hc
2024-05-10 37f49e37ab4cb5d0bc4c60eb5c6d4dd57db767bb
kernel/arch/ia64/include/asm/sn/sn_sal.h
....@@ -11,138 +11,15 @@
1111 * Copyright (c) 2000-2006 Silicon Graphics, Inc. All rights reserved.
1212 */
1313
14
-
14
+#include <linux/types.h>
1515 #include <asm/sal.h>
16
-#include <asm/sn/sn_cpuid.h>
17
-#include <asm/sn/arch.h>
18
-#include <asm/sn/geo.h>
19
-#include <asm/sn/nodepda.h>
20
-#include <asm/sn/shub_mmr.h>
2116
2217 // SGI Specific Calls
23
-#define SN_SAL_POD_MODE 0x02000001
24
-#define SN_SAL_SYSTEM_RESET 0x02000002
25
-#define SN_SAL_PROBE 0x02000003
26
-#define SN_SAL_GET_MASTER_NASID 0x02000004
27
-#define SN_SAL_GET_KLCONFIG_ADDR 0x02000005
28
-#define SN_SAL_LOG_CE 0x02000006
29
-#define SN_SAL_REGISTER_CE 0x02000007
3018 #define SN_SAL_GET_PARTITION_ADDR 0x02000009
31
-#define SN_SAL_XP_ADDR_REGION 0x0200000f
32
-#define SN_SAL_NO_FAULT_ZONE_VIRTUAL 0x02000010
33
-#define SN_SAL_NO_FAULT_ZONE_PHYSICAL 0x02000011
34
-#define SN_SAL_PRINT_ERROR 0x02000012
35
-#define SN_SAL_REGISTER_PMI_HANDLER 0x02000014
36
-#define SN_SAL_SET_ERROR_HANDLING_FEATURES 0x0200001a // reentrant
37
-#define SN_SAL_GET_FIT_COMPT 0x0200001b // reentrant
38
-#define SN_SAL_GET_SAPIC_INFO 0x0200001d
39
-#define SN_SAL_GET_SN_INFO 0x0200001e
40
-#define SN_SAL_CONSOLE_PUTC 0x02000021
41
-#define SN_SAL_CONSOLE_GETC 0x02000022
42
-#define SN_SAL_CONSOLE_PUTS 0x02000023
43
-#define SN_SAL_CONSOLE_GETS 0x02000024
44
-#define SN_SAL_CONSOLE_GETS_TIMEOUT 0x02000025
45
-#define SN_SAL_CONSOLE_POLL 0x02000026
46
-#define SN_SAL_CONSOLE_INTR 0x02000027
47
-#define SN_SAL_CONSOLE_PUTB 0x02000028
48
-#define SN_SAL_CONSOLE_XMIT_CHARS 0x0200002a
49
-#define SN_SAL_CONSOLE_READC 0x0200002b
50
-#define SN_SAL_SYSCTL_OP 0x02000030
51
-#define SN_SAL_SYSCTL_MODID_GET 0x02000031
52
-#define SN_SAL_SYSCTL_GET 0x02000032
53
-#define SN_SAL_SYSCTL_IOBRICK_MODULE_GET 0x02000033
54
-#define SN_SAL_SYSCTL_IO_PORTSPEED_GET 0x02000035
55
-#define SN_SAL_SYSCTL_SLAB_GET 0x02000036
56
-#define SN_SAL_BUS_CONFIG 0x02000037
57
-#define SN_SAL_SYS_SERIAL_GET 0x02000038
58
-#define SN_SAL_PARTITION_SERIAL_GET 0x02000039
59
-#define SN_SAL_SYSCTL_PARTITION_GET 0x0200003a
60
-#define SN_SAL_SYSTEM_POWER_DOWN 0x0200003b
61
-#define SN_SAL_GET_MASTER_BASEIO_NASID 0x0200003c
62
-#define SN_SAL_COHERENCE 0x0200003d
6319 #define SN_SAL_MEMPROTECT 0x0200003e
64
-#define SN_SAL_SYSCTL_FRU_CAPTURE 0x0200003f
6520
66
-#define SN_SAL_SYSCTL_IOBRICK_PCI_OP 0x02000042 // reentrant
67
-#define SN_SAL_IROUTER_OP 0x02000043
68
-#define SN_SAL_SYSCTL_EVENT 0x02000044
69
-#define SN_SAL_IOIF_INTERRUPT 0x0200004a
70
-#define SN_SAL_HWPERF_OP 0x02000050 // lock
71
-#define SN_SAL_IOIF_ERROR_INTERRUPT 0x02000051
72
-#define SN_SAL_IOIF_PCI_SAFE 0x02000052
73
-#define SN_SAL_IOIF_SLOT_ENABLE 0x02000053
74
-#define SN_SAL_IOIF_SLOT_DISABLE 0x02000054
75
-#define SN_SAL_IOIF_GET_HUBDEV_INFO 0x02000055
76
-#define SN_SAL_IOIF_GET_PCIBUS_INFO 0x02000056
77
-#define SN_SAL_IOIF_GET_PCIDEV_INFO 0x02000057
78
-#define SN_SAL_IOIF_GET_WIDGET_DMAFLUSH_LIST 0x02000058 // deprecated
79
-#define SN_SAL_IOIF_GET_DEVICE_DMAFLUSH_LIST 0x0200005a
80
-
81
-#define SN_SAL_IOIF_INIT 0x0200005f
82
-#define SN_SAL_HUB_ERROR_INTERRUPT 0x02000060
83
-#define SN_SAL_BTE_RECOVER 0x02000061
84
-#define SN_SAL_RESERVED_DO_NOT_USE 0x02000062
85
-#define SN_SAL_IOIF_GET_PCI_TOPOLOGY 0x02000064
86
-
87
-#define SN_SAL_GET_PROM_FEATURE_SET 0x02000065
88
-#define SN_SAL_SET_OS_FEATURE_SET 0x02000066
89
-#define SN_SAL_INJECT_ERROR 0x02000067
90
-#define SN_SAL_SET_CPU_NUMBER 0x02000068
91
-
92
-#define SN_SAL_KERNEL_LAUNCH_EVENT 0x02000069
9321 #define SN_SAL_WATCHLIST_ALLOC 0x02000070
9422 #define SN_SAL_WATCHLIST_FREE 0x02000071
95
-
96
-/*
97
- * Service-specific constants
98
- */
99
-
100
-/* Console interrupt manipulation */
101
- /* action codes */
102
-#define SAL_CONSOLE_INTR_OFF 0 /* turn the interrupt off */
103
-#define SAL_CONSOLE_INTR_ON 1 /* turn the interrupt on */
104
-#define SAL_CONSOLE_INTR_STATUS 2 /* retrieve the interrupt status */
