hc
2024-02-20 102a0743326a03cd1a1202ceda21e175b7d3575c
kernel/mm/kasan/common.c
....@@ -1,27 +1,18 @@
11 // SPDX-License-Identifier: GPL-2.0
22 /*
3
- * This file contains common generic and tag-based KASAN code.
3
+ * This file contains common KASAN code.
44 *
55 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
66 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
77 *
88 * Some code borrowed from https://github.com/xairy/kasan-prototype by
99 * Andrey Konovalov <andreyknvl@gmail.com>
10
- *
11
- * This program is free software; you can redistribute it and/or modify
12
- * it under the terms of the GNU General Public License version 2 as
13
- * published by the Free Software Foundation.
14
- *
1510 */
1611
17
-#define __KASAN_INTERNAL
18
-
1912 #include <linux/export.h>
20
-#include <linux/interrupt.h>
2113 #include <linux/init.h>
2214 #include <linux/kasan.h>
2315 #include <linux/kernel.h>
24
-#include <linux/kmemleak.h>
2516 #include <linux/linkage.h>
2617 #include <linux/memblock.h>
2718 #include <linux/memory.h>
....@@ -34,60 +25,28 @@
3425 #include <linux/stacktrace.h>
3526 #include <linux/string.h>
3627 #include <linux/types.h>
37
-#include <linux/vmalloc.h>
3828 #include <linux/bug.h>
39
-#include <linux/uaccess.h>
4029
4130 #include "kasan.h"
4231 #include "../slab.h"
4332
44
-static inline int in_irqentry_text(unsigned long ptr)
45
-{
46
- return (ptr >= (unsigned long)&__irqentry_text_start &&
47
- ptr < (unsigned long)&__irqentry_text_end) ||
48
- (ptr >= (unsigned long)&__softirqentry_text_start &&
49
- ptr < (unsigned long)&__softirqentry_text_end);
50
-}
51
-
52
-static inline void filter_irq_stacks(struct stack_trace *trace)
53
-{
54
- int i;
55
-
56
- if (!trace->nr_entries)
57
- return;
58
- for (i = 0; i < trace->nr_entries; i++)
59
- if (in_irqentry_text(trace->entries[i])) {
60
- /* Include the irqentry function into the stack. */
61
- trace->nr_entries = i + 1;
62
- break;
63
- }
64
-}
65
-
66
-static inline depot_stack_handle_t save_stack(gfp_t flags)
33
+depot_stack_handle_t kasan_save_stack(gfp_t flags)
6734 {
6835 unsigned long entries[KASAN_STACK_DEPTH];
69
- struct stack_trace trace = {
70
- .nr_entries = 0,
71
- .entries = entries,
72
- .max_entries = KASAN_STACK_DEPTH,
73
- .skip = 0
74
- };
36
+ unsigned int nr_entries;
7537
76
- save_stack_trace(&trace);
77
- filter_irq_stacks(&trace);
78
- if (trace.nr_entries != 0 &&
79
- trace.entries[trace.nr_entries-1] == ULONG_MAX)
80
- trace.nr_entries--;
81
-
82
- return depot_save_stack(&trace, flags);
38
+ nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
39
+ nr_entries = filter_irq_stacks(entries, nr_entries);
40
+ return stack_depot_save(entries, nr_entries, flags);
8341 }
8442
85
-static inline void set_track(struct kasan_track *track, gfp_t flags)
43
+void kasan_set_track(struct kasan_track *track, gfp_t flags)
8644 {
8745 track->pid = current->pid;
88
- track->stack = save_stack(flags);
46
+ track->stack = kasan_save_stack(flags);
8947 }
9048
49
+#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
9150 void kasan_enable_current(void)
9251 {
9352 current->kasan_depth++;
....@@ -97,101 +56,20 @@
9756 {
9857 current->kasan_depth--;
9958 }
59
+#endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
10060
101
-void kasan_check_read(const volatile void *p, unsigned int size)
61
+void __kasan_unpoison_range(const void *address, size_t size)
10262 {
103
- check_memory_region((unsigned long)p, size, false, _RET_IP_);
104
-}
105
-EXPORT_SYMBOL(kasan_check_read);
106
-
107
-void kasan_check_write(const volatile void *p, unsigned int size)
108
-{
109
- check_memory_region((unsigned long)p, size, true, _RET_IP_);
110
-}
111
-EXPORT_SYMBOL(kasan_check_write);
112
-
113
-#undef memset
114
-void *memset(void *addr, int c, size_t len)
115
-{
116
- check_memory_region((unsigned long)addr, len, true, _RET_IP_);
117
-
118
- return __memset(addr, c, len);
63
+ kasan_unpoison(address, size, false);
11964 }
12065
121
-#undef memmove
122
-void *memmove(void *dest, const void *src, size_t len)
123
-{
124
- check_memory_region((unsigned long)src, len, false, _RET_IP_);
125
- check_memory_region((unsigned long)dest, len, true, _RET_IP_);
126
-
127
- return __memmove(dest, src, len);
128
-}
129
-
130
-#undef memcpy
131
-void *memcpy(void *dest, const void *src, size_t len)
132
-{
133
- check_memory_region((unsigned long)src, len, false, _RET_IP_);
134
- check_memory_region((unsigned long)dest, len, true, _RET_IP_);
135
-
136
- return __memcpy(dest, src, len);
137
-}
138
-
139
-/*
140
- * Poisons the shadow memory for 'size' bytes starting from 'addr'.
141
- * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
142
- */
143
-void kasan_poison_shadow(const void *address, size_t size, u8 value)
144
-{
145
- void *shadow_start, *shadow_end;
146
-
147
- /*
148
- * Perform shadow offset calculation based on untagged address, as
149
- * some of the callers (e.g. kasan_poison_object_data) pass tagged
150
- * addresses to this function.
151
- */
152
- address = reset_tag(address);
153
-
154
- shadow_start = kasan_mem_to_shadow(address);
155
- shadow_end = kasan_mