define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
972
+
973
+static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
974
+ const struct sys_reg_desc *rd)
975
+{
976
+ return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
977
+}
978
+
979
+/*
980
+ * If we land here on a PtrAuth access, that is because we didn't
981
+ * fixup the access on exit by allowing the PtrAuth sysregs. The only
982
+ * way this happens is when the guest does not have PtrAuth support
983
+ * enabled.
984
+ */
985
+#define __PTRAUTH_KEY(k) \
986
+ { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \
987
+ .visibility = ptrauth_visibility}
988
+
989
+#define PTRAUTH_KEY(k) \
990
+ __PTRAUTH_KEY(k ## KEYLO_EL1), \
991
+ __PTRAUTH_KEY(k ## KEYHI_EL1)
992
+
993
+static bool access_arch_timer(struct kvm_vcpu *vcpu,
994
+ struct sys_reg_params *p,
995
+ const struct sys_reg_desc *r)
996
+{
997
+ enum kvm_arch_timers tmr;
998
+ enum kvm_arch_timer_regs treg;
999
+ u64 reg = reg_to_encoding(r);
1000
+
1001
+ switch (reg) {
1002
+ case SYS_CNTP_TVAL_EL0:
1003
+ case SYS_AARCH32_CNTP_TVAL:
1004
+ tmr = TIMER_PTIMER;
1005
+ treg = TIMER_REG_TVAL;
1006
+ break;
1007
+ case SYS_CNTP_CTL_EL0:
1008
+ case SYS_AARCH32_CNTP_CTL:
1009
+ tmr = TIMER_PTIMER;
1010
+ treg = TIMER_REG_CTL;
1011
+ break;
1012
+ case SYS_CNTP_CVAL_EL0:
1013
+ case SYS_AARCH32_CNTP_CVAL:
1014
+ tmr = TIMER_PTIMER;
1015
+ treg = TIMER_REG_CVAL;
1016
+ break;
1017
+ default:
1018
+ BUG();
10061019 }
10071020
1008
- return true;
1009
-}
1010
-
1011
-static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
1012
- struct sys_reg_params *p,
1013
- const struct sys_reg_desc *r)
1014
-{
10151021 if (p->is_write)
1016
- kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, p->regval);
1022
+ kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
10171023 else
1018
- p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
1024
+ p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
10191025
10201026 return true;
10211027 }
10221028
1023
-static bool access_cntp_cval(struct kvm_vcpu *vcpu,
1024
- struct sys_reg_params *p,
1025
- const struct sys_reg_desc *r)
1026
-{
1027
- if (p->is_write)
1028
- kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, p->regval);
1029
- else
1030
- p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
1031
-
1032
- return true;
1033
-}
1029
+#define FEATURE(x) (GENMASK_ULL(x##_SHIFT + 3, x##_SHIFT))
10341030
10351031 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1036
-static u64 read_id_reg(struct sys_reg_desc const *r, bool raz)
1032
+static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1033
+ struct sys_reg_desc const *r, bool raz)
10371034 {
1038
- u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1039
- (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1035
+ u32 id = reg_to_encoding(r);
10401036 u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
10411037
1042
- if (id == SYS_ID_AA64PFR0_EL1) {
1043
- if (val & (0xfUL << ID_AA64PFR0_SVE_SHIFT))
1044
- kvm_debug("SVE unsupported for guests, suppressing\n");
1045
-
1046
- val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1047
- } else if (id == SYS_ID_AA64MMFR1_EL1) {
1048
- if (val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))
1049
- kvm_debug("LORegions unsupported for guests, suppressing\n");
1050
-
1051
- val &= ~(0xfUL << ID_AA64MMFR1_LOR_SHIFT);
1038
+ switch (id) {
1039
+ case SYS_ID_AA64PFR0_EL1:
1040
+ if (!vcpu_has_sve(vcpu))
1041
+ val &= ~FEATURE(ID_AA64PFR0_SVE);
1042
+ val &= ~FEATURE(ID_AA64PFR0_AMU);
1043
+ val &= ~FEATURE(ID_AA64PFR0_CSV2);
1044
+ val |= FIELD_PREP(FEATURE(ID_AA64PFR0_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
1045
+ val &= ~FEATURE(ID_AA64PFR0_CSV3);
1046
+ val |= FIELD_PREP(FEATURE(ID_AA64PFR0_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
1047
+ break;
1048
+ case SYS_ID_AA64PFR1_EL1:
1049
+ val &= ~FEATURE(ID_AA64PFR1_MTE);
1050
+ break;
1051
+ case SYS_ID_AA64ISAR1_EL1:
1052
+ if (!vcpu_has_ptrauth(vcpu))
1053
+ val &= ~(FEATURE(ID_AA64ISAR1_APA) |
1054
+ FEATURE(ID_AA64ISAR1_API) |
1055
+ FEATURE(ID_AA64ISAR1_GPA) |
1056
+ FEATURE(ID_AA64ISAR1_GPI));
1057
+ break;
1058
+ case SYS_ID_AA64DFR0_EL1:
1059
+ /* Limit debug to ARMv8.0 */
1060
+ val &= ~FEATURE(ID_AA64DFR0_DEBUGVER);
1061
+ val |= FIELD_PREP(FEATURE(ID_AA64DFR0_DEBUGVER), 6);
1062
+ /* Limit guests to PMUv3 for ARMv8.4 */
1063
+ val = cpuid_feature_cap_perfmon_field(val,
1064
+ ID_AA64DFR0_PMUVER_SHIFT,
1065
+ kvm_vcpu_has_pmu(vcpu) ? ID_AA64DFR0_PMUVER_8_4 : 0);
1066
+ break;
1067
+ case SYS_ID_DFR0_EL1:
1068
+ /* Limit guests to PMUv3 for ARMv8.4 */
1069
+ val = cpuid_feature_cap_perfmon_field(val,
1070
+ ID_DFR0_PERFMON_SHIFT,
1071
+ kvm_vcpu_has_pmu(vcpu) ? ID_DFR0_PERFMON_8_4 : 0);
1072
+ break;
10521073 }
10531074
10541075 return val;
1076
+}
1077
+
1078
+static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1079
+ const struct sys_reg_desc *r)
1080
+{
1081
+ u32 id = reg_to_encoding(r);
1082
+
1083
+ switch (id) {
1084
+ case SYS_ID_AA64ZFR0_EL1:
1085
+ if (!vcpu_has_sve(vcpu))
1086
+ return REG_RAZ;
1087
+ break;
1088
+ }
1089
+
1090
+ return 0;
10551091 }
10561092
10571093 /* cpufeature ID register access trap handlers */
....@@ -1064,7 +1100,7 @@
10641100 if (p->is_write)
10651101 return write_to_read_only(vcpu, p, r);
10661102
1067
- p->regval = read_id_reg(r, raz);
1103
+ p->regval = read_id_reg(vcpu, r, raz);
10681104 return true;
10691105 }
10701106
....@@ -1072,7 +1108,9 @@
10721108 struct sys_reg_params *p,
10731109 const struct sys_reg_desc *r)
10741110 {
1075
- return __access_id_reg(vcpu, p, r, false);
1111
+ bool raz = sysreg_visible_as_raz(vcpu, r);
1112
+
1113
+ return __access_id_reg(vcpu, p, r, raz);
10761114 }
10771115
10781116 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
....@@ -1086,6 +1124,58 @@
10861124 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
10871125 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
10881126
1127
+/* Visibility overrides for SVE-specific control registers */
1128
+static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1129
+ const struct sys_reg_desc *rd)
1130
+{
1131
+ if (vcpu_has_sve(vcpu))
1132
+ return 0;
1133
+
1134
+ return REG_HIDDEN;
1135
+}
1136
+
1137
+static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1138
+ const struct sys_reg_desc *rd,
1139
+ const struct kvm_one_reg *reg, void __user *uaddr)
1140
+{
1141
+ const u64 id = sys_reg_to_index(rd);
1142
+ u8 csv2, csv3;
1143
+ int err;
1144
+ u64 val;
1145
+
1146
+ err = reg_from_user(&val, uaddr, id);
1147
+ if (err)
1148
+ return err;
1149
+
1150
+ /*
1151
+ * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1152
+ * it doesn't promise more than what is actually provided (the
1153
+ * guest could otherwise be covered in ectoplasmic residue).
