forked from ~ljy/RK356X_SDK_RELEASE

hc
2024-05-10 748e4f3d702def1a4bff191e0cf93b6a05340f01
kernel/drivers/watchdog/dw_wdt.c
....@@ -1,11 +1,7 @@
1
+// SPDX-License-Identifier: GPL-2.0-or-later
12 /*
23 * Copyright 2010-2011 Picochip Ltd., Jamie Iles
3
- * http://www.picochip.com
4
- *
5
- * This program is free software; you can redistribute it and/or
6
- * modify it under the terms of the GNU General Public License
7
- * as published by the Free Software Foundation; either version
8
- * 2 of the License, or (at your option) any later version.
4
+ * https://www.picochip.com
95 *
106 * This file implements a driver for the Synopsys DesignWare watchdog device
117 * in the many subsystems. The watchdog has 16 different timeout periods
....@@ -16,9 +12,9 @@
1612 * heartbeat requests after the watchdog device has been closed.
1713 */
1814
19
-#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
-
2115 #include <linux/bitops.h>
16
+#include <linux/limits.h>
17
+#include <linux/kernel.h>
2218 #include <linux/clk.h>
2319 #include <linux/delay.h>
2420 #include <linux/err.h>
....@@ -26,11 +22,13 @@
2622 #include <linux/kernel.h>
2723 #include <linux/module.h>
2824 #include <linux/moduleparam.h>
25
+#include <linux/interrupt.h>
2926 #include <linux/of.h>
3027 #include <linux/pm.h>
3128 #include <linux/platform_device.h>
3229 #include <linux/reset.h>
3330 #include <linux/watchdog.h>
31
+#include <linux/debugfs.h>
3432
3533 #define WDOG_CONTROL_REG_OFFSET 0x00
3634 #define WDOG_CONTROL_REG_WDT_EN_MASK 0x01
....@@ -40,27 +38,64 @@
4038 #define WDOG_CURRENT_COUNT_REG_OFFSET 0x08
4139 #define WDOG_COUNTER_RESTART_REG_OFFSET 0x0c
4240 #define WDOG_COUNTER_RESTART_KICK_VALUE 0x76
41
+#define WDOG_INTERRUPT_STATUS_REG_OFFSET 0x10
42
+#define WDOG_INTERRUPT_CLEAR_REG_OFFSET 0x14
43
+#define WDOG_COMP_PARAMS_5_REG_OFFSET 0xe4
44
+#define WDOG_COMP_PARAMS_4_REG_OFFSET 0xe8
45
+#define WDOG_COMP_PARAMS_3_REG_OFFSET 0xec
46
+#define WDOG_COMP_PARAMS_2_REG_OFFSET 0xf0
47
+#define WDOG_COMP_PARAMS_1_REG_OFFSET 0xf4
48
+#define WDOG_COMP_PARAMS_1_USE_FIX_TOP BIT(6)
49
+#define WDOG_COMP_VERSION_REG_OFFSET 0xf8
50
+#define WDOG_COMP_TYPE_REG_OFFSET 0xfc
4351
44
-/* The maximum TOP (timeout period) value that can be set in the watchdog. */
45
-#define DW_WDT_MAX_TOP 15
52
+/* There are sixteen TOPs (timeout periods) that can be set in the watchdog. */
53
+#define DW_WDT_NUM_TOPS 16
54
+#define DW_WDT_FIX_TOP(_idx) (1U << (16 + _idx))
4655
4756 #define DW_WDT_DEFAULT_SECONDS 30
57
+
58
+static const u32 dw_wdt_fix_tops[DW_WDT_NUM_TOPS] = {
59
+ DW_WDT_FIX_TOP(0), DW_WDT_FIX_TOP(1), DW_WDT_FIX_TOP(2),
60
+ DW_WDT_FIX_TOP(3), DW_WDT_FIX_TOP(4), DW_WDT_FIX_TOP(5),
61
+ DW_WDT_FIX_TOP(6), DW_WDT_FIX_TOP(7), DW_WDT_FIX_TOP(8),
62
+ DW_WDT_FIX_TOP(9), DW_WDT_FIX_TOP(10), DW_WDT_FIX_TOP(11),
63