105
- /* interrupt specification & status return codes */
106
-#define SAL_CONSOLE_INTR_XMIT 1 /* output interrupt */
107
-#define SAL_CONSOLE_INTR_RECV 2 /* input interrupt */
108
-
109
-/* interrupt handling */
110
-#define SAL_INTR_ALLOC 1
111
-#define SAL_INTR_FREE 2
112
-#define SAL_INTR_REDIRECT 3
113
-
114
-/*
115
- * operations available on the generic SN_SAL_SYSCTL_OP
116
- * runtime service
117
- */
118
-#define SAL_SYSCTL_OP_IOBOARD 0x0001 /* retrieve board type */
119
-#define SAL_SYSCTL_OP_TIO_JLCK_RST 0x0002 /* issue TIO clock reset */
120
-
121
-/*
122
- * IRouter (i.e. generalized system controller) operations
123
- */
124
-#define SAL_IROUTER_OPEN 0 /* open a subchannel */
125
-#define SAL_IROUTER_CLOSE 1 /* close a subchannel */
126
-#define SAL_IROUTER_SEND 2 /* send part of an IRouter packet */
127
-#define SAL_IROUTER_RECV 3 /* receive part of an IRouter packet */
128
-#define SAL_IROUTER_INTR_STATUS 4 /* check the interrupt status for
129
- * an open subchannel
130
- */
131
-#define SAL_IROUTER_INTR_ON 5 /* enable an interrupt */
132
-#define SAL_IROUTER_INTR_OFF 6 /* disable an interrupt */
133
-#define SAL_IROUTER_INIT 7 /* initialize IRouter driver */
134
-
135
-/* IRouter interrupt mask bits */
136
-#define SAL_IROUTER_INTR_XMIT SAL_CONSOLE_INTR_XMIT
137
-#define SAL_IROUTER_INTR_RECV SAL_CONSOLE_INTR_RECV
138
-
139
-/*
140
- * Error Handling Features
141
- */
142
-#define SAL_ERR_FEAT_MCA_SLV_TO_OS_INIT_SLV 0x1 // obsolete
143
-#define SAL_ERR_FEAT_LOG_SBES 0x2 // obsolete
144
-#define SAL_ERR_FEAT_MFR_OVERRIDE 0x4
145
-#define SAL_ERR_FEAT_SBE_THRESHOLD 0xffff0000
14623
14724 /*
14825 * SAL Error Codes
....@@ -152,458 +29,6 @@
15229 #define SALRET_NOT_IMPLEMENTED (-1)
15330 #define SALRET_INVALID_ARG (-2)
15431 #define SALRET_ERROR (-3)
155
-
156
-#define SN_SAL_FAKE_PROM 0x02009999
157
-
158
-/**
159
- * sn_sal_revision - get the SGI SAL revision number
160
- *
161
- * The SGI PROM stores its version in the sal_[ab]_rev_(major|minor).
162
- * This routine simply extracts the major and minor values and
163
- * presents them in a u32 format.
164
- *
165
- * For example, version 4.05 would be represented at 0x0405.
166
- */
167
-static inline u32
168
-sn_sal_rev(void)
169
-{
170
- struct ia64_sal_systab *systab = __va(efi.sal_systab);
171
-
172
- return (u32)(systab->sal_b_rev_major << 8 | systab->sal_b_rev_minor);
173
-}
174
-
175
-/*
176
- * Returns the master console nasid, if the call fails, return an illegal
177
- * value.
178
- */
179
-static inline u64
180
-ia64_sn_get_console_nasid(void)
181
-{
182
- struct ia64_sal_retval ret_stuff;
183
-
184
- ret_stuff.status = 0;
185
- ret_stuff.v0 = 0;
186
- ret_stuff.v1 = 0;
187
- ret_stuff.v2 = 0;
188
- SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_NASID, 0, 0, 0, 0, 0, 0, 0);
189
-
190
- if (ret_stuff.status < 0)
191
- return ret_stuff.status;
192
-
193
- /* Master console nasid is in 'v0' */
194
- return ret_stuff.v0;
195
-}
196
-
197
-/*
198
- * Returns the master baseio nasid, if the call fails, return an illegal
199
- * value.
200
- */
201
-static inline u64
202
-ia64_sn_get_master_baseio_nasid(void)
203
-{
204
- struct ia64_sal_retval ret_stuff;
205
-
206
- ret_stuff.status = 0;
207
- ret_stuff.v0 = 0;
208
- ret_stuff.v1 = 0;
209
- ret_stuff.v2 = 0;
210
- SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_BASEIO_NASID, 0, 0, 0, 0, 0, 0, 0);
211
-
212
- if (ret_stuff.status < 0)
213
- return ret_stuff.status;
214
-
215
- /* Master baseio nasid is in 'v0' */
216
- return ret_stuff.v0;
217
-}
218
-
219
-static inline void *
220
-ia64_sn_get_klconfig_addr(nasid_t nasid)
221
-{
222
- struct ia64_sal_retval ret_stuff;
223
-
224
- ret_stuff.status = 0;
225
- ret_stuff.v0 = 0;
226
- ret_stuff.v1 = 0;
227
- ret_stuff.v2 = 0;
228
- SAL_CALL(ret_stuff, SN_SAL_GET_KLCONFIG_ADDR, (u64)nasid, 0, 0, 0, 0, 0, 0);
229
- return ret_stuff.v0 ? __va(ret_stuff.v0) : NULL;
230
-}
231
-
232
-/*
233
- * Returns the next console character.