1154
+ */
1155
+ csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1156
+ if (csv2 > 1 ||
1157
+ (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1158
+ return -EINVAL;
1159
+
1160
+ /* Same thing for CSV3 */
1161
+ csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT);
1162
+ if (csv3 > 1 ||
1163
+ (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1164
+ return -EINVAL;
1165
+
1166
+ /* We can only differ with CSV[23], and anything else is an error */
1167
+ val ^= read_id_reg(vcpu, rd, false);
1168
+ val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) |
1169
+ (0xFUL << ID_AA64PFR0_CSV3_SHIFT));
1170
+ if (val)
1171
+ return -EINVAL;
1172
+
1173
+ vcpu->kvm->arch.pfr0_csv2 = csv2;
1174
+ vcpu->kvm->arch.pfr0_csv3 = csv3 ;
1175
+
1176
+ return 0;
1177
+}
1178
+
10891179 /*
10901180 * cpufeature ID register user accessors
10911181 *
....@@ -1093,16 +1183,18 @@
10931183 * are stored, and for set_id_reg() we don't allow the effective value
10941184 * to be changed.
10951185 */
1096
-static int __get_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
1186
+static int __get_id_reg(const struct kvm_vcpu *vcpu,
1187
+ const struct sys_reg_desc *rd, void __user *uaddr,
10971188 bool raz)
10981189 {
10991190 const u64 id = sys_reg_to_index(rd);
1100
- const u64 val = read_id_reg(rd, raz);
1191
+ const u64 val = read_id_reg(vcpu, rd, raz);
11011192
11021193 return reg_to_user(uaddr, &val, id);
11031194 }
11041195
1105
-static int __set_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
1196
+static int __set_id_reg(const struct kvm_vcpu *vcpu,
1197
+ const struct sys_reg_desc *rd, void __user *uaddr,
11061198 bool raz)
11071199 {
11081200 const u64 id = sys_reg_to_index(rd);
....@@ -1114,7 +1206,7 @@
11141206 return err;
11151207
11161208 /* This is what we mean by invariant: you can't change it. */
1117
- if (val != read_id_reg(rd, raz))
1209
+ if (val != read_id_reg(vcpu, rd, raz))
11181210 return -EINVAL;
11191211
11201212 return 0;
....@@ -1123,25 +1215,89 @@
11231215 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
11241216 const struct kvm_one_reg *reg, void __user *uaddr)
11251217 {
1126
- return __get_id_reg(rd, uaddr, false);
1218
+ bool raz = sysreg_visible_as_raz(vcpu, rd);
1219
+
1220
+ return __get_id_reg(vcpu, rd, uaddr, raz);
11271221 }
11281222
11291223 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
11301224 const struct kvm_one_reg *reg, void __user *uaddr)
11311225 {
1132
- return __set_id_reg(rd, uaddr, false);
1226
+ bool raz = sysreg_visible_as_raz(vcpu, rd);
1227
+
1228
+ return __set_id_reg(vcpu, rd, uaddr, raz);
11331229 }
11341230
11351231 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
11361232 const struct kvm_one_reg *reg, void __user *uaddr)
11371233 {
1138
- return __get_id_reg(rd, uaddr, true);
1234
+ return __get_id_reg(vcpu, rd, uaddr, true);
11391235 }
11401236
11411237 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
11421238 const struct kvm_one_reg *reg, void __user *uaddr)
11431239 {
1144
- return __set_id_reg(rd, uaddr, true);
1240
+ return __set_id_reg(vcpu, rd, uaddr, true);
1241
+}
1242
+
1243
+static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1244
+ const struct sys_reg_desc *r)
1245
+{
1246
+ if (p->is_write)
1247
+ return write_to_read_only(vcpu, p, r);
1248
+
1249
+ p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1250
+ return true;
1251
+}
1252
+
1253
+static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1254
+ const struct sys_reg_desc *r)
1255
+{
1256
+ if (p->is_write)
1257
+ return write_to_read_only(vcpu, p, r);
1258
+
1259
+ p->regval = read_sysreg(clidr_el1);
1260
+ return true;
1261
+}
1262
+
1263
+static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1264
+ const struct sys_reg_desc *r)
1265
+{
1266
+ int reg = r->reg;
1267
+
1268
+ if (p->is_write)
1269
+ vcpu_write_sys_reg(vcpu, p->regval, reg);
1270
+ else
1271
+ p->regval = vcpu_read_sys_reg(vcpu, reg);
1272
+ return true;
1273
+}
1274
+
1275
+static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1276
+ const struct sys_reg_desc *r)
1277
+{
1278
+ u32 csselr;
1279
+
1280
+ if (p->is_write)
1281
+ return write_to_read_only(vcpu, p, r);
1282
+
1283
+ csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1284
+ p->regval = get_ccsidr(csselr);
1285
+
1286
+ /*
1287
+ * Guests should not be doing cache operations by set/way at all, and
1288
+ * for this reason, we trap them and attempt to infer the intent, so
1289
+ * that we can flush the entire guest's address space at the appropriate
1290
+ * time.