+ DW_WDT_FIX_TOP(12), DW_WDT_FIX_TOP(13), DW_WDT_FIX_TOP(14),
64
+ DW_WDT_FIX_TOP(15)
65
+};
4866
4967 static bool nowayout = WATCHDOG_NOWAYOUT;
5068 module_param(nowayout, bool, 0);
5169 MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started "
5270 "(default=" __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
5371
72
+enum dw_wdt_rmod {
73
+ DW_WDT_RMOD_RESET = 1,
74
+ DW_WDT_RMOD_IRQ = 2
75
+};
76
+
77
+struct dw_wdt_timeout {
78
+ u32 top_val;
79
+ unsigned int sec;
80
+ unsigned int msec;
81
+};
82
+
5483 struct dw_wdt {
5584 void __iomem *regs;
5685 struct clk *clk;
5786 struct clk *pclk;
5887 unsigned long rate;
88
+ enum dw_wdt_rmod rmod;
89
+ struct dw_wdt_timeout timeouts[DW_WDT_NUM_TOPS];
5990 struct watchdog_device wdd;
6091 struct reset_control *rst;
6192 /* Save/restore */
6293 u32 control;
6394 u32 timeout;
95
+
96
+#ifdef CONFIG_DEBUG_FS
97
+ struct dentry *dbgfs_dir;
98
+#endif
6499 };
65100
66101 #define to_dw_wdt(wdd) container_of(wdd, struct dw_wdt, wdd)
....@@ -71,20 +106,91 @@
71106 WDOG_CONTROL_REG_WDT_EN_MASK;
72107 }
73108
74
-static inline int dw_wdt_top_in_seconds(struct dw_wdt *dw_wdt, unsigned top)
109
+static void dw_wdt_update_mode(struct dw_wdt *dw_wdt, enum dw_wdt_rmod rmod)
75110 {
76
- /*
77
- * There are 16 possible timeout values in 0..15 where the number of
78
- * cycles is 2 ^ (16 + i) and the watchdog counts down.
79
- */
80
- return (1U << (16 + top)) / dw_wdt->rate;
111
+ u32 val;
112
+
113
+ val = readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
114
+ if (rmod == DW_WDT_RMOD_IRQ)
115
+ val |= WDOG_CONTROL_REG_RESP_MODE_MASK;
116
+ else
117
+ val &= ~WDOG_CONTROL_REG_RESP_MODE_MASK;
118
+ writel(val, dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
119
+
120
+ dw_wdt->rmod = rmod;
81121 }
82122
83
-static int dw_wdt_get_top(struct dw_wdt *dw_wdt)
123
+static unsigned int dw_wdt_find_best_top(struct dw_wdt *dw_wdt,
124
+ unsigned int timeout, u32 *top_val)
84125 {
85
- int top = readl(dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET) & 0xF;
126
+ int idx;
86127
87
- return dw_wdt_top_in_seconds(dw_wdt, top);
128
+ /*
129
+ * Find a TOP with timeout greater or equal to the requested number.
130
+ * Note we'll select a TOP with maximum timeout if the requested
131
+ * timeout couldn't be reached.
132
+ */
133
+ for (idx = 0; idx < DW_WDT_NUM_TOPS; ++idx) {
134
+ if (dw_wdt->timeouts[idx].sec >= timeout)
135
+ break;
136
+ }
137
+
138
+ if (idx == DW_WDT_NUM_TOPS)
139
+ --idx;
140
+
141
+ *top_val = dw_wdt->timeouts[idx].top_val;
142
+
143
+ return dw_wdt->timeouts[idx].sec;
144
+}
145
+
146
+static unsigned int dw_wdt_get_min_timeout(struct dw_wdt *dw_wdt)
147
+{
148
+ int idx;
149
+
150
+ /*
151
+ * We'll find a timeout greater or equal to one second anyway because
152
+ * the driver probe would have failed if there was none.
