.. | .. |
---|
7 | 7 | #include <linux/kernel.h> |
---|
8 | 8 | #include <linux/slab.h> |
---|
9 | 9 | #include <linux/cpu.h> |
---|
| 10 | +#include <linux/sort.h> |
---|
10 | 11 | |
---|
11 | 12 | static void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk, |
---|
12 | | - int cpus_per_vec) |
---|
| 13 | + unsigned int cpus_per_vec) |
---|
13 | 14 | { |
---|
14 | 15 | const struct cpumask *siblmsk; |
---|
15 | 16 | int cpu, sibl; |
---|
.. | .. |
---|
94 | 95 | return nodes; |
---|
95 | 96 | } |
---|
96 | 97 | |
---|
97 | | -static int irq_build_affinity_masks(const struct irq_affinity *affd, |
---|
98 | | - int startvec, int numvecs, |
---|
99 | | - cpumask_var_t *node_to_cpumask, |
---|
100 | | - const struct cpumask *cpu_mask, |
---|
101 | | - struct cpumask *nmsk, |
---|
102 | | - struct cpumask *masks) |
---|
| 98 | +struct node_vectors { |
---|
| 99 | + unsigned id; |
---|
| 100 | + |
---|
| 101 | + union { |
---|
| 102 | + unsigned nvectors; |
---|
| 103 | + unsigned ncpus; |
---|
| 104 | + }; |
---|
| 105 | +}; |
---|
| 106 | + |
---|
| 107 | +static int ncpus_cmp_func(const void *l, const void *r) |
---|
103 | 108 | { |
---|
104 | | - int n, nodes, cpus_per_vec, extra_vecs, done = 0; |
---|
105 | | - int last_affv = affd->pre_vectors + numvecs; |
---|
106 | | - int curvec = startvec; |
---|
| 109 | + const struct node_vectors *ln = l; |
---|
| 110 | + const struct node_vectors *rn = r; |
---|
| 111 | + |
---|
| 112 | + return ln->ncpus - rn->ncpus; |
---|
| 113 | +} |
---|
| 114 | + |
---|
| 115 | +/* |
---|
| 116 | + * Allocate vector number for each node, so that for each node: |
---|
| 117 | + * |
---|
| 118 | + * 1) the allocated number is >= 1 |
---|
| 119 | + * |
---|
| 120 | + * 2) the allocated numbver is <= active CPU number of this node |
---|
| 121 | + * |
---|
| 122 | + * The actual allocated total vectors may be less than @numvecs when |
---|
| 123 | + * active total CPU number is less than @numvecs. |
---|
| 124 | + * |
---|
| 125 | + * Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]' |
---|
| 126 | + * for each node. |
---|
| 127 | + */ |
---|
| 128 | +static void alloc_nodes_vectors(unsigned int numvecs, |
---|
| 129 | + cpumask_var_t *node_to_cpumask, |
---|
| 130 | + const struct cpumask *cpu_mask, |
---|
| 131 | + const nodemask_t nodemsk, |
---|
| 132 | + struct cpumask *nmsk, |
---|
| 133 | + struct node_vectors *node_vectors) |
---|
| 134 | +{ |
---|
| 135 | + unsigned n, remaining_ncpus = 0; |
---|
| 136 | + |
---|
| 137 | + for (n = 0; n < nr_node_ids; n++) { |
---|
| 138 | + node_vectors[n].id = n; |
---|
| 139 | + node_vectors[n].ncpus = UINT_MAX; |
---|
| 140 | + } |
---|
| 141 | + |
---|
| 142 | + for_each_node_mask(n, nodemsk) { |
---|
| 143 | + unsigned ncpus; |
---|
| 144 | + |
---|
| 145 | + cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]); |
---|
| 146 | + ncpus = cpumask_weight(nmsk); |
---|
| 147 | + |
---|
| 148 | + if (!ncpus) |
---|
| 149 | + continue; |
---|
| 150 | + remaining_ncpus += ncpus; |
---|
| 151 | + node_vectors[n].ncpus = ncpus; |
---|
| 152 | + } |
---|
| 153 | + |
---|