1291
+ * To prevent this trapping from causing performance problems, let's
1292
+ * expose the geometry of all data and unified caches (which are
1293
+ * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1294
+ * [If guests should attempt to infer aliasing properties from the
1295
+ * geometry (which is not permitted by the architecture), they would
1296
+ * only do so for virtually indexed caches.]
1297
+ */
1298
+ if (!(csselr & 1)) // data or unified cache
1299
+ p->regval &= ~GENMASK(27, 3);
1300
+ return true;
11451301 }
11461302
11471303 /* sys_reg_desc initialiser for known cpufeature ID registers */
....@@ -1150,6 +1306,7 @@
11501306 .access = access_id_reg, \
11511307 .get_user = get_id_reg, \
11521308 .set_user = set_id_reg, \
1309
+ .visibility = id_visibility, \
11531310 }
11541311
11551312 /*
....@@ -1253,25 +1410,26 @@
12531410 ID_SANITISED(ID_ISAR4_EL1),
12541411 ID_SANITISED(ID_ISAR5_EL1),
12551412 ID_SANITISED(ID_MMFR4_EL1),
1256
- ID_UNALLOCATED(2,7),
1413
+ ID_SANITISED(ID_ISAR6_EL1),
12571414
12581415 /* CRm=3 */
12591416 ID_SANITISED(MVFR0_EL1),
12601417 ID_SANITISED(MVFR1_EL1),
12611418 ID_SANITISED(MVFR2_EL1),
12621419 ID_UNALLOCATED(3,3),
1263
- ID_UNALLOCATED(3,4),
1264
- ID_UNALLOCATED(3,5),
1265
- ID_UNALLOCATED(3,6),
1420
+ ID_SANITISED(ID_PFR2_EL1),
1421
+ ID_HIDDEN(ID_DFR1_EL1),
1422
+ ID_SANITISED(ID_MMFR5_EL1),
12661423 ID_UNALLOCATED(3,7),
12671424
12681425 /* AArch64 ID registers */
12691426 /* CRm=4 */
1270
- ID_SANITISED(ID_AA64PFR0_EL1),
1427
+ { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1428
+ .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
12711429 ID_SANITISED(ID_AA64PFR1_EL1),
12721430 ID_UNALLOCATED(4,2),
12731431 ID_UNALLOCATED(4,3),
1274
- ID_UNALLOCATED(4,4),
1432
+ ID_SANITISED(ID_AA64ZFR0_EL1),
12751433 ID_UNALLOCATED(4,5),
12761434 ID_UNALLOCATED(4,6),
12771435 ID_UNALLOCATED(4,7),
....@@ -1289,7 +1447,7 @@
12891447 /* CRm=6 */
12901448 ID_SANITISED(ID_AA64ISAR0_EL1),
12911449 ID_SANITISED(ID_AA64ISAR1_EL1),
1292
- ID_UNALLOCATED(6,2),
1450
+ ID_SANITISED(ID_AA64ISAR2_EL1),
12931451 ID_UNALLOCATED(6,3),
12941452 ID_UNALLOCATED(6,4),
12951453 ID_UNALLOCATED(6,5),
....@@ -1307,10 +1465,23 @@
13071465 ID_UNALLOCATED(7,7),
13081466
13091467 { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1468
+ { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
13101469 { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1470
+
1471
+ { SYS_DESC(SYS_RGSR_EL1), undef_access },
1472
+ { SYS_DESC(SYS_GCR_EL1), undef_access },
1473
+
1474
+ { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1475
+ { SYS_DESC(SYS_TRFCR_EL1), undef_access },
13111476 { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
13121477 { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
13131478 { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1479
+
1480
+ PTRAUTH_KEY(APIA),
1481
+ PTRAUTH_KEY(APIB),
1482
+ PTRAUTH_KEY(APDA),
1483
+ PTRAUTH_KEY(APDB),
1484
+ PTRAUTH_KEY(APGA),
13141485
13151486 { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
13161487 { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
....@@ -1325,20 +1496,26 @@
13251496 { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
13261497 { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
13271498
1499
+ { SYS_DESC(SYS_TFSR_EL1), undef_access },
1500
+ { SYS_DESC(SYS_TFSRE0_EL1), undef_access },
1501
+
13281502 { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
13291503 { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
13301504
1331
- { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1332
- { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
1505
+ { PMU_SYS_REG(SYS_PMINTENSET_EL1),
1506
+ .access = access_pminten, .reg = PMINTENSET_EL1 },
1507
+ { PMU_SYS_REG(SYS_PMINTENCLR_EL1),
1508
+ .access = access_pminten, .reg = PMINTENSET_EL1 },
1509
+ { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
13331510
13341511 { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
13351512 { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
13361513
1337
- { SYS_DESC(SYS_LORSA_EL1), trap_undef },
1338
- { SYS_DESC(SYS_LOREA_EL1), trap_undef },
1339
- { SYS_DESC(SYS_LORN_EL1), trap_undef },
1340
- { SYS_DESC(SYS_LORC_EL1), trap_undef },
1341
- { SYS_DESC(SYS_LORID_EL1), trap_undef },
1514
+ { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1515
+ { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1516
+ { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1517
+ { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1518
+ { SYS_DESC(SYS_LORID_EL1), trap_loregion },
13421519
13431520 { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
13441521 { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
....@@ -1359,34 +1536,127 @@
13591536 { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
13601537 { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
13611538
1539
+ { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1540
+
13621541 { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
13631542
1364
- { SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 },
1543
+ { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1544
+ { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1545
+ { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1546
+ { SYS_DESC(SYS_CTR_EL0), access_ctr },
13651547
1366
- { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1367
- { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1368
- { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
1369
- { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
1370
- { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1371
- { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1372
- { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1373
- { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1374
- { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1375
- { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1376
- { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1548
+ { PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
1549
+ .reset = reset_pmcr, .reg = PMCR_EL0 },
1550
+ { PMU_SYS_REG(SYS_PMCNTENSET_EL0),
1551
+ .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1552
+ { PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
1553
+ .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1554
+ { PMU_SYS_REG(SYS_PMOVSCLR_EL0),
1555
+ .access = access_pmovs, .reg = PMOVSSET_EL0 },
1556
+ { PMU_SYS_REG(SYS_PMSWINC_EL0),
1557
+ .access = access_pmswinc, .reg = PMSWINC_EL0 },
1558
+ { PMU_SYS_REG(SYS_PMSELR_EL0),
1559
+ .access = access_pmselr, .reg = PMSELR_EL0 },
1560
+ { PMU_SYS_REG(SYS_PMCEID0_EL0),
1561
+ .access = access_pmceid, .reset = NULL },
1562
+ { PMU_SYS_REG(SYS_PMCEID1_EL0),
1563
+ .access = access_pmceid, .reset = NULL },
1564
+ { PMU_SYS_REG(SYS_PMCCNTR_EL0),
1565
+ .access = access_pmu_evcntr, .reg = PMCCNTR_EL0 },
1566
+ { PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
1567
+ .access = access_pmu_evtyper, .reset = NULL },
1568
+ { PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
1569
+ .access = access_pmu_evcntr, .reset = NULL },
13771570 /*
13781571 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
13791572 * in 32bit mode. Here we choose to reset it as zero for consistency.