234
- */
235
-static inline u64
236
-ia64_sn_console_getc(int *ch)
237
-{
238
- struct ia64_sal_retval ret_stuff;
239
-
240
- ret_stuff.status = 0;
241
- ret_stuff.v0 = 0;
242
- ret_stuff.v1 = 0;
243
- ret_stuff.v2 = 0;
244
- SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_GETC, 0, 0, 0, 0, 0, 0, 0);
245
-
246
- /* character is in 'v0' */
247
- *ch = (int)ret_stuff.v0;
248
-
249
- return ret_stuff.status;
250
-}
251
-
252
-/*
253
- * Read a character from the SAL console device, after a previous interrupt
254
- * or poll operation has given us to know that a character is available
255
- * to be read.
256
- */
257
-static inline u64
258
-ia64_sn_console_readc(void)
259
-{
260
- struct ia64_sal_retval ret_stuff;
261
-
262
- ret_stuff.status = 0;
263
- ret_stuff.v0 = 0;
264
- ret_stuff.v1 = 0;
265
- ret_stuff.v2 = 0;
266
- SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_READC, 0, 0, 0, 0, 0, 0, 0);
267
-
268
- /* character is in 'v0' */
269
- return ret_stuff.v0;
270
-}
271
-
272
-/*
273
- * Sends the given character to the console.
274
- */
275
-static inline u64
276
-ia64_sn_console_putc(char ch)
277
-{
278
- struct ia64_sal_retval ret_stuff;
279
-
280
- ret_stuff.status = 0;
281
- ret_stuff.v0 = 0;
282
- ret_stuff.v1 = 0;
283
- ret_stuff.v2 = 0;
284
- SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTC, (u64)ch, 0, 0, 0, 0, 0, 0);
285
-
286
- return ret_stuff.status;
287
-}
288
-
289
-/*
290
- * Sends the given buffer to the console.
291
- */
292
-static inline u64
293
-ia64_sn_console_putb(const char *buf, int len)
294
-{
295
- struct ia64_sal_retval ret_stuff;
296
-
297
- ret_stuff.status = 0;
298
- ret_stuff.v0 = 0;
299
- ret_stuff.v1 = 0;
300
- ret_stuff.v2 = 0;
301
- SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTB, (u64)buf, (u64)len, 0, 0, 0, 0, 0);
302
-
303
- if ( ret_stuff.status == 0 ) {
304
- return ret_stuff.v0;
305
- }
306
- return (u64)0;
307
-}
308
-
309
-/*
310
- * Print a platform error record
311
- */
312
-static inline u64
313
-ia64_sn_plat_specific_err_print(int (*hook)(const char*, ...), char *rec)
314
-{
315
- struct ia64_sal_retval ret_stuff;
316
-
317
- ret_stuff.status = 0;
318
- ret_stuff.v0 = 0;
319
- ret_stuff.v1 = 0;
320
- ret_stuff.v2 = 0;
321
- SAL_CALL_REENTRANT(ret_stuff, SN_SAL_PRINT_ERROR, (u64)hook, (u64)rec, 0, 0, 0, 0, 0);
322
-
323
- return ret_stuff.status;
324
-}
325
-
326
-/*
327
- * Check for Platform errors
328
- */
329
-static inline u64
330
-ia64_sn_plat_cpei_handler(void)
331
-{
332
- struct ia64_sal_retval ret_stuff;
333
-
334
- ret_stuff.status = 0;
335
- ret_stuff.v0 = 0;
336
- ret_stuff.v1 = 0;
337
- ret_stuff.v2 = 0;
338
- SAL_CALL_NOLOCK(ret_stuff, SN_SAL_LOG_CE, 0, 0, 0, 0, 0, 0, 0);
339
-
340
- return ret_stuff.status;
341
-}
342
-
343
-/*
344
- * Set Error Handling Features (Obsolete)
345
- */
346
-static inline u64
347
-ia64_sn_plat_set_error_handling_features(void)
348
-{
349
- struct ia64_sal_retval ret_stuff;
350
-
351
- ret_stuff.status = 0;
352
- ret_stuff.v0 = 0;
353
- ret_stuff.v1 = 0;
354
- ret_stuff.v2 = 0;
355
- SAL_CALL_REENTRANT(ret_stuff, SN_SAL_SET_ERROR_HANDLING_FEATURES,
356
- SAL_ERR_FEAT_LOG_SBES,
357
- 0, 0, 0, 0, 0, 0);
358
-
359
- return ret_stuff.status;
360
-}
361
-
362
-/*
363
- * Checks for console input.
364
- */
365
-static inline u64
366
-ia64_sn_console_check(int *result)
367
-{
368
- struct ia64_sal_retval ret_stuff;
369
-
370
- ret_stuff.status = 0;
371
- ret_stuff.v0 = 0;
372
- ret_stuff.v1 = 0;
373
- ret_stuff.v2 = 0;
374
- SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_POLL, 0, 0, 0, 0, 0, 0, 0);
375
-
376
- /* result is in 'v0' */
377
- *result = (int)ret_stuff.v0;
378
-
379
- return ret_stuff.status;
380
-}
381
-
382
-/*
383
- * Checks console interrupt status
384
- */
385
-static inline u64
386
-ia64_sn_console_intr_status(void)
387
-{
388
- struct ia64_sal_retval ret_stuff;
389
-
390
- ret_stuff.status = 0;
391
- ret_stuff.v0 = 0;
392
- ret_stuff.v1 = 0;
393
- ret_stuff.v2 = 0;
394
- SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
395
- 0, SAL_CONSOLE_INTR_STATUS,
396
- 0, 0, 0, 0, 0);
397
-
398
- if (ret_stuff.status == 0) {
399
- return ret_stuff.v0;
400
- }
401
-
402
- return 0;
403
-}
404
-
405
-/*
406
- * Enable an interrupt on the SAL console device.