| 154 | + numvecs = min_t(unsigned, remaining_ncpus, numvecs); |
---|
| 155 | + |
---|
| 156 | + sort(node_vectors, nr_node_ids, sizeof(node_vectors[0]), |
---|
| 157 | + ncpus_cmp_func, NULL); |
---|
| 158 | + |
---|
| 159 | + /* |
---|
| 160 | + * Allocate vectors for each node according to the ratio of this |
---|
| 161 | + * node's nr_cpus to remaining un-assigned ncpus. 'numvecs' is |
---|
| 162 | + * bigger than number of active numa nodes. Always start the |
---|
| 163 | + * allocation from the node with minimized nr_cpus. |
---|
| 164 | + * |
---|
| 165 | + * This way guarantees that each active node gets allocated at |
---|
| 166 | + * least one vector, and the theory is simple: over-allocation |
---|
| 167 | + * is only done when this node is assigned by one vector, so |
---|
| 168 | + * other nodes will be allocated >= 1 vector, since 'numvecs' is |
---|
| 169 | + * bigger than number of numa nodes. |
---|
| 170 | + * |
---|
| 171 | + * One perfect invariant is that number of allocated vectors for |
---|
| 172 | + * each node is <= CPU count of this node: |
---|
| 173 | + * |
---|
| 174 | + * 1) suppose there are two nodes: A and B |
---|
| 175 | + * ncpu(X) is CPU count of node X |
---|
| 176 | + * vecs(X) is the vector count allocated to node X via this |
---|
| 177 | + * algorithm |
---|
| 178 | + * |
---|
| 179 | + * ncpu(A) <= ncpu(B) |
---|
| 180 | + * ncpu(A) + ncpu(B) = N |
---|
| 181 | + * vecs(A) + vecs(B) = V |
---|
| 182 | + * |
---|
| 183 | + * vecs(A) = max(1, round_down(V * ncpu(A) / N)) |
---|
| 184 | + * vecs(B) = V - vecs(A) |
---|
| 185 | + * |
---|
| 186 | + * both N and V are integer, and 2 <= V <= N, suppose |
---|
| 187 | + * V = N - delta, and 0 <= delta <= N - 2 |
---|
| 188 | + * |
---|
| 189 | + * 2) obviously vecs(A) <= ncpu(A) because: |
---|
| 190 | + * |
---|
| 191 | + * if vecs(A) is 1, then vecs(A) <= ncpu(A) given |
---|
| 192 | + * ncpu(A) >= 1 |
---|
| 193 | + * |
---|
| 194 | + * otherwise, |
---|
| 195 | + * vecs(A) <= V * ncpu(A) / N <= ncpu(A), given V <= N |
---|
| 196 | + * |
---|
| 197 | + * 3) prove how vecs(B) <= ncpu(B): |
---|
| 198 | + * |
---|
| 199 | + * if round_down(V * ncpu(A) / N) == 0, vecs(B) won't be |
---|
| 200 | + * over-allocated, so vecs(B) <= ncpu(B), |
---|
| 201 | + * |
---|
| 202 | + * otherwise: |
---|
| 203 | + * |
---|
| 204 | + * vecs(A) = |
---|
| 205 | + * round_down(V * ncpu(A) / N) = |
---|
| 206 | + * round_down((N - delta) * ncpu(A) / N) = |
---|
| 207 | + * round_down((N * ncpu(A) - delta * ncpu(A)) / N) >= |
---|
| 208 | + * round_down((N * ncpu(A) - delta * N) / N) = |
---|
| 209 | + * cpu(A) - delta |
---|
| 210 | + * |
---|
| 211 | + * then: |
---|
| 212 | + * |
---|
| 213 | + * vecs(A) - V >= ncpu(A) - delta - V |
---|
| 214 | + * => |
---|
| 215 | + * V - vecs(A) <= V + delta - ncpu(A) |
---|
| 216 | + * => |
---|
| 217 | + * vecs(B) <= N - ncpu(A) |
---|
| 218 | + * => |
---|
| 219 | + * vecs(B) <= cpu(B) |
---|
| 220 | + * |
---|
| 221 | + * For nodes >= 3, it can be thought as one node and another big |
---|
| 222 | + * node given that is exactly what this algorithm is implemented, |
---|