13801573 */
1381
- { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1382
- { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1574
+ { PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
1575
+ .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
1576
+ { PMU_SYS_REG(SYS_PMOVSSET_EL0),
1577
+ .access = access_pmovs, .reg = PMOVSSET_EL0 },
13831578
13841579 { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
13851580 { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
13861581
1387
- { SYS_DESC(SYS_CNTP_TVAL_EL0), access_cntp_tval },
1388
- { SYS_DESC(SYS_CNTP_CTL_EL0), access_cntp_ctl },
1389
- { SYS_DESC(SYS_CNTP_CVAL_EL0), access_cntp_cval },
1582
+ { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1583
+
1584
+ { SYS_DESC(SYS_AMCR_EL0), undef_access },
1585
+ { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1586
+ { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1587
+ { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1588
+ { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1589
+ { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1590
+ { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1591
+ { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1592
+ AMU_AMEVCNTR0_EL0(0),
1593
+ AMU_AMEVCNTR0_EL0(1),
1594
+ AMU_AMEVCNTR0_EL0(2),
1595
+ AMU_AMEVCNTR0_EL0(3),
1596
+ AMU_AMEVCNTR0_EL0(4),
1597
+ AMU_AMEVCNTR0_EL0(5),
1598
+ AMU_AMEVCNTR0_EL0(6),
1599
+ AMU_AMEVCNTR0_EL0(7),
1600
+ AMU_AMEVCNTR0_EL0(8),
1601
+ AMU_AMEVCNTR0_EL0(9),
1602
+ AMU_AMEVCNTR0_EL0(10),
1603
+ AMU_AMEVCNTR0_EL0(11),
1604
+ AMU_AMEVCNTR0_EL0(12),
1605
+ AMU_AMEVCNTR0_EL0(13),
1606
+ AMU_AMEVCNTR0_EL0(14),
1607
+ AMU_AMEVCNTR0_EL0(15),
1608
+ AMU_AMEVTYPER0_EL0(0),
1609
+ AMU_AMEVTYPER0_EL0(1),
1610
+ AMU_AMEVTYPER0_EL0(2),
1611
+ AMU_AMEVTYPER0_EL0(3),
1612
+ AMU_AMEVTYPER0_EL0(4),
1613
+ AMU_AMEVTYPER0_EL0(5),
1614
+ AMU_AMEVTYPER0_EL0(6),
1615
+ AMU_AMEVTYPER0_EL0(7),
1616
+ AMU_AMEVTYPER0_EL0(8),
1617
+ AMU_AMEVTYPER0_EL0(9),
1618
+ AMU_AMEVTYPER0_EL0(10),
1619
+ AMU_AMEVTYPER0_EL0(11),
1620
+ AMU_AMEVTYPER0_EL0(12),
1621
+ AMU_AMEVTYPER0_EL0(13),
1622
+ AMU_AMEVTYPER0_EL0(14),
1623
+ AMU_AMEVTYPER0_EL0(15),
1624
+ AMU_AMEVCNTR1_EL0(0),
1625
+ AMU_AMEVCNTR1_EL0(1),
1626
+ AMU_AMEVCNTR1_EL0(2),
1627
+ AMU_AMEVCNTR1_EL0(3),
1628
+ AMU_AMEVCNTR1_EL0(4),
1629
+ AMU_AMEVCNTR1_EL0(5),
1630
+ AMU_AMEVCNTR1_EL0(6),
1631
+ AMU_AMEVCNTR1_EL0(7),
1632
+ AMU_AMEVCNTR1_EL0(8),
1633
+ AMU_AMEVCNTR1_EL0(9),
1634
+ AMU_AMEVCNTR1_EL0(10),
1635
+ AMU_AMEVCNTR1_EL0(11),
1636
+ AMU_AMEVCNTR1_EL0(12),
1637
+ AMU_AMEVCNTR1_EL0(13),
1638
+ AMU_AMEVCNTR1_EL0(14),
1639
+ AMU_AMEVCNTR1_EL0(15),
1640
+ AMU_AMEVTYPER1_EL0(0),
1641
+ AMU_AMEVTYPER1_EL0(1),
1642
+ AMU_AMEVTYPER1_EL0(2),
1643
+ AMU_AMEVTYPER1_EL0(3),
1644
+ AMU_AMEVTYPER1_EL0(4),
1645
+ AMU_AMEVTYPER1_EL0(5),
1646
+ AMU_AMEVTYPER1_EL0(6),
1647
+ AMU_AMEVTYPER1_EL0(7),
1648
+ AMU_AMEVTYPER1_EL0(8),
1649
+ AMU_AMEVTYPER1_EL0(9),
1650
+ AMU_AMEVTYPER1_EL0(10),
1651
+ AMU_AMEVTYPER1_EL0(11),
1652
+ AMU_AMEVTYPER1_EL0(12),
1653
+ AMU_AMEVTYPER1_EL0(13),
1654
+ AMU_AMEVTYPER1_EL0(14),
1655
+ AMU_AMEVTYPER1_EL0(15),
1656
+
1657
+ { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1658
+ { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1659
+ { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
13901660
13911661 /* PMEVCNTRn_EL0 */
13921662 PMU_PMEVCNTR_EL0(0),
....@@ -1456,14 +1726,15 @@
14561726 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
14571727 * in 32bit mode. Here we choose to reset it as zero for consistency.