153
+ */
154
+ for (idx = 0; idx < DW_WDT_NUM_TOPS; ++idx) {
155
+ if (dw_wdt->timeouts[idx].sec)
156
+ break;
157
+ }
158
+
159
+ /* For Coverity check */
160
+ if (idx == DW_WDT_NUM_TOPS)
161
+ idx = 0;
162
+
163
+ return dw_wdt->timeouts[idx].sec;
164
+}
165
+
166
+static unsigned int dw_wdt_get_max_timeout_ms(struct dw_wdt *dw_wdt)
167
+{
168
+ struct dw_wdt_timeout *timeout = &dw_wdt->timeouts[DW_WDT_NUM_TOPS - 1];
169
+ u64 msec;
170
+
171
+ msec = (u64)timeout->sec * MSEC_PER_SEC + timeout->msec;
172
+
173
+ return msec < UINT_MAX ? msec : UINT_MAX;
174
+}
175
+
176
+static unsigned int dw_wdt_get_timeout(struct dw_wdt *dw_wdt)
177
+{
178
+ int top_val = readl(dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET) & 0xF;
179
+ int idx;
180
+
181
+ for (idx = 0; idx < DW_WDT_NUM_TOPS; ++idx) {
182
+ if (dw_wdt->timeouts[idx].top_val == top_val)
183
+ break;
184
+ }
185
+
186
+ if (idx == DW_WDT_NUM_TOPS)
187
+ idx = 0;
188
+
189
+ /*
190
+ * In IRQ mode due to the two stages counter, the actual timeout is
191
+ * twice greater than the TOP setting.
192
+ */
193
+ return dw_wdt->timeouts[idx].sec * dw_wdt->rmod;
88194 }
89195
90196 static int dw_wdt_ping(struct watchdog_device *wdd)
....@@ -100,17 +206,23 @@
100206 static int dw_wdt_set_timeout(struct watchdog_device *wdd, unsigned int top_s)
101207 {
102208 struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
103
- int i, top_val = DW_WDT_MAX_TOP;
209
+ unsigned int timeout;
210
+ u32 top_val;
104211
105212 /*
106
- * Iterate over the timeout values until we find the closest match. We
107
- * always look for >=.
213
+ * Note IRQ mode being enabled means having a non-zero pre-timeout
214
+ * setup. In this case we try to find a TOP as close to the half of the
215
+ * requested timeout as possible since DW Watchdog IRQ mode is designed
216
+ * in two stages way - first timeout rises the pre-timeout interrupt,
217
+ * second timeout performs the system reset. So basically the effective
218
+ * watchdog-caused reset happens after two watchdog TOPs elapsed.
108219 */
109
- for (i = 0; i <= DW_WDT_MAX_TOP; ++i)
110
- if (dw_wdt_top_in_seconds(dw_wdt, i) >= top_s) {
111
- top_val = i;
112
- break;
113
- }
220
+ timeout = dw_wdt_find_best_top(dw_wdt, DIV_ROUND_UP(top_s, dw_wdt->rmod),
221
+ &top_val);
222
+ if (dw_wdt->rmod == DW_WDT_RMOD_IRQ)
223
+ wdd->pretimeout = timeout;
224
+ else
225
+ wdd->pretimeout = 0;
114226
115227 /*
116228 * Set the new value in the watchdog. Some versions of dw_wdt
....@@ -121,7 +233,34 @@
121233 writel(top_val | top_val << WDOG_TIMEOUT_RANGE_TOPINIT_SHIFT,
122234 dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET);
123235
124
- wdd->timeout = dw_wdt_top_in_seconds(dw_wdt, top_val);
236
+ /* Kick new TOP value into the watchdog counter if activated. */
237
+ if (watchdog_active(wdd))
238
+ dw_wdt_ping(wdd);
239
+
240
+ /*
241
+ * In case users set bigger timeout value than HW can support,
242
+ * kernel(watchdog_dev.c) helps to feed watchdog before
243
+ * wdd->max_hw_heartbeat_ms
244
+ */
245
+ if (top_s * 1000 <= wdd->max_hw_heartbeat_ms)
246
+ wdd->timeout = timeout * dw_wdt->rmod;
247
+ else
248
+ wdd->timeout = top_s;
249
+
250
+ return 0;
251
+}
252
+
253
+static int dw_wdt_set_pretimeout(struct watchdog_device *wdd, unsigned int req)
254
+{
255
+ struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
256
+
257
+ /*
258
+ * We ignore actual value of the timeout passed from user-space
259
+ * using it as a flag whether the pretimeout functionality is intended
260
+ * to be activated.