| 223 | + * and we always re-calculate 'remaining_ncpus' & 'numvecs', and |
---|
| 224 | + * finally for each node X: vecs(X) <= ncpu(X). |
---|
| 225 | + * |
---|
| 226 | + */ |
---|
| 227 | + for (n = 0; n < nr_node_ids; n++) { |
---|
| 228 | + unsigned nvectors, ncpus; |
---|
| 229 | + |
---|
| 230 | + if (node_vectors[n].ncpus == UINT_MAX) |
---|
| 231 | + continue; |
---|
| 232 | + |
---|
| 233 | + WARN_ON_ONCE(numvecs == 0); |
---|
| 234 | + |
---|
| 235 | + ncpus = node_vectors[n].ncpus; |
---|
| 236 | + nvectors = max_t(unsigned, 1, |
---|
| 237 | + numvecs * ncpus / remaining_ncpus); |
---|
| 238 | + WARN_ON_ONCE(nvectors > ncpus); |
---|
| 239 | + |
---|
| 240 | + node_vectors[n].nvectors = nvectors; |
---|
| 241 | + |
---|
| 242 | + remaining_ncpus -= ncpus; |
---|
| 243 | + numvecs -= nvectors; |
---|
| 244 | + } |
---|
| 245 | +} |
---|
| 246 | + |
---|
| 247 | +static int __irq_build_affinity_masks(unsigned int startvec, |
---|
| 248 | + unsigned int numvecs, |
---|
| 249 | + unsigned int firstvec, |
---|
| 250 | + cpumask_var_t *node_to_cpumask, |
---|
| 251 | + const struct cpumask *cpu_mask, |
---|
| 252 | + struct cpumask *nmsk, |
---|
| 253 | + struct irq_affinity_desc *masks) |
---|
| 254 | +{ |
---|
| 255 | + unsigned int i, n, nodes, cpus_per_vec, extra_vecs, done = 0; |
---|
| 256 | + unsigned int last_affv = firstvec + numvecs; |
---|
| 257 | + unsigned int curvec = startvec; |
---|
107 | 258 | nodemask_t nodemsk = NODE_MASK_NONE; |
---|
| 259 | + struct node_vectors *node_vectors; |
---|
108 | 260 | |
---|
109 | 261 | if (!cpumask_weight(cpu_mask)) |
---|
110 | 262 | return 0; |
---|
.. | .. |
---|
117 | 269 | */ |
---|
118 | 270 | if (numvecs <= nodes) { |
---|
119 | 271 | for_each_node_mask(n, nodemsk) { |
---|
120 | | - cpumask_or(masks + curvec, masks + curvec, node_to_cpumask[n]); |
---|
| 272 | + /* Ensure that only CPUs which are in both masks are set */ |
---|
| 273 | + cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]); |
---|
| 274 | + cpumask_or(&masks[curvec].mask, &masks[curvec].mask, nmsk); |
---|
121 | 275 | if (++curvec == last_affv) |
---|
122 | | - curvec = affd->pre_vectors; |
---|
| 276 | + curvec = firstvec; |
---|
123 | 277 | } |
---|
124 | | - done = numvecs; |
---|
125 | | - goto out; |
---|
| 278 | + return numvecs; |
---|
126 | 279 | } |
---|
127 | 280 | |
---|
128 | | - for_each_node_mask(n, nodemsk) { |
---|
129 | | - int ncpus, v, vecs_to_assign, vecs_per_node; |
---|
| 281 | + node_vectors = kcalloc(nr_node_ids, |
---|
| 282 | + sizeof(struct node_vectors), |
---|
| 283 | + GFP_KERNEL); |
---|
| 284 | + if (!node_vectors) |
---|
| 285 | + return -ENOMEM; |
---|
130 | 286 | |
---|
131 | | - /* Spread the vectors per node */ |
---|
132 | | - vecs_per_node = (numvecs - (curvec - affd->pre_vectors)) / nodes; |
---|
| 287 | + /* allocate vector number for each node */ |
---|
| 288 | + alloc_nodes_vectors(numvecs, node_to_cpumask, cpu_mask, |
---|
| 289 | + nodemsk, nmsk, node_vectors); |
---|
| 290 | + |
---|
| 291 | + for (i = 0; i < nr_node_ids; i++) { |
---|
| 292 | + unsigned int ncpus, v; |
---|
| 293 | + struct node_vectors *nv = &node_vectors[i]; |