14581728 */
1459
- { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1729
+ { PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
1730
+ .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
14601731
14611732 { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
14621733 { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
14631734 { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
14641735 };
14651736
1466
-static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1737
+static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
14671738 struct sys_reg_params *p,
14681739 const struct sys_reg_desc *r)
14691740 {
....@@ -1477,71 +1748,32 @@
14771748 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
14781749 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
14791750 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1480
- | (6 << 16) | (el3 << 14) | (el3 << 12));
1751
+ | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
14811752 return true;
14821753 }
14831754 }
14841755
1485
-static bool trap_debug32(struct kvm_vcpu *vcpu,
1486
- struct sys_reg_params *p,
1487
- const struct sys_reg_desc *r)
1488
-{
1489
- if (p->is_write) {
1490
- vcpu_cp14(vcpu, r->reg) = p->regval;
1491
- vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1492
- } else {
1493
- p->regval = vcpu_cp14(vcpu, r->reg);
1494
- }
1495
-
1496
- return true;
1497
-}
1498
-
1499
-/* AArch32 debug register mappings
1756
+/*
1757
+ * AArch32 debug register mappings
15001758 *
15011759 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
15021760 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
15031761 *
1504
- * All control registers and watchpoint value registers are mapped to
1505
- * the lower 32 bits of their AArch64 equivalents. We share the trap
1506
- * handlers with the above AArch64 code which checks what mode the
1507
- * system is in.
1762
+ * None of the other registers share their location, so treat them as
1763
+ * if they were 64bit.
15081764 */
1509
-
1510
-static bool trap_xvr(struct kvm_vcpu *vcpu,
1511
- struct sys_reg_params *p,
1512
- const struct sys_reg_desc *rd)
1513
-{
1514
- u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1515
-
1516
- if (p->is_write) {
1517
- u64 val = *dbg_reg;
1518
-
1519
- val &= 0xffffffffUL;
1520
- val |= p->regval << 32;
1521
- *dbg_reg = val;
1522
-
1523
- vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1524
- } else {
1525
- p->regval = *dbg_reg >> 32;
1526
- }
1527
-
1528
- trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1529
-
1530
- return true;
1531
-}
1532
-
1533
-#define DBG_BCR_BVR_WCR_WVR(n) \
1534
- /* DBGBVRn */ \
1535
- { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1536
- /* DBGBCRn */ \
1537
- { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1538
- /* DBGWVRn */ \
1539
- { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1540
- /* DBGWCRn */ \
1765
+#define DBG_BCR_BVR_WCR_WVR(n) \
1766
+ /* DBGBVRn */ \
1767
+ { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1768
+ /* DBGBCRn */ \
1769
+ { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1770
+ /* DBGWVRn */ \
1771
+ { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1772
+ /* DBGWCRn */ \
15411773 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
15421774
1543
-#define DBGBXVR(n) \
1544
- { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1775
+#define DBGBXVR(n) \
1776
+ { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
15451777
15461778 /*
15471779 * Trapped cp14 registers. We generally ignore most of the external
....@@ -1549,8 +1781,8 @@
15491781 * guest. Revisit this one day, would this principle change.
15501782 */
15511783 static const struct sys_reg_desc cp14_regs[] = {
1552
- /* DBGIDR */
1553
- { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1784
+ /* DBGDIDR */
1785
+ { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
15541786 /* DBGDTRRXext */
15551787 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
15561788
....@@ -1559,9 +1791,9 @@
15591791 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
15601792 DBG_BCR_BVR_WCR_WVR(1),
15611793 /* DBGDCCINT */
1562
- { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32, NULL, cp14_DBGDCCINT },
1794
+ { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
15631795 /* DBGDSCRext */
1564
- { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32, NULL, cp14_DBGDSCRext },
1796
+ { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
15651797 DBG_BCR_BVR_WCR_WVR(2),
15661798 /* DBGDTR[RT]Xint */
15671799 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
....@@ -1576,7 +1808,7 @@
15761808 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
15771809 DBG_BCR_BVR_WCR_WVR(6),
15781810 /* DBGVCR */
1579
- { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32, NULL, cp14_DBGVCR },
1811
+ { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
15801812 DBG_BCR_BVR_WCR_WVR(7),
15811813 DBG_BCR_BVR_WCR_WVR(8),
15821814 DBG_BCR_BVR_WCR_WVR(9),
....@@ -1661,18 +1893,30 @@
16611893 * register).
16621894 */
16631895 static const struct sys_reg_desc cp15_regs[] = {
1664
- { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1665
- { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1666
- { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1667
- { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1668
- { Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, c2_TTBCR2 },
1669
- { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1670
- { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1671
- { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1672
- { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1673
- { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1674
- { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1675
- { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1896
+ { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1897
+ { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
1898
+ /* ACTLR */
1899
+ { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
1900
+ /* ACTLR2 */
1901
+ { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
1902
+ { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
1903
+ { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
1904
+ /* TTBCR */
1905
+ { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
1906
+ /* TTBCR2 */
1907
+ { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
1908
+ { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
1909
+ /* DFSR */
1910
+ { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
1911
+ { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
1912
+ /* ADFSR */
1913
+ { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
1914
+ /* AIFSR */
1915
+ { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
1916
+ /* DFAR */
1917
+ { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
1918
+ /* IFAR */
1919
+ { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
16761920
16771921 /*
16781922 * DC{C,I,CI}SW operations:
....@@ -1688,8 +1932,8 @@
16881932 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
16891933 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
16901934 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1691
- { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1692
- { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1935
+ { AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1936
+ { AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
16931937 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
16941938 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
16951939 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
....@@ -1697,21 +1941,28 @@
16971941 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