261
+ */
262
+ dw_wdt_update_mode(dw_wdt, req ? DW_WDT_RMOD_IRQ : DW_WDT_RMOD_RESET);
263
+ dw_wdt_set_timeout(wdd, wdd->timeout);
125264
126265 return 0;
127266 }
....@@ -130,8 +269,11 @@
130269 {
131270 u32 val = readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
132271
133
- /* Disable interrupt mode; always perform system reset. */
134
- val &= ~WDOG_CONTROL_REG_RESP_MODE_MASK;
272
+ /* Disable/enable interrupt mode depending on the RMOD flag. */
273
+ if (dw_wdt->rmod == DW_WDT_RMOD_IRQ)
274
+ val |= WDOG_CONTROL_REG_RESP_MODE_MASK;
275
+ else
276
+ val &= ~WDOG_CONTROL_REG_RESP_MODE_MASK;
135277 /* Enable watchdog. */
136278 val |= WDOG_CONTROL_REG_WDT_EN_MASK;
137279 writel(val, dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
....@@ -169,6 +311,7 @@
169311 struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
170312
171313 writel(0, dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET);
314
+ dw_wdt_update_mode(dw_wdt, DW_WDT_RMOD_RESET);
172315 if (dw_wdt_is_enabled(dw_wdt))
173316 writel(WDOG_COUNTER_RESTART_KICK_VALUE,
174317 dw_wdt->regs + WDOG_COUNTER_RESTART_REG_OFFSET);
....@@ -184,14 +327,30 @@
184327 static unsigned int dw_wdt_get_timeleft(struct watchdog_device *wdd)
185328 {
186329 struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
330
+ unsigned int sec;
331
+ u32 val;
187332
188
- return readl(dw_wdt->regs + WDOG_CURRENT_COUNT_REG_OFFSET) /
189
- dw_wdt->rate;
333
+ val = readl(dw_wdt->regs + WDOG_CURRENT_COUNT_REG_OFFSET);
334
+ sec = val / dw_wdt->rate;
335
+
336
+ if (dw_wdt->rmod == DW_WDT_RMOD_IRQ) {
337
+ val = readl(dw_wdt->regs + WDOG_INTERRUPT_STATUS_REG_OFFSET);
338
+ if (!val)
339
+ sec += wdd->pretimeout;
340
+ }
341
+
342
+ return sec;
190343 }
191344
192345 static const struct watchdog_info dw_wdt_ident = {
193346 .options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT |
194347 WDIOF_MAGICCLOSE,
348
+ .identity = "Synopsys DesignWare Watchdog",
349
+};
350
+
351
+static const struct watchdog_info dw_wdt_pt_ident = {
352
+ .options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT |
353
+ WDIOF_PRETIMEOUT | WDIOF_MAGICCLOSE,
195354 .identity = "Synopsys DesignWare Watchdog",
196355 };
197356
....@@ -201,9 +360,28 @@
201360 .stop = dw_wdt_stop,
202361 .ping = dw_wdt_ping,
203362 .set_timeout = dw_wdt_set_timeout,
363
+ .set_pretimeout = dw_wdt_set_pretimeout,
204364 .get_timeleft = dw_wdt_get_timeleft,
205365 .restart = dw_wdt_restart,
206366 };
367
+
368
+static irqreturn_t dw_wdt_irq(int irq, void *devid)
369
+{
370
+ struct dw_wdt *dw_wdt = devid;
371
+ u32 val;
372
+
373
+ /*
374
+ * We don't clear the IRQ status. It's supposed to be done by the
375
+ * following ping operations.