407
- */
408
-static inline void
409
-ia64_sn_console_intr_enable(u64 intr)
410
-{
411
- struct ia64_sal_retval ret_stuff;
412
-
413
- ret_stuff.status = 0;
414
- ret_stuff.v0 = 0;
415
- ret_stuff.v1 = 0;
416
- ret_stuff.v2 = 0;
417
- SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
418
- intr, SAL_CONSOLE_INTR_ON,
419
- 0, 0, 0, 0, 0);
420
-}
421
-
422
-/*
423
- * Disable an interrupt on the SAL console device.
424
- */
425
-static inline void
426
-ia64_sn_console_intr_disable(u64 intr)
427
-{
428
- struct ia64_sal_retval ret_stuff;
429
-
430
- ret_stuff.status = 0;
431
- ret_stuff.v0 = 0;
432
- ret_stuff.v1 = 0;
433
- ret_stuff.v2 = 0;
434
- SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
435
- intr, SAL_CONSOLE_INTR_OFF,
436
- 0, 0, 0, 0, 0);
437
-}
438
-
439
-/*
440
- * Sends a character buffer to the console asynchronously.
441
- */
442
-static inline u64
443
-ia64_sn_console_xmit_chars(char *buf, int len)
444
-{
445
- struct ia64_sal_retval ret_stuff;
446
-
447
- ret_stuff.status = 0;
448
- ret_stuff.v0 = 0;
449
- ret_stuff.v1 = 0;
450
- ret_stuff.v2 = 0;
451
- SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_XMIT_CHARS,
452
- (u64)buf, (u64)len,
453
- 0, 0, 0, 0, 0);
454
-
455
- if (ret_stuff.status == 0) {
456
- return ret_stuff.v0;
457
- }
458
-
459
- return 0;
460
-}
461
-
462
-/*
463
- * Returns the iobrick module Id
464
- */
465
-static inline u64
466
-ia64_sn_sysctl_iobrick_module_get(nasid_t nasid, int *result)
467
-{
468
- struct ia64_sal_retval ret_stuff;
469
-
470
- ret_stuff.status = 0;
471
- ret_stuff.v0 = 0;
472
- ret_stuff.v1 = 0;
473
- ret_stuff.v2 = 0;
474
- SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYSCTL_IOBRICK_MODULE_GET, nasid, 0, 0, 0, 0, 0, 0);
475
-
476
- /* result is in 'v0' */
477
- *result = (int)ret_stuff.v0;
478
-
479
- return ret_stuff.status;
480
-}
481
-
482
-/**
483
- * ia64_sn_pod_mode - call the SN_SAL_POD_MODE function
484
- *
485
- * SN_SAL_POD_MODE actually takes an argument, but it's always
486
- * 0 when we call it from the kernel, so we don't have to expose
487
- * it to the caller.
488
- */
489
-static inline u64
490
-ia64_sn_pod_mode(void)
491
-{
492
- struct ia64_sal_retval isrv;
493
- SAL_CALL_REENTRANT(isrv, SN_SAL_POD_MODE, 0, 0, 0, 0, 0, 0, 0);
494
- if (isrv.status)
495
- return 0;
496
- return isrv.v0;
497
-}
498
-
499
-/**
500
- * ia64_sn_probe_mem - read from memory safely
501
- * @addr: address to probe
502
- * @size: number bytes to read (1,2,4,8)
503
- * @data_ptr: address to store value read by probe (-1 returned if probe fails)
504
- *
505
- * Call into the SAL to do a memory read. If the read generates a machine
506
- * check, this routine will recover gracefully and return -1 to the caller.
507
- * @addr is usually a kernel virtual address in uncached space (i.e. the
508
- * address starts with 0xc), but if called in physical mode, @addr should
509
- * be a physical address.
510
- *
511
- * Return values:
512
- * 0 - probe successful
513
- * 1 - probe failed (generated MCA)
514
- * 2 - Bad arg
515
- * <0 - PAL error
516
- */
517
-static inline u64
518
-ia64_sn_probe_mem(long addr, long size, void *data_ptr)
519
-{
520
- struct ia64_sal_retval isrv;
521
-
522
- SAL_CALL(isrv, SN_SAL_PROBE, addr, size, 0, 0, 0, 0, 0);
523
-
524
- if (data_ptr) {
525
- switch (size) {
526
- case 1:
527
- *((u8*)data_ptr) = (u8)isrv.v0;
528
- break;
529
- case 2:
530
- *((u16*)data_ptr) = (u16)isrv.v0;
531
- break;
532
- case 4:
533
- *((u32*)data_ptr) = (u32)isrv.v0;
534
- break;
535
- case 8:
536
- *((u64*)data_ptr) = (u64)isrv.v0;
537
- break;
538
- default:
539
- isrv.status = 2;
540
- }
541
- }
542
- return isrv.status;
543
-}
544
-
545
-/*
546
- * Retrieve the system serial number as an ASCII string.
547
- */
548
-static inline u64
549
-ia64_sn_sys_serial_get(char *buf)
550
-{
551
- struct ia64_sal_retval ret_stuff;
552
- SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYS_SERIAL_GET, buf, 0, 0, 0, 0, 0, 0);
553
- return ret_stuff.status;
554
-}
555
-
556
-extern char sn_system_serial_number_string[];
557
-extern u64 sn_partition_serial_number;
558
-
559
-static inline char *
560
-sn_system_serial_number(void) {
561
- if (sn_system_serial_number_string[0]) {
562
- return(sn_system_serial_number_string);
563
- } else {
564
- ia64_sn_sys_serial_get(sn_system_serial_number_string);
565
- return(sn_system_serial_number_string);
566
- }
567
-}
568
-
569
-
570
-/*
571
- * Returns a unique id number for this system and partition (suitable for
572
- * use with license managers), based in part on the system serial number.