16981942 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
16991943 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1944
+ { AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 4), access_pmceid },
1945
+ { AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 5), access_pmceid },
1946
+ /* PMMIR */
1947
+ { Op1( 0), CRn( 9), CRm(14), Op2( 6), trap_raz_wi },
17001948
1701
- { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1702
- { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1703
- { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1704
- { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1949
+ /* PRRR/MAIR0 */
1950
+ { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
1951
+ /* NMRR/MAIR1 */
1952
+ { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
1953
+ /* AMAIR0 */
1954
+ { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
1955
+ /* AMAIR1 */
1956
+ { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
17051957
17061958 /* ICC_SRE */
17071959 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
17081960
1709
- { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1961
+ { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
17101962
1711
- /* CNTP_TVAL */
1712
- { Op1( 0), CRn(14), CRm( 2), Op2( 0), access_cntp_tval },
1713
- /* CNTP_CTL */
1714
- { Op1( 0), CRn(14), CRm( 2), Op2( 1), access_cntp_ctl },
1963
+ /* Arch Tmers */
1964
+ { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
1965
+ { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
17151966
17161967 /* PMEVCNTRn */
17171968 PMU_PMEVCNTR(0),
....@@ -1779,73 +2030,61 @@
17792030 PMU_PMEVTYPER(30),
17802031 /* PMCCFILTR */
17812032 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
2033
+
2034
+ { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2035
+ { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2036
+ { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
17822037 };
17832038
17842039 static const struct sys_reg_desc cp15_64_regs[] = {
1785
- { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
2040
+ { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
17862041 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
17872042 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
1788
- { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
2043
+ { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
17892044 { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
17902045 { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
1791
- { Op1( 2), CRn( 0), CRm(14), Op2( 0), access_cntp_cval },
2046
+ { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer },
17922047 };
17932048
1794
-/* Target specific emulation tables */
1795
-static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1796
-
1797
-void kvm_register_target_sys_reg_table(unsigned int target,
1798
- struct kvm_sys_reg_target_table *table)
2049
+static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2050
+ bool is_32)
17992051 {
1800
- target_tables[target] = table;
1801
-}
2052
+ unsigned int i;
18022053
1803
-/* Get specific register table for this target. */
1804
-static const struct sys_reg_desc *get_target_table(unsigned target,
1805
- bool mode_is_64,
1806
- size_t *num)
1807
-{
1808
- struct kvm_sys_reg_target_table *table;
2054
+ for (i = 0; i < n; i++) {
2055
+ if (!is_32 && table[i].reg && !table[i].reset) {
2056
+ kvm_err("sys_reg table %p entry %d has lacks reset\n",
2057
+ table, i);
2058
+ return 1;
2059
+ }
18092060
1810
- table = target_tables[target];
1811
- if (mode_is_64) {
1812
- *num = table->table64.num;
1813
- return table->table64.table;
1814
- } else {
1815
- *num = table->table32.num;
1816
- return table->table32.table;
2061
+ if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2062
+ kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2063
+ return 1;
2064
+ }
18172065 }
1818
-}
18192066
1820
-#define reg_to_match_value(x) \
1821
- ({ \
1822
- unsigned long val; \
1823
- val = (x)->Op0 << 14; \
1824
- val |= (x)->Op1 << 11; \
1825
- val |= (x)->CRn << 7; \
1826
- val |= (x)->CRm << 3; \
1827
- val |= (x)->Op2; \
1828
- val; \
1829
- })
2067
+ return 0;
2068
+}
18302069
18312070 static int match_sys_reg(const void *key, const void *elt)
18322071 {
18332072 const unsigned long pval = (unsigned long)key;
18342073 const struct sys_reg_desc *r = elt;
18352074
1836
- return pval - reg_to_match_value(r);
2075
+ return pval - reg_to_encoding(r);
18372076 }
18382077
18392078 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
18402079 const struct sys_reg_desc table[],
18412080 unsigned int num)
18422081 {
1843
- unsigned long pval = reg_to_match_value(params);
2082
+ unsigned long pval = reg_to_encoding(params);
18442083
18452084 return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
18462085 }
18472086
1848
-int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
2087
+int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
18492088 {
18502089 kvm_inject_undefined(vcpu);
18512090 return 1;
....@@ -1855,6 +2094,14 @@
18552094 struct sys_reg_params *params,
18562095 const struct sys_reg_desc *r)
18572096 {
2097
+ trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2098
+
2099
+ /* Check for regs disabled by runtime config */
2100
+ if (sysreg_hidden(vcpu, r)) {
2101
+ kvm_inject_undefined(vcpu);
2102
+ return;
2103
+ }
2104
+
18582105 /*
18592106 * Not having an accessor means that we have configured a trap
18602107 * that we don't know how to handle. This certainly qualifies
....@@ -1864,7 +2111,7 @@
18642111
18652112 /* Skip instruction if instructed so */
18662113 if (likely(r->access(vcpu, params, r)))
1867
- kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2114
+ kvm_incr_pc(vcpu);
18682115 }
18692116
18702117 /*
....@@ -1901,10 +2148,10 @@
19012148 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
19022149 struct sys_reg_params *params)
19032150 {
1904
- u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
2151
+ u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
19052152 int cp = -1;
19062153
1907
- switch(hsr_ec) {
2154
+ switch (esr_ec) {
19082155 case ESR_ELx_EC_CP15_32:
19092156 case ESR_ELx_EC_CP15_64:
19102157 cp = 15;
....@@ -1917,9 +2164,9 @@
19172164 WARN_ON(1);
19182165 }
19192166
1920
- kvm_err("Unsupported guest CP%d access at: %08lx\n",
1921
- cp, *vcpu_pc(vcpu));
1922
- print_sys_reg_instr(params);
2167
+ print_sys_reg_msg(params,
2168
+ "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2169
+ cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
19232170 kvm_inject_undefined(vcpu);
19242171 }
19252172
....@@ -1930,22 +2177,18 @@
19302177 */
19312178 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
19322179 const struct sys_reg_desc *global,
1933
- size_t nr_global,
1934
- const struct sys_reg_desc *target_specific,
1935
- size_t nr_specific)
2180
+ size_t nr_global)
19362181 {
19372182 struct sys_reg_params params;
1938
- u32 hsr = kvm_vcpu_get_hsr(vcpu);
2183
+ u32 esr = kvm_vcpu_get_esr(vcpu);
19392184 int Rt = kvm_vcpu_sys_get_rt(vcpu);
1940
- int Rt2 = (hsr >> 10) & 0x1f;
2185
+ int Rt2 = (esr >> 10) & 0x1f;
19412186
1942
- params.is_aarch32 = true;
1943
- params.is_32bit = false;
1944
- params.CRm = (hsr >> 1) & 0xf;
1945
- params.is_write = ((hsr & 1) == 0);
2187
+ params.CRm = (esr >> 1) & 0xf;
2188
+ params.is_write = ((esr & 1) == 0);
19462189
19472190 params.Op0 = 0;
1948
- params.Op1 = (hsr >> 16) & 0xf;
2191
+ params.Op1 = (esr >> 16) & 0xf;
19492192 params.Op2 = 0;
19502193 params.CRn = 0;
19512194
....@@ -1959,14 +2202,11 @@
19592202 }
19602203
19612204 /*
1962
- * Try to emulate the coprocessor access using the target
1963
- * specific table first, and using the global table afterwards.