---|
| 294 | + |
---|
| 295 | + if (nv->nvectors == UINT_MAX) |
---|
| 296 | + continue; |
---|
133 | 297 | |
---|
134 | 298 | /* Get the cpus on this node which are in the mask */ |
---|
135 | | - cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]); |
---|
136 | | - |
---|
137 | | - /* Calculate the number of cpus per vector */ |
---|
| 299 | + cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]); |
---|
138 | 300 | ncpus = cpumask_weight(nmsk); |
---|
139 | | - vecs_to_assign = min(vecs_per_node, ncpus); |
---|
| 301 | + if (!ncpus) |
---|
| 302 | + continue; |
---|
| 303 | + |
---|
| 304 | + WARN_ON_ONCE(nv->nvectors > ncpus); |
---|
140 | 305 | |
---|
141 | 306 | /* Account for rounding errors */ |
---|
142 | | - extra_vecs = ncpus - vecs_to_assign * (ncpus / vecs_to_assign); |
---|
| 307 | + extra_vecs = ncpus - nv->nvectors * (ncpus / nv->nvectors); |
---|
143 | 308 | |
---|
144 | | - for (v = 0; curvec < last_affv && v < vecs_to_assign; |
---|
145 | | - curvec++, v++) { |
---|
146 | | - cpus_per_vec = ncpus / vecs_to_assign; |
---|
| 309 | + /* Spread allocated vectors on CPUs of the current node */ |
---|
| 310 | + for (v = 0; v < nv->nvectors; v++, curvec++) { |
---|
| 311 | + cpus_per_vec = ncpus / nv->nvectors; |
---|
147 | 312 | |
---|
148 | 313 | /* Account for extra vectors to compensate rounding errors */ |
---|
149 | 314 | if (extra_vecs) { |
---|
150 | 315 | cpus_per_vec++; |
---|
151 | 316 | --extra_vecs; |
---|
152 | 317 | } |
---|
153 | | - irq_spread_init_one(masks + curvec, nmsk, cpus_per_vec); |
---|
| 318 | + |
---|
| 319 | + /* |
---|
| 320 | + * wrapping has to be considered given 'startvec' |
---|
| 321 | + * may start anywhere |
---|
| 322 | + */ |
---|
| 323 | + if (curvec >= last_affv) |
---|
| 324 | + curvec = firstvec; |
---|
| 325 | + irq_spread_init_one(&masks[curvec].mask, nmsk, |
---|
| 326 | + cpus_per_vec); |
---|
154 | 327 | } |
---|
155 | | - |
---|
156 | | - done += v; |
---|
157 | | - if (done >= numvecs) |
---|
158 | | - break; |
---|
159 | | - if (curvec >= last_affv) |
---|
160 | | - curvec = affd->pre_vectors; |
---|
161 | | - --nodes; |
---|
| 328 | + done += nv->nvectors; |
---|
162 | 329 | } |
---|
163 | | - |
---|
164 | | -out: |
---|
| 330 | + kfree(node_vectors); |
---|
165 | 331 | return done; |
---|
166 | 332 | } |
---|
167 | 333 | |
---|
168 | | -/** |
---|
169 | | - * irq_create_affinity_masks - Create affinity masks for multiqueue spreading |
---|
170 | | - * @nvecs: The total number of vectors |
---|
171 | | - * @affd: Description of the affinity requirements |
---|
172 | | - * |
---|
173 | | - * Returns the masks pointer or NULL if allocation failed. |
---|
| 334 | +/* |
---|
| 335 | + * build affinity in two stages: |
---|
| 336 | + * 1) spread present CPU on these vectors |
---|
| 337 | + * 2) spread other possible CPUs on these vectors |
---|
174 | 338 | */ |
---|
175 | | -struct cpumask * |
---|
176 | | -irq_create_affinity_masks(int nvecs, const struct irq_affinity *affd) |
---|
| 339 | +static int irq_build_affinity_masks(unsigned int startvec, unsigned int numvecs, |
---|
| 340 | + unsigned int firstvec, |