573
- */
574
-static inline u64
575
-ia64_sn_partition_serial_get(void)
576
-{
577
- struct ia64_sal_retval ret_stuff;
578
- ia64_sal_oemcall_reentrant(&ret_stuff, SN_SAL_PARTITION_SERIAL_GET, 0,
579
- 0, 0, 0, 0, 0, 0);
580
- if (ret_stuff.status != 0)
581
- return 0;
582
- return ret_stuff.v0;
583
-}
584
-
585
-static inline u64
586
-sn_partition_serial_number_val(void) {
587
- if (unlikely(sn_partition_serial_number == 0)) {
588
- sn_partition_serial_number = ia64_sn_partition_serial_get();
589
- }
590
- return sn_partition_serial_number;
591
-}
592
-
593
-/*
594
- * Returns the partition id of the nasid passed in as an argument,
595
- * or INVALID_PARTID if the partition id cannot be retrieved.
596
- */
597
-static inline partid_t
598
-ia64_sn_sysctl_partition_get(nasid_t nasid)
599
-{
600
- struct ia64_sal_retval ret_stuff;
601
- SAL_CALL(ret_stuff, SN_SAL_SYSCTL_PARTITION_GET, nasid,
602
- 0, 0, 0, 0, 0, 0);
603
- if (ret_stuff.status != 0)
604
- return -1;
605
- return ((partid_t)ret_stuff.v0);
606
-}
60732
60833 /*
60934 * Returns the physical address of the partition's reserved page through
....@@ -634,96 +59,6 @@
63459 }
63560
63661 /*
637
- * Register or unregister a physical address range being referenced across
638
- * a partition boundary for which certain SAL errors should be scanned for,
639
- * cleaned up and ignored. This is of value for kernel partitioning code only.
640
- * Values for the operation argument:
641
- * 1 = register this address range with SAL
642
- * 0 = unregister this address range with SAL
643
- *
644
- * SAL maintains a reference count on an address range in case it is registered
645
- * multiple times.
646
- *
647
- * On success, returns the reference count of the address range after the SAL
648
- * call has performed the current registration/unregistration. Returns a
649
- * negative value if an error occurred.
650
- */
651
-static inline int
652
-sn_register_xp_addr_region(u64 paddr, u64 len, int operation)
653
-{
654
- struct ia64_sal_retval ret_stuff;
655
- ia64_sal_oemcall(&ret_stuff, SN_SAL_XP_ADDR_REGION, paddr, len,
656
- (u64)operation, 0, 0, 0, 0);
657
- return ret_stuff.status;
658
-}
659
-
660
-/*
661
- * Register or unregister an instruction range for which SAL errors should
662
- * be ignored. If an error occurs while in the registered range, SAL jumps
663
- * to return_addr after ignoring the error. Values for the operation argument:
664
- * 1 = register this instruction range with SAL
665
- * 0 = unregister this instruction range with SAL
666
- *
667
- * Returns 0 on success, or a negative value if an error occurred.
668
- */
669
-static inline int
670
-sn_register_nofault_code(u64 start_addr, u64 end_addr, u64 return_addr,
671
- int virtual, int operation)
672
-{
673
- struct ia64_sal_retval ret_stuff;
674
- u64 call;
675
- if (virtual) {
676
- call = SN_SAL_NO_FAULT_ZONE_VIRTUAL;
677
- } else {
678
- call = SN_SAL_NO_FAULT_ZONE_PHYSICAL;
679
- }
680
- ia64_sal_oemcall(&ret_stuff, call, start_addr, end_addr, return_addr,
681
- (u64)1, 0, 0, 0);
682
- return ret_stuff.status;
683
-}
684
-
685
-/*
686
- * Register or unregister a function to handle a PMI received by a CPU.
687
- * Before calling the registered handler, SAL sets r1 to the value that
688
- * was passed in as the global_pointer.
689
- *
690
- * If the handler pointer is NULL, then the currently registered handler
691
- * will be unregistered.
692
- *
693
- * Returns 0 on success, or a negative value if an error occurred.
694
- */
695
-static inline int
696
-sn_register_pmi_handler(u64 handler, u64 global_pointer)
697
-{
698
- struct ia64_sal_retval ret_stuff;
699
- ia64_sal_oemcall(&ret_stuff, SN_SAL_REGISTER_PMI_HANDLER, handler,
700
- global_pointer, 0, 0, 0, 0, 0);
701
- return ret_stuff.status;
702
-}
703
-
704
-/*
705
- * Change or query the coherence domain for this partition. Each cpu-based
706
- * nasid is represented by a bit in an array of 64-bit words:
707
- * 0 = not in this partition's coherency domain
708
- * 1 = in this partition's coherency domain
709
- *
710
- * It is not possible for the local system's nasids to be removed from
711
- * the coherency domain. Purpose of the domain arguments:
712
- * new_domain = set the coherence domain to the given nasids
713
- * old_domain = return the current coherence domain
714
- *
715
- * Returns 0 on success, or a negative value if an error occurred.
716
- */
717
-static inline int
718
-sn_change_coherence(u64 *new_domain, u64 *old_domain)
719
-{
720
- struct ia64_sal_retval ret_stuff;
721
- ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_COHERENCE, (u64)new_domain,
722
- (u64)old_domain, 0, 0, 0, 0, 0);
723
- return ret_stuff.status;
724
-}
725
-
726
-/*
72762 * Change memory access protections for a physical address range.
72863 * nasid_array is not used on Altix, but may be in future architectures.
72964 * Available memory protection access classes are defined after the function.
....@@ -743,450 +78,6 @@
74378 #define SN_MEMPROT_ACCESS_CLASS_3 0x14a290
74479 #define SN_MEMPROT_ACCESS_CLASS_6 0x084080
74580 #define SN_MEMPROT_ACCESS_CLASS_7 0x021080
746
-
747
-/*
748
- * Turns off system power.
749
- */
750
-static inline void
751
-ia64_sn_power_down(void)
752
-{
753
- struct ia64_sal_retval ret_stuff;
754
- SAL_CALL(ret_stuff, SN_SAL_SYSTEM_POWER_DOWN, 0, 0, 0, 0, 0, 0, 0);
755
- while(1)
756
- cpu_relax();
757
- /* never returns */
758
-}
759
-
760
-/**
761
- * ia64_sn_fru_capture - tell the system controller to capture hw state
762
- *
763
- * This routine will call the SAL which will tell the system controller(s)
764
- * to capture hw mmr information from each SHub in the system.