376
+ */
377
+ val = readl(dw_wdt->regs + WDOG_INTERRUPT_STATUS_REG_OFFSET);
378
+ if (!val)
379
+ return IRQ_NONE;
380
+
381
+ watchdog_notify_pretimeout(&dw_wdt->wdd);
382
+
383
+ return IRQ_HANDLED;
384
+}
207385
208386 #ifdef CONFIG_PM_SLEEP
209387 static int dw_wdt_suspend(struct device *dev)
....@@ -244,20 +422,151 @@
244422
245423 static SIMPLE_DEV_PM_OPS(dw_wdt_pm_ops, dw_wdt_suspend, dw_wdt_resume);
246424
425
+/*
426
+ * In case if DW WDT IP core is synthesized with fixed TOP feature disabled the
427
+ * TOPs array can be arbitrary ordered with nearly any sixteen uint numbers
428
+ * depending on the system engineer imagination. The next method handles the
429
+ * passed TOPs array to pre-calculate the effective timeouts and to sort the
430
+ * TOP items out in the ascending order with respect to the timeouts.
431
+ */
432
+
433
+static void dw_wdt_handle_tops(struct dw_wdt *dw_wdt, const u32 *tops)
434
+{
435
+ struct dw_wdt_timeout tout, *dst;
436
+ int val, tidx;
437
+ u64 msec;
438
+
439
+ /*
440
+ * We walk over the passed TOPs array and calculate corresponding
441
+ * timeouts in seconds and milliseconds. The milliseconds granularity
442
+ * is needed to distinguish the TOPs with very close timeouts and to
443
+ * set the watchdog max heartbeat setting further.
444
+ */
445
+ for (val = 0; val < DW_WDT_NUM_TOPS; ++val) {
446
+ tout.top_val = val;
447
+ tout.sec = tops[val] / dw_wdt->rate;
448
+ msec = (u64)tops[val] * MSEC_PER_SEC;
449
+ do_div(msec, dw_wdt->rate);
450
+ tout.msec = msec - ((u64)tout.sec * MSEC_PER_SEC);
451
+
452
+ /*
453
+ * Find a suitable place for the current TOP in the timeouts
454
+ * array so that the list is remained in the ascending order.
455
+ */
456
+ for (tidx = 0; tidx < val; ++tidx) {
457
+ dst = &dw_wdt->timeouts[tidx];
458
+ if (tout.sec > dst->sec || (tout.sec == dst->sec &&
459
+ tout.msec >= dst->msec))
460
+ continue;
461
+ else
462
+ swap(*dst, tout);
463
+ }
464
+
465
+ dw_wdt->timeouts[val] = tout;
466
+ }
467
+}
468
+
469
+static int dw_wdt_init_timeouts(struct dw_wdt *dw_wdt, struct device *dev)
470
+{
471
+ u32 data, of_tops[DW_WDT_NUM_TOPS];
472
+ const u32 *tops;
473
+ int ret;
474
+
475
+ /*
476
+ * Retrieve custom or fixed counter values depending on the
477
+ * WDT_USE_FIX_TOP flag found in the component specific parameters
478
+ * #1 register.