1964
- * If either of the tables contains a handler, handle the
2205
+ * If the table contains a handler, handle the
19652206 * potential register operation in the case of a read and return
19662207 * with success.
19672208 */
1968
- if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1969
- !emulate_cp(vcpu, &params, global, nr_global)) {
2209
+ if (!emulate_cp(vcpu, &params, global, nr_global)) {
19702210 /* Split up the value between registers for the read side */
19712211 if (!params.is_write) {
19722212 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
....@@ -1987,26 +2227,21 @@
19872227 */
19882228 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
19892229 const struct sys_reg_desc *global,
1990
- size_t nr_global,
1991
- const struct sys_reg_desc *target_specific,
1992
- size_t nr_specific)
2230
+ size_t nr_global)
19932231 {
19942232 struct sys_reg_params params;
1995
- u32 hsr = kvm_vcpu_get_hsr(vcpu);
2233
+ u32 esr = kvm_vcpu_get_esr(vcpu);
19962234 int Rt = kvm_vcpu_sys_get_rt(vcpu);
19972235
1998
- params.is_aarch32 = true;
1999
- params.is_32bit = true;
2000
- params.CRm = (hsr >> 1) & 0xf;
2236
+ params.CRm = (esr >> 1) & 0xf;
20012237 params.regval = vcpu_get_reg(vcpu, Rt);
2002
- params.is_write = ((hsr & 1) == 0);
2003
- params.CRn = (hsr >> 10) & 0xf;
2238
+ params.is_write = ((esr & 1) == 0);
2239
+ params.CRn = (esr >> 10) & 0xf;
20042240 params.Op0 = 0;
2005
- params.Op1 = (hsr >> 14) & 0x7;
2006
- params.Op2 = (hsr >> 17) & 0x7;
2241
+ params.Op1 = (esr >> 14) & 0x7;
2242
+ params.Op2 = (esr >> 17) & 0x7;
20072243
2008
- if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2009
- !emulate_cp(vcpu, &params, global, nr_global)) {
2244
+ if (!emulate_cp(vcpu, &params, global, nr_global)) {
20102245 if (!params.is_write)
20112246 vcpu_set_reg(vcpu, Rt, params.regval);
20122247 return 1;
....@@ -2016,98 +2251,81 @@
20162251 return 1;
20172252 }
20182253
2019
-int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2254
+int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
20202255 {
2021
- const struct sys_reg_desc *target_specific;
2022
- size_t num;
2023
-
2024
- target_specific = get_target_table(vcpu->arch.target, false, &num);
2025
- return kvm_handle_cp_64(vcpu,
2026
- cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
2027
- target_specific, num);
2256
+ return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
20282257 }
20292258
2030
-int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2259
+int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
20312260 {
2032
- const struct sys_reg_desc *target_specific;
2033
- size_t num;
2034
-
2035
- target_specific = get_target_table(vcpu->arch.target, false, &num);
2036
- return kvm_handle_cp_32(vcpu,
2037
- cp15_regs, ARRAY_SIZE(cp15_regs),
2038
- target_specific, num);
2261
+ return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
20392262 }
20402263
2041
-int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2264
+int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
20422265 {
2043
- return kvm_handle_cp_64(vcpu,
2044
- cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
2045
- NULL, 0);
2266
+ return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
20462267 }
20472268
2048
-int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2269
+int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
20492270 {
2050
- return kvm_handle_cp_32(vcpu,
2051
- cp14_regs, ARRAY_SIZE(cp14_regs),
2052
- NULL, 0);
2271
+ return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2272
+}
2273
+
2274
+static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2275
+{
2276
+ // See ARM DDI 0487E.a, section D12.3.2
2277
+ return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
20532278 }
20542279
20552280 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
20562281 struct sys_reg_params *params)
20572282 {
2058
- size_t num;
2059
- const struct sys_reg_desc *table, *r;
2283
+ const struct sys_reg_desc *r;
20602284
2061
- table = get_target_table(vcpu->arch.target, true, &num);
2062
-
2063
- /* Search target-specific then generic table. */
2064
- r = find_reg(params, table, num);
2065
- if (!r)
2066
- r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2285
+ r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
20672286
20682287 if (likely(r)) {
20692288 perform_access(vcpu, params, r);
2289
+ } else if (is_imp_def_sys_reg(params)) {
2290
+ kvm_inject_undefined(vcpu);
20702291 } else {
2071
- kvm_err("Unsupported guest sys_reg access at: %lx\n",
2072
- *vcpu_pc(vcpu));
2073
- print_sys_reg_instr(params);
2292
+ print_sys_reg_msg(params,
2293
+ "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2294
+ *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
20742295 kvm_inject_undefined(vcpu);
20752296 }
20762297 return 1;
20772298 }
20782299
2079
-static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
2080
- const struct sys_reg_desc *table, size_t num,
2081
- unsigned long *bmap)
2300
+/**
2301
+ * kvm_reset_sys_regs - sets system registers to reset value
2302
+ * @vcpu: The VCPU pointer
2303
+ *
2304
+ * This function finds the right table above and sets the registers on the
2305
+ * virtual CPU struct to their architecturally defined reset values.