765
- */
766
-static inline u64
767
-ia64_sn_fru_capture(void)
768
-{
769
- struct ia64_sal_retval isrv;
770
- SAL_CALL(isrv, SN_SAL_SYSCTL_FRU_CAPTURE, 0, 0, 0, 0, 0, 0, 0);
771
- if (isrv.status)
772
- return 0;
773
- return isrv.v0;
774
-}
775
-
776
-/*
777
- * Performs an operation on a PCI bus or slot -- power up, power down
778
- * or reset.
779
- */
780
-static inline u64
781
-ia64_sn_sysctl_iobrick_pci_op(nasid_t n, u64 connection_type,
782
- u64 bus, char slot,
783
- u64 action)
784
-{
785
- struct ia64_sal_retval rv = {0, 0, 0, 0};
786
-
787
- SAL_CALL_NOLOCK(rv, SN_SAL_SYSCTL_IOBRICK_PCI_OP, connection_type, n, action,
788
- bus, (u64) slot, 0, 0);
789
- if (rv.status)
790
- return rv.v0;
791
- return 0;
792
-}
793
-
794
-
795
-/*
796
- * Open a subchannel for sending arbitrary data to the system
797
- * controller network via the system controller device associated with
798
- * 'nasid'. Return the subchannel number or a negative error code.
799
- */
800
-static inline int
801
-ia64_sn_irtr_open(nasid_t nasid)
802
-{
803
- struct ia64_sal_retval rv;
804
- SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_OPEN, nasid,
805
- 0, 0, 0, 0, 0);
806
- return (int) rv.v0;
807
-}
808
-
809
-/*
810
- * Close system controller subchannel 'subch' previously opened on 'nasid'.
811
- */
812
-static inline int
813
-ia64_sn_irtr_close(nasid_t nasid, int subch)
814
-{
815
- struct ia64_sal_retval rv;
816
- SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_CLOSE,
817
- (u64) nasid, (u64) subch, 0, 0, 0, 0);
818
- return (int) rv.status;
819
-}
820
-
821
-/*
822
- * Read data from system controller associated with 'nasid' on
823
- * subchannel 'subch'. The buffer to be filled is pointed to by
824
- * 'buf', and its capacity is in the integer pointed to by 'len'. The
825
- * referent of 'len' is set to the number of bytes read by the SAL
826
- * call. The return value is either SALRET_OK (for bytes read) or
827
- * SALRET_ERROR (for error or "no data available").
828
- */
829
-static inline int
830
-ia64_sn_irtr_recv(nasid_t nasid, int subch, char *buf, int *len)
831
-{
832
- struct ia64_sal_retval rv;
833
- SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_RECV,
834
- (u64) nasid, (u64) subch, (u64) buf, (u64) len,
835
- 0, 0);
836
- return (int) rv.status;
837
-}
838
-
839
-/*
840
- * Write data to the system controller network via the system
841
- * controller associated with 'nasid' on suchannel 'subch'. The
842
- * buffer to be written out is pointed to by 'buf', and 'len' is the
843
- * number of bytes to be written. The return value is either the
844
- * number of bytes written (which could be zero) or a negative error
845
- * code.
846
- */
847
-static inline int
848
-ia64_sn_irtr_send(nasid_t nasid, int subch, char *buf, int len)
849
-{
850
- struct ia64_sal_retval rv;
851
- SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_SEND,
852
- (u64) nasid, (u64) subch, (u64) buf, (u64) len,
853
- 0, 0);
854
- return (int) rv.v0;
855
-}
856
-
857
-/*
858
- * Check whether any interrupts are pending for the system controller
859
- * associated with 'nasid' and its subchannel 'subch'. The return
860
- * value is a mask of pending interrupts (SAL_IROUTER_INTR_XMIT and/or
861
- * SAL_IROUTER_INTR_RECV).
862
- */
863
-static inline int
864
-ia64_sn_irtr_intr(nasid_t nasid, int subch)
865
-{
866
- struct ia64_sal_retval rv;
867
- SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_STATUS,
868
- (u64) nasid, (u64) subch, 0, 0, 0, 0);
869
- return (int) rv.v0;
870
-}
871
-
872
-/*
873
- * Enable the interrupt indicated by the intr parameter (either
874
- * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
875
- */
876
-static inline int
877
-ia64_sn_irtr_intr_enable(nasid_t nasid, int subch, u64 intr)
878
-{
879
- struct ia64_sal_retval rv;
880
- SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_ON,
881
- (u64) nasid, (u64) subch, intr, 0, 0, 0);
882
- return (int) rv.v0;
883
-}
884
-
885
-/*
886
- * Disable the interrupt indicated by the intr parameter (either
887
- * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
888
- */
889
-static inline int
890
-ia64_sn_irtr_intr_disable(nasid_t nasid, int subch, u64 intr)
891
-{
892
- struct ia64_sal_retval rv;
893
- SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_OFF,
894
- (u64) nasid, (u64) subch, intr, 0, 0, 0);
895
- return (int) rv.v0;
896
-}
897
-
898
-/*
899
- * Set up a node as the point of contact for system controller
900
- * environmental event delivery.
901
- */
902
-static inline int
903
-ia64_sn_sysctl_event_init(nasid_t nasid)
904
-{
905
- struct ia64_sal_retval rv;
906
- SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_EVENT, (u64) nasid,
907
- 0, 0, 0, 0, 0, 0);
908
- return (int) rv.v0;
909
-}
910
-
911
-/*
912
- * Ask the system controller on the specified nasid to reset
913
- * the CX corelet clock. Only valid on TIO nodes.
914
- */
915
-static inline int
916
-ia64_sn_sysctl_tio_clock_reset(nasid_t nasid)
917
-{
918
- struct ia64_sal_retval rv;
919
- SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_OP, SAL_SYSCTL_OP_TIO_JLCK_RST,
920
- nasid, 0, 0, 0, 0, 0);
921
- if (rv.status != 0)
922
- return (int)rv.status;
923
- if (rv.v0 != 0)
924
- return (int)rv.v0;
925
-
926
- return 0;
927
-}
928
-
929
-/*
930
- * Get the associated ioboard type for a given nasid.