479
+ */
480
+ data = readl(dw_wdt->regs + WDOG_COMP_PARAMS_1_REG_OFFSET);
481
+ if (data & WDOG_COMP_PARAMS_1_USE_FIX_TOP) {
482
+ tops = dw_wdt_fix_tops;
483
+ } else {
484
+ ret = of_property_read_variable_u32_array(dev_of_node(dev),
485
+ "snps,watchdog-tops", of_tops, DW_WDT_NUM_TOPS,
486
+ DW_WDT_NUM_TOPS);
487
+ if (ret < 0) {
488
+ dev_warn(dev, "No valid TOPs array specified\n");
489
+ tops = dw_wdt_fix_tops;
490
+ } else {
491
+ tops = of_tops;
492
+ }
493
+ }
494
+
495
+ /* Convert the specified TOPs into an array of watchdog timeouts. */
496
+ dw_wdt_handle_tops(dw_wdt, tops);
497
+ if (!dw_wdt->timeouts[DW_WDT_NUM_TOPS - 1].sec) {
498
+ dev_err(dev, "No any valid TOP detected\n");
499
+ return -EINVAL;
500
+ }
501
+
502
+ return 0;
503
+}
504
+
505
+#ifdef CONFIG_DEBUG_FS
506
+
507
+#define DW_WDT_DBGFS_REG(_name, _off) \
508
+{ \
509
+ .name = _name, \
510
+ .offset = _off \
511
+}
512
+
513
+static const struct debugfs_reg32 dw_wdt_dbgfs_regs[] = {
514
+ DW_WDT_DBGFS_REG("cr", WDOG_CONTROL_REG_OFFSET),
515
+ DW_WDT_DBGFS_REG("torr", WDOG_TIMEOUT_RANGE_REG_OFFSET),
516
+ DW_WDT_DBGFS_REG("ccvr", WDOG_CURRENT_COUNT_REG_OFFSET),
517
+ DW_WDT_DBGFS_REG("crr", WDOG_COUNTER_RESTART_REG_OFFSET),
518
+ DW_WDT_DBGFS_REG("stat", WDOG_INTERRUPT_STATUS_REG_OFFSET),
519
+ DW_WDT_DBGFS_REG("param5", WDOG_COMP_PARAMS_5_REG_OFFSET),
520
+ DW_WDT_DBGFS_REG("param4", WDOG_COMP_PARAMS_4_REG_OFFSET),
521
+ DW_WDT_DBGFS_REG("param3", WDOG_COMP_PARAMS_3_REG_OFFSET),
522
+ DW_WDT_DBGFS_REG("param2", WDOG_COMP_PARAMS_2_REG_OFFSET),
523
+ DW_WDT_DBGFS_REG("param1", WDOG_COMP_PARAMS_1_REG_OFFSET),
524
+ DW_WDT_DBGFS_REG("version", WDOG_COMP_VERSION_REG_OFFSET),
525
+ DW_WDT_DBGFS_REG("type", WDOG_COMP_TYPE_REG_OFFSET)
526
+};
527
+
528
+static void dw_wdt_dbgfs_init(struct dw_wdt *dw_wdt)
529
+{
530
+ struct device *dev = dw_wdt->wdd.parent;
531
+ struct debugfs_regset32 *regset;
532
+
533
+ regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
534
+ if (!regset)
535
+ return;
536
+
537
+ regset->regs = dw_wdt_dbgfs_regs;
538
+ regset->nregs = ARRAY_SIZE(dw_wdt_dbgfs_regs);
539
+ regset->base = dw_wdt->regs;
540
+
541
+ dw_wdt->dbgfs_dir = debugfs_create_dir(dev_name(dev), NULL);
542
+
543
+ debugfs_create_regset32("registers", 0444, dw_wdt->dbgfs_dir, regset);
544
+}
545
+
546
+static void dw_wdt_dbgfs_clear(struct dw_wdt *dw_wdt)
547
+{
548
+ debugfs_remove_recursive(dw_wdt->dbgfs_dir);
549
+}
550
+
551
+#else /* !CONFIG_DEBUG_FS */
552
+
553
+static void dw_wdt_dbgfs_init(struct dw_wdt *dw_wdt) {}
554
+static void dw_wdt_dbgfs_clear(struct dw_wdt *dw_wdt) {}
555
+
556
+#endif /* !CONFIG_DEBUG_FS */
557
+
247558 static int dw_wdt_drv_probe(struct platform_device *pdev)
248559 {
249560 struct device *dev = &pdev->dev;
250561 struct watchdog_device *wdd;
251562 struct dw_wdt *dw_wdt;
252
- struct resource *mem;
253563 int ret;
254564
255565 dw_wdt = devm_kzalloc(dev, sizeof(*dw_wdt), GFP_KERNEL);
256566 if (!dw_wdt)
257567 return -ENOMEM;
258568
259
- mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
260
- dw_wdt->regs = devm_ioremap_resource(dev, mem);
569
+ dw_wdt->regs = devm_platform_ioremap_resource(pdev, 0);
261570 if (IS_ERR(dw_wdt->regs))
262571 return PTR_ERR(dw_wdt->regs);
263572
....@@ -307,14 +616,41 @@
307616 goto out_disable_pclk;
308617 }
309618
619
+ /* Enable normal reset without pre-timeout by default. */
620
+ dw_wdt_update_mode(dw_wdt, DW_WDT_RMOD_RESET);
621
+
622
+ /*
623
+ * Pre-timeout IRQ is optional, since some hardware may lack support
624
+ * of it. Note we must request rising-edge IRQ, since the lane is left
625
+ * pending either until the next watchdog kick event or up to the
626
+ * system reset.