2306
+ */
2307
+void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
20822308 {
20832309 unsigned long i;
20842310
2085
- for (i = 0; i < num; i++)
2086
- if (table[i].reset) {
2087
- int reg = table[i].reg;
2088
-
2089
- table[i].reset(vcpu, &table[i]);
2090
- if (reg > 0 && reg < NR_SYS_REGS)
2091
- set_bit(reg, bmap);
2092
- }
2311
+ for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2312
+ if (sys_reg_descs[i].reset)
2313
+ sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
20932314 }
20942315
20952316 /**
20962317 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
20972318 * @vcpu: The VCPU pointer
2098
- * @run: The kvm_run struct
20992319 */
2100
-int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
2320
+int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
21012321 {
21022322 struct sys_reg_params params;
2103
- unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2323
+ unsigned long esr = kvm_vcpu_get_esr(vcpu);
21042324 int Rt = kvm_vcpu_sys_get_rt(vcpu);
21052325 int ret;
21062326
21072327 trace_kvm_handle_sys_reg(esr);
21082328
2109
- params.is_aarch32 = false;
2110
- params.is_32bit = false;
21112329 params.Op0 = (esr >> 20) & 3;
21122330 params.Op1 = (esr >> 14) & 0x7;
21132331 params.CRn = (esr >> 10) & 0xf;
....@@ -2171,8 +2389,7 @@
21712389 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
21722390 u64 id)
21732391 {
2174
- size_t num;
2175
- const struct sys_reg_desc *table, *r;
2392
+ const struct sys_reg_desc *r;
21762393 struct sys_reg_params params;
21772394
21782395 /* We only do sys_reg for now. */
....@@ -2182,10 +2399,7 @@
21822399 if (!index_to_params(id, &params))
21832400 return NULL;
21842401
2185
- table = get_target_table(vcpu->arch.target, true, &num);
2186
- r = find_reg(&params, table, num);
2187
- if (!r)
2188
- r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2402
+ r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
21892403
21902404 /* Not saved in the sys_reg array and not otherwise accessible? */
21912405 if (r && !(r->reg || r->get_user))
....@@ -2210,10 +2424,14 @@
22102424 }
22112425
22122426 FUNCTION_INVARIANT(midr_el1)
2213
-FUNCTION_INVARIANT(ctr_el0)
22142427 FUNCTION_INVARIANT(revidr_el1)
22152428 FUNCTION_INVARIANT(clidr_el1)
22162429 FUNCTION_INVARIANT(aidr_el1)
2430
+
2431
+static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2432
+{
2433
+ ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2434
+}
22172435
22182436 /* ->val is filled in by kvm_sys_reg_table_init() */
22192437 static struct sys_reg_desc invariant_sys_regs[] = {
....@@ -2371,6 +2589,10 @@
23712589 if (!r)
23722590 return get_invariant_sys_reg(reg->id, uaddr);
23732591
2592
+ /* Check for regs disabled by runtime config */
2593
+ if (sysreg_hidden(vcpu, r))
2594
+ return -ENOENT;
2595
+
23742596 if (r->get_user)
23752597 return (r->get_user)(vcpu, r, reg, uaddr);
23762598
....@@ -2391,6 +2613,10 @@
23912613 r = index_to_sys_reg_desc(vcpu, reg->id);
23922614 if (!r)
23932615 return set_invariant_sys_reg(reg->id, uaddr);
2616
+
2617
+ /* Check for regs disabled by runtime config */
2618
+ if (sysreg_hidden(vcpu, r))
2619
+ return -ENOENT;
23942620
23952621 if (r->set_user)
23962622 return (r->set_user)(vcpu, r, reg, uaddr);
....@@ -2448,7 +2674,8 @@
24482674 return true;
24492675 }
24502676
2451
-static int walk_one_sys_reg(const struct sys_reg_desc *rd,
2677
+static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2678
+ const struct sys_reg_desc *rd,
24522679 u64 __user **uind,
24532680 unsigned int *total)
24542681 {
....@@ -2457,6 +2684,9 @@
24572684 * and for which no custom user accessor is provided.
24582685 */
24592686 if (!(rd->reg || rd->get_user))
2687
+ return 0;
2688
+
2689
+ if (sysreg_hidden(vcpu, rd))
24602690 return 0;
24612691
24622692 if (!copy_reg_to_user(rd, uind))
....@@ -2469,35 +2699,17 @@
24692699 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
24702700 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
24712701 {
2472
- const struct sys_reg_desc *i1, *i2, *end1, *end2;
2702
+ const struct sys_reg_desc *i2, *end2;
24732703 unsigned int total = 0;
2474
- size_t num;
24752704 int err;
24762705
2477
- /* We check for duplicates here, to allow arch-specific overrides. */
2478
- i1 = get_target_table(vcpu->arch.target, true, &num);
2479
- end1 = i1 + num;
24802706 i2 = sys_reg_descs;
24812707 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
24822708
2483
- BUG_ON(i1 == end1 || i2 == end2);
2484
-
2485
- /* Walk carefully, as both tables may refer to the same register. */
2486
- while (i1 || i2) {
2487
- int cmp = cmp_sys_reg(i1, i2);
2488
- /* target-specific overrides generic entry. */
2489
- if (cmp <= 0)
2490
- err = walk_one_sys_reg(i1, &uind, &total);
2491
- else
2492
- err = walk_one_sys_reg(i2, &uind, &total);
2493
-
2709
+ while (i2 != end2) {
2710
+ err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
24942711 if (err)
24952712 return err;
2496
-
2497
- if (cmp <= 0 && ++i1 == end1)
2498
- i1 = NULL;
2499
- if (cmp >= 0 && ++i2 == end2)
2500
- i2 = NULL;
25012713 }
25022714 return total;
25032715 }
....@@ -2529,32 +2741,18 @@
25292741 return write_demux_regids(uindices);
25302742 }
25312743
2532
-static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2533
-{
2534
- unsigned int i;
2535
-
2536
- for (i = 1; i < n; i++) {
2537
- if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2538
- kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2539
- return 1;
2540
- }
2541
- }
2542
-
2543
- return 0;
2544
-}
2545
-
25462744 void kvm_sys_reg_table_init(void)
25472745 {
25482746 unsigned int i;
25492747 struct sys_reg_desc clidr;
25502748
25512749 /* Make sure tables are unique and in order. */
2552
- BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2553
- BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2554
- BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2555
- BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2556
- BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2557
- BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2750
+ BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2751
+ BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2752
+ BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2753
+ BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2754
+ BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2755
+ BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
25582756
25592757 /* We abuse the reset function to overwrite the table itself. */
25602758 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
....@@ -2577,30 +2775,4 @@
25772775 break;
25782776 /* Clear all higher bits. */
25792777 cache_levels &= (1 << (i*3))-1;
2580
-}
2581
-
2582
-/**
2583
- * kvm_reset_sys_regs - sets system registers to reset value
2584
- * @vcpu: The VCPU pointer
2585
- *
2586
- * This function finds the right table above and sets the registers on the
2587
- * virtual CPU struct to their architecturally defined reset values.
2588
- */
2589
-void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2590
-{
2591
- size_t num;
2592
- const struct sys_reg_desc *table;
2593
- DECLARE_BITMAP(bmap, NR_SYS_REGS) = { 0, };
2594
-
2595
- /* Generic chip reset first (so target could override). */
2596
- reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs), bmap);
2597
-
2598
- table = get_target_table(vcpu->arch.target, true, &num);
2599
- reset_sys_reg_descs(vcpu, table, num, bmap);
2600
-
2601
- for (num = 1; num < NR_SYS_REGS; num++) {
2602
- if (WARN(!test_bit(num, bmap),
2603
- "Didn't reset __vcpu_sys_reg(%zi)\n", num))
2604
- break;
2605
- }
26062778 }