931
- */
932
-static inline long
933
-ia64_sn_sysctl_ioboard_get(nasid_t nasid, u16 *ioboard)
934
-{
935
- struct ia64_sal_retval isrv;
936
- SAL_CALL_REENTRANT(isrv, SN_SAL_SYSCTL_OP, SAL_SYSCTL_OP_IOBOARD,
937
- nasid, 0, 0, 0, 0, 0);
938
- if (isrv.v0 != 0) {
939
- *ioboard = isrv.v0;
940
- return isrv.status;
941
- }
942
- if (isrv.v1 != 0) {
943
- *ioboard = isrv.v1;
944
- return isrv.status;
945
- }
946
-
947
- return isrv.status;
948
-}
949
-
950
-/**
951
- * ia64_sn_get_fit_compt - read a FIT entry from the PROM header
952
- * @nasid: NASID of node to read
953
- * @index: FIT entry index to be retrieved (0..n)
954
- * @fitentry: 16 byte buffer where FIT entry will be stored.
955
- * @banbuf: optional buffer for retrieving banner
956
- * @banlen: length of banner buffer
957
- *
958
- * Access to the physical PROM chips needs to be serialized since reads and
959
- * writes can't occur at the same time, so we need to call into the SAL when
960
- * we want to look at the FIT entries on the chips.
961
- *
962
- * Returns:
963
- * %SALRET_OK if ok
964
- * %SALRET_INVALID_ARG if index too big
965
- * %SALRET_NOT_IMPLEMENTED if running on older PROM
966
- * ??? if nasid invalid OR banner buffer not large enough
967
- */
968
-static inline int
969
-ia64_sn_get_fit_compt(u64 nasid, u64 index, void *fitentry, void *banbuf,
970
- u64 banlen)
971
-{
972
- struct ia64_sal_retval rv;
973
- SAL_CALL_NOLOCK(rv, SN_SAL_GET_FIT_COMPT, nasid, index, fitentry,
974
- banbuf, banlen, 0, 0);
975
- return (int) rv.status;
976
-}
977
-
978
-/*
979
- * Initialize the SAL components of the system controller
980
- * communication driver; specifically pass in a sizable buffer that
981
- * can be used for allocation of subchannel queues as new subchannels
982
- * are opened. "buf" points to the buffer, and "len" specifies its
983
- * length.
984
- */
985
-static inline int
986
-ia64_sn_irtr_init(nasid_t nasid, void *buf, int len)
987
-{
988
- struct ia64_sal_retval rv;
989
- SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INIT,
990
- (u64) nasid, (u64) buf, (u64) len, 0, 0, 0);
991
- return (int) rv.status;
992
-}
993
-
994
-/*
995
- * Returns the nasid, subnode & slice corresponding to a SAPIC ID
996
- *
997
- * In:
998
- * arg0 - SN_SAL_GET_SAPIC_INFO
999
- * arg1 - sapicid (lid >> 16)
1000
- * Out:
1001
- * v0 - nasid
1002
- * v1 - subnode
1003
- * v2 - slice
1004
- */
1005
-static inline u64
1006
-ia64_sn_get_sapic_info(int sapicid, int *nasid, int *subnode, int *slice)
1007
-{
1008
- struct ia64_sal_retval ret_stuff;
1009
-
1010
- ret_stuff.status = 0;
1011
- ret_stuff.v0 = 0;
1012
- ret_stuff.v1 = 0;
1013
- ret_stuff.v2 = 0;
1014
- SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SAPIC_INFO, sapicid, 0, 0, 0, 0, 0, 0);
1015
-
1016
-/***** BEGIN HACK - temp til old proms no longer supported ********/
1017
- if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
1018
- if (nasid) *nasid = sapicid & 0xfff;
1019
- if (subnode) *subnode = (sapicid >> 13) & 1;
1020
- if (slice) *slice = (sapicid >> 12) & 3;
1021
- return 0;
1022
- }
1023
-/***** END HACK *******/
1024
-
1025
- if (ret_stuff.status < 0)
1026
- return ret_stuff.status;
1027
-
1028
- if (nasid) *nasid = (int) ret_stuff.v0;
1029
- if (subnode) *subnode = (int) ret_stuff.v1;
1030
- if (slice) *slice = (int) ret_stuff.v2;
1031
- return 0;
1032
-}
1033
-
1034
-/*
1035
- * Returns information about the HUB/SHUB.