627
+ */
628
+ ret = platform_get_irq_optional(pdev, 0);
629
+ if (ret > 0) {
630
+ ret = devm_request_irq(dev, ret, dw_wdt_irq,
631
+ IRQF_SHARED | IRQF_TRIGGER_RISING,
632
+ pdev->name, dw_wdt);
633
+ if (ret)
634
+ goto out_disable_pclk;
635
+
636
+ dw_wdt->wdd.info = &dw_wdt_pt_ident;
637
+ } else {
638
+ if (ret == -EPROBE_DEFER)
639
+ goto out_disable_pclk;
640
+
641
+ dw_wdt->wdd.info = &dw_wdt_ident;
642
+ }
643
+
310644 reset_control_deassert(dw_wdt->rst);
311645
646
+ ret = dw_wdt_init_timeouts(dw_wdt, dev);
647
+ if (ret)
648
+ goto out_assert_rst;
649
+
312650 wdd = &dw_wdt->wdd;
313
- wdd->info = &dw_wdt_ident;
314651 wdd->ops = &dw_wdt_ops;
315
- wdd->min_timeout = 1;
316
- wdd->max_hw_heartbeat_ms =
317
- dw_wdt_top_in_seconds(dw_wdt, DW_WDT_MAX_TOP) * 1000;
652
+ wdd->min_timeout = dw_wdt_get_min_timeout(dw_wdt);
653
+ wdd->max_hw_heartbeat_ms = dw_wdt_get_max_timeout_ms(dw_wdt);
318654 wdd->parent = dev;
319655
320656 watchdog_set_drvdata(wdd, dw_wdt);
....@@ -327,7 +663,7 @@
327663 * devicetree.
328664 */
329665 if (dw_wdt_is_enabled(dw_wdt)) {
330
- wdd->timeout = dw_wdt_get_top(dw_wdt);
666
+ wdd->timeout = dw_wdt_get_timeout(dw_wdt);
331667 set_bit(WDOG_HW_RUNNING, &wdd->status);
332668 } else {
333669 wdd->timeout = DW_WDT_DEFAULT_SECONDS;
....@@ -340,9 +676,14 @@
340676
341677 ret = watchdog_register_device(wdd);
342678 if (ret)
343
- goto out_disable_pclk;
679
+ goto out_assert_rst;
680
+
681
+ dw_wdt_dbgfs_init(dw_wdt);
344682
345683 return 0;
684
+
685
+out_assert_rst:
686
+ reset_control_assert(dw_wdt->rst);
346687
347688 out_disable_pclk:
348689 clk_disable_unprepare(dw_wdt->pclk);
....@@ -356,6 +697,8 @@
356697 {
357698 struct dw_wdt *dw_wdt = platform_get_drvdata(pdev);
358699
700
+ dw_wdt_dbgfs_clear(dw_wdt);
701
+
359702 watchdog_unregister_device(&dw_wdt->wdd);
360703 reset_control_assert(dw_wdt->rst);
361704 clk_disable_unprepare(dw_wdt->pclk);