---|
| 341 | + struct irq_affinity_desc *masks) |
---|
177 | 342 | { |
---|
178 | | - int affvecs = nvecs - affd->pre_vectors - affd->post_vectors; |
---|
179 | | - int curvec, usedvecs; |
---|
180 | | - cpumask_var_t nmsk, npresmsk, *node_to_cpumask; |
---|
181 | | - struct cpumask *masks = NULL; |
---|
182 | | - |
---|
183 | | - /* |
---|
184 | | - * If there aren't any vectors left after applying the pre/post |
---|
185 | | - * vectors don't bother with assigning affinity. |
---|
186 | | - */ |
---|
187 | | - if (nvecs == affd->pre_vectors + affd->post_vectors) |
---|
188 | | - return NULL; |
---|
| 343 | + unsigned int curvec = startvec, nr_present = 0, nr_others = 0; |
---|
| 344 | + cpumask_var_t *node_to_cpumask; |
---|
| 345 | + cpumask_var_t nmsk, npresmsk; |
---|
| 346 | + int ret = -ENOMEM; |
---|
189 | 347 | |
---|
190 | 348 | if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL)) |
---|
191 | | - return NULL; |
---|
| 349 | + return ret; |
---|
192 | 350 | |
---|
193 | 351 | if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL)) |
---|
194 | | - goto outcpumsk; |
---|
| 352 | + goto fail_nmsk; |
---|
195 | 353 | |
---|
196 | 354 | node_to_cpumask = alloc_node_to_cpumask(); |
---|
197 | 355 | if (!node_to_cpumask) |
---|
198 | | - goto outnpresmsk; |
---|
199 | | - |
---|
200 | | - masks = kcalloc(nvecs, sizeof(*masks), GFP_KERNEL); |
---|
201 | | - if (!masks) |
---|
202 | | - goto outnodemsk; |
---|
203 | | - |
---|
204 | | - /* Fill out vectors at the beginning that don't need affinity */ |
---|
205 | | - for (curvec = 0; curvec < affd->pre_vectors; curvec++) |
---|
206 | | - cpumask_copy(masks + curvec, irq_default_affinity); |
---|
| 356 | + goto fail_npresmsk; |
---|
207 | 357 | |
---|
208 | 358 | /* Stabilize the cpumasks */ |
---|
209 | 359 | get_online_cpus(); |
---|
210 | 360 | build_node_to_cpumask(node_to_cpumask); |
---|
211 | 361 | |
---|
212 | 362 | /* Spread on present CPUs starting from affd->pre_vectors */ |
---|
213 | | - usedvecs = irq_build_affinity_masks(affd, curvec, affvecs, |
---|
214 | | - node_to_cpumask, cpu_present_mask, |
---|
215 | | - nmsk, masks); |
---|
| 363 | + ret = __irq_build_affinity_masks(curvec, numvecs, firstvec, |
---|
| 364 | + node_to_cpumask, cpu_present_mask, |
---|
| 365 | + nmsk, masks); |
---|
| 366 | + if (ret < 0) |
---|
| 367 | + goto fail_build_affinity; |
---|
| 368 | + nr_present = ret; |
---|
216 | 369 | |
---|
217 | 370 | /* |
---|
218 | 371 | * Spread on non present CPUs starting from the next vector to be |
---|
.. | .. |
---|
220 | 373 | * vector space, assign the non present CPUs to the already spread |
---|
221 | 374 | * out vectors. |
---|
222 | 375 | */ |
---|
223 | | - if (usedvecs >= affvecs) |
---|
224 | | - curvec = affd->pre_vectors; |
---|
| 376 | + if (nr_present >= numvecs) |
---|
| 377 | + curvec = firstvec; |
---|
225 | 378 | else |
---|
226 | | - curvec = affd->pre_vectors + usedvecs; |
---|
| 379 | + curvec = firstvec + nr_present; |
---|
227 | 380 | cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask); |
---|
228 | | - usedvecs += irq_build_affinity_masks(affd, curvec, affvecs, |