1036
- * In:
1037
- * arg0 - SN_SAL_GET_SN_INFO
1038
- * arg1 - 0 (other values reserved for future use)
1039
- * Out:
1040
- * v0
1041
- * [7:0] - shub type (0=shub1, 1=shub2)
1042
- * [15:8] - Log2 max number of nodes in entire system (includes
1043
- * C-bricks, I-bricks, etc)
1044
- * [23:16] - Log2 of nodes per sharing domain
1045
- * [31:24] - partition ID
1046
- * [39:32] - coherency_id
1047
- * [47:40] - regionsize
1048
- * v1
1049
- * [15:0] - nasid mask (ex., 0x7ff for 11 bit nasid)
1050
- * [23:15] - bit position of low nasid bit
1051
- */
1052
-static inline u64
1053
-ia64_sn_get_sn_info(int fc, u8 *shubtype, u16 *nasid_bitmask, u8 *nasid_shift,
1054
- u8 *systemsize, u8 *sharing_domain_size, u8 *partid, u8 *coher, u8 *reg)
1055
-{
1056
- struct ia64_sal_retval ret_stuff;
1057
-
1058
- ret_stuff.status = 0;
1059
- ret_stuff.v0 = 0;
1060
- ret_stuff.v1 = 0;
1061
- ret_stuff.v2 = 0;
1062
- SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SN_INFO, fc, 0, 0, 0, 0, 0, 0);
1063
-
1064
-/***** BEGIN HACK - temp til old proms no longer supported ********/
1065
- if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
1066
- int nasid = get_sapicid() & 0xfff;
1067
-#define SH_SHUB_ID_NODES_PER_BIT_MASK 0x001f000000000000UL
1068
-#define SH_SHUB_ID_NODES_PER_BIT_SHFT 48
1069
- if (shubtype) *shubtype = 0;
1070
- if (nasid_bitmask) *nasid_bitmask = 0x7ff;
1071
- if (nasid_shift) *nasid_shift = 38;
1072
- if (systemsize) *systemsize = 10;
1073
- if (sharing_domain_size) *sharing_domain_size = 8;
1074
- if (partid) *partid = ia64_sn_sysctl_partition_get(nasid);
1075
- if (coher) *coher = nasid >> 9;
1076
- if (reg) *reg = (HUB_L((u64 *) LOCAL_MMR_ADDR(SH1_SHUB_ID)) & SH_SHUB_ID_NODES_PER_BIT_MASK) >>
1077
- SH_SHUB_ID_NODES_PER_BIT_SHFT;
1078
- return 0;
1079
- }
1080
-/***** END HACK *******/
1081
-
1082
- if (ret_stuff.status < 0)
1083
- return ret_stuff.status;
1084
-
1085
- if (shubtype) *shubtype = ret_stuff.v0 & 0xff;
1086
- if (systemsize) *systemsize = (ret_stuff.v0 >> 8) & 0xff;
1087
- if (sharing_domain_size) *sharing_domain_size = (ret_stuff.v0 >> 16) & 0xff;
1088
- if (partid) *partid = (ret_stuff.v0 >> 24) & 0xff;
1089
- if (coher) *coher = (ret_stuff.v0 >> 32) & 0xff;
1090
- if (reg) *reg = (ret_stuff.v0 >> 40) & 0xff;
1091
- if (nasid_bitmask) *nasid_bitmask = (ret_stuff.v1 & 0xffff);
1092
- if (nasid_shift) *nasid_shift = (ret_stuff.v1 >> 16) & 0xff;
1093
- return 0;
1094
-}
1095
-
1096
-/*
1097
- * This is the access point to the Altix PROM hardware performance
1098
- * and status monitoring interface. For info on using this, see
1099
- * arch/ia64/include/asm/sn/sn2/sn_hwperf.h
1100
- */
1101
-static inline int
1102
-ia64_sn_hwperf_op(nasid_t nasid, u64 opcode, u64 a0, u64 a1, u64 a2,
1103
- u64 a3, u64 a4, int *v0)
1104
-{
1105
- struct ia64_sal_retval rv;
1106
- SAL_CALL_NOLOCK(rv, SN_SAL_HWPERF_OP, (u64)nasid,
1107
- opcode, a0, a1, a2, a3, a4);
1108
- if (v0)
1109
- *v0 = (int) rv.v0;
1110
- return (int) rv.status;
1111
-}
1112
-
1113
-static inline int
1114
-ia64_sn_ioif_get_pci_topology(u64 buf, u64 len)
1115
-{
1116
- struct ia64_sal_retval rv;
1117
- SAL_CALL_NOLOCK(rv, SN_SAL_IOIF_GET_PCI_TOPOLOGY, buf, len, 0, 0, 0, 0, 0);
1118
- return (int) rv.status;
1119
-}
1120
-
1121
-/*
1122
- * BTE error recovery is implemented in SAL
1123
- */
1124
-static inline int
1125
-ia64_sn_bte_recovery(nasid_t nasid)
1126
-{
1127
- struct ia64_sal_retval rv;
1128
-
1129
- rv.status = 0;
1130
- SAL_CALL_NOLOCK(rv, SN_SAL_BTE_RECOVER, (u64)nasid, 0, 0, 0, 0, 0, 0);
1131
- if (rv.status == SALRET_NOT_IMPLEMENTED)
1132
- return 0;
1133
- return (int) rv.status;
1134
-}
1135
-
1136
-static inline int
1137
-ia64_sn_is_fake_prom(void)
1138
-{
1139
- struct ia64_sal_retval rv;
1140
- SAL_CALL_NOLOCK(rv, SN_SAL_FAKE_PROM, 0, 0, 0, 0, 0, 0, 0);
1141
- return (rv.status == 0);
1142
-}
1143
-
1144
-static inline int
1145
-ia64_sn_get_prom_feature_set(int set, unsigned long *feature_set)
1146
-{
1147
- struct ia64_sal_retval rv;
1148
-
1149
- SAL_CALL_NOLOCK(rv, SN_SAL_GET_PROM_FEATURE_SET, set, 0, 0, 0, 0, 0, 0);
1150
- if (rv.status != 0)
1151
- return rv.status;
1152
- *feature_set = rv.v0;
1153
- return 0;
1154
-}
1155
-
1156
-static inline int
1157
-ia64_sn_set_os_feature(int feature)
1158
-{
1159
- struct ia64_sal_retval rv;
1160
-
1161
- SAL_CALL_NOLOCK(rv, SN_SAL_SET_OS_FEATURE_SET, feature, 0, 0, 0, 0, 0, 0);
1162
- return rv.status;
1163
-}
1164
-
1165
-static inline int
1166
-sn_inject_error(u64 paddr, u64 *data, u64 *ecc)
1167
-{
1168
- struct ia64_sal_retval ret_stuff;
1169
-
1170
- ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_INJECT_ERROR, paddr, (u64)data,
1171
- (u64)ecc, 0, 0, 0, 0);
1172
- return ret_stuff.status;
1173
-}
1174
-
1175
-static inline int
1176
-ia64_sn_set_cpu_number(int cpu)
1177
-{
1178
- struct ia64_sal_retval rv;
1179
-
1180
- SAL_CALL_NOLOCK(rv, SN_SAL_SET_CPU_NUMBER, cpu, 0, 0, 0, 0, 0, 0);
1181
- return rv.status;
1182
-}
1183
-static inline int
1184
-ia64_sn_kernel_launch_event(void)
1185
-{
1186
- struct ia64_sal_retval rv;
1187
- SAL_CALL_NOLOCK(rv, SN_SAL_KERNEL_LAUNCH_EVENT, 0, 0, 0, 0, 0, 0, 0);
1188
- return rv.status;
1189
-}
119081
119182 union sn_watchlist_u {
119283 u64 val;