---|
229 | | - node_to_cpumask, npresmsk, |
---|
230 | | - nmsk, masks); |
---|
| 381 | + ret = __irq_build_affinity_masks(curvec, numvecs, firstvec, |
---|
| 382 | + node_to_cpumask, npresmsk, nmsk, |
---|
| 383 | + masks); |
---|
| 384 | + if (ret >= 0) |
---|
| 385 | + nr_others = ret; |
---|
| 386 | + |
---|
| 387 | + fail_build_affinity: |
---|
231 | 388 | put_online_cpus(); |
---|
| 389 | + |
---|
| 390 | + if (ret >= 0) |
---|
| 391 | + WARN_ON(nr_present + nr_others < numvecs); |
---|
| 392 | + |
---|
| 393 | + free_node_to_cpumask(node_to_cpumask); |
---|
| 394 | + |
---|
| 395 | + fail_npresmsk: |
---|
| 396 | + free_cpumask_var(npresmsk); |
---|
| 397 | + |
---|
| 398 | + fail_nmsk: |
---|
| 399 | + free_cpumask_var(nmsk); |
---|
| 400 | + return ret < 0 ? ret : 0; |
---|
| 401 | +} |
---|
| 402 | + |
---|
| 403 | +static void default_calc_sets(struct irq_affinity *affd, unsigned int affvecs) |
---|
| 404 | +{ |
---|
| 405 | + affd->nr_sets = 1; |
---|
| 406 | + affd->set_size[0] = affvecs; |
---|
| 407 | +} |
---|
| 408 | + |
---|
| 409 | +/** |
---|
| 410 | + * irq_create_affinity_masks - Create affinity masks for multiqueue spreading |
---|
| 411 | + * @nvecs: The total number of vectors |
---|
| 412 | + * @affd: Description of the affinity requirements |
---|
| 413 | + * |
---|
| 414 | + * Returns the irq_affinity_desc pointer or NULL if allocation failed. |
---|
| 415 | + */ |
---|
| 416 | +struct irq_affinity_desc * |
---|
| 417 | +irq_create_affinity_masks(unsigned int nvecs, struct irq_affinity *affd) |
---|
| 418 | +{ |
---|
| 419 | + unsigned int affvecs, curvec, usedvecs, i; |
---|
| 420 | + struct irq_affinity_desc *masks = NULL; |
---|
| 421 | + |
---|
| 422 | + /* |
---|
| 423 | + * Determine the number of vectors which need interrupt affinities |
---|
| 424 | + * assigned. If the pre/post request exhausts the available vectors |
---|
| 425 | + * then nothing to do here except for invoking the calc_sets() |
---|
| 426 | + * callback so the device driver can adjust to the situation. |
---|
| 427 | + */ |
---|
| 428 | + if (nvecs > affd->pre_vectors + affd->post_vectors) |
---|
| 429 | + affvecs = nvecs - affd->pre_vectors - affd->post_vectors; |
---|
| 430 | + else |
---|
| 431 | + affvecs = 0; |
---|
| 432 | + |
---|
| 433 | + /* |
---|
| 434 | + * Simple invocations do not provide a calc_sets() callback. Install |
---|
| 435 | + * the generic one. |
---|
| 436 | + */ |
---|
| 437 | + if (!affd->calc_sets) |
---|
| 438 | + affd->calc_sets = default_calc_sets; |
---|
| 439 | + |
---|
| 440 | + /* Recalculate the sets */ |
---|
| 441 | + affd->calc_sets(affd, affvecs); |
---|
| 442 | + |
---|
| 443 | + if (WARN_ON_ONCE(affd->nr_sets > IRQ_AFFINITY_MAX_SETS)) |
---|
| 444 | + return NULL; |
---|
| 445 | + |
---|
| 446 | + /* Nothing to assign? */ |
---|
| 447 | + if (!affvecs) |
---|
| 448 | + return NULL; |
---|
| 449 | + |
---|
| 450 | + masks = kcalloc(nvecs, sizeof(*masks), GFP_KERNEL); |
---|
| 451 | + if (!masks) |
---|
| 452 | + return NULL; |
---|
| 453 | + |
---|
| 454 | + /* Fill out vectors at the beginning that don't need affinity */ |
---|
| 455 | + for (curvec = 0; curvec < affd->pre_vectors; curvec++) |
---|
| 456 | + cpumask_copy(&masks[curvec].mask, irq_default_affinity); |
---|
| 457 | + |
---|
| 458 | + /* |
---|
| 459 | + * Spread on present CPUs starting from affd->pre_vectors. If we |
---|
| 460 | + * have multiple sets, build each sets affinity mask separately. |
---|
| 461 | + */ |
---|
| 462 | + for (i = 0, usedvecs = 0; i < affd->nr_sets; i++) { |
---|
| 463 | + unsigned int this_vecs = affd->set_size[i]; |
---|
| 464 | + int ret; |
---|
| 465 | + |
---|
| 466 | + ret = irq_build_affinity_masks(curvec, this_vecs, |
---|
| 467 | + curvec, masks); |
---|
| 468 | + if (ret) { |
---|
| 469 | + kfree(masks); |
---|
| 470 | + return NULL; |
---|
| 471 | + } |
---|
| 472 | + curvec += this_vecs; |
---|
| 473 | + usedvecs += this_vecs; |
---|
| 474 | + } |
---|
232 | 475 | |
---|
233 | 476 | /* Fill out vectors at the end that don't need affinity */ |
---|
234 | 477 | if (usedvecs >= affvecs) |
---|
.. | .. |
---|
236 | 479 | else |
---|
237 | 480 | curvec = affd->pre_vectors + usedvecs; |
---|
238 | 481 | for (; curvec < nvecs; curvec++) |
---|
239 | | - cpumask_copy(masks + curvec, irq_default_affinity); |
---|
| 482 | + cpumask_copy(&masks[curvec].mask, irq_default_affinity); |
---|
240 | 483 | |
---|
241 | | -outnodemsk: |
---|
242 | | - free_node_to_cpumask(node_to_cpumask); |
---|
243 | | -outnpresmsk: |
---|
244 | | - free_cpumask_var(npresmsk); |
---|
245 | | -outcpumsk: |
---|
246 | | - free_cpumask_var(nmsk); |
---|
| 484 | + /* Mark the managed interrupts */ |
---|
| 485 | + for (i = affd->pre_vectors; i < nvecs - affd->post_vectors; i++) |
---|
| 486 | + masks[i].is_managed = 1; |
---|
| 487 | + |
---|
247 | 488 | return masks; |
---|
248 | 489 | } |
---|
249 | 490 | |
---|
.. | .. |
---|
253 | 494 | * @maxvec: The maximum number of vectors available |
---|
254 | 495 | * @affd: Description of the affinity requirements |
---|
255 | 496 | */ |
---|
256 | | -int irq_calc_affinity_vectors(int minvec, int maxvec, const struct irq_affinity *affd) |
---|
| 497 | +unsigned int irq_calc_affinity_vectors(unsigned int minvec, unsigned int maxvec, |
---|
| 498 | + const struct irq_affinity *affd) |
---|
257 | 499 | { |
---|
258 | | - int resv = affd->pre_vectors + affd->post_vectors; |
---|
259 | | - int vecs = maxvec - resv; |
---|
260 | | - int ret; |
---|
| 500 | + unsigned int resv = affd->pre_vectors + affd->post_vectors; |
---|
| 501 | + unsigned int set_vecs; |
---|
261 | 502 | |
---|
262 | 503 | if (resv > minvec) |
---|
263 | 504 | return 0; |
---|
264 | 505 | |
---|
265 | | - get_online_cpus(); |
---|
266 | | - ret = min_t(int, cpumask_weight(cpu_possible_mask), vecs) + resv; |
---|
267 | | - put_online_cpus(); |
---|
268 | | - return ret; |
---|
| 506 | + if (affd->calc_sets) { |
---|
| 507 | + set_vecs = maxvec - resv; |
---|
| 508 | + } else { |
---|
| 509 | + get_online_cpus(); |
---|
| 510 | + set_vecs = cpumask_weight(cpu_possible_mask); |
---|
| 511 | + put_online_cpus(); |
---|
| 512 | + } |
---|
| 513 | + |
---|
| 514 | + return resv + min(set_vecs, maxvec - resv); |
---|
269 | 515 | } |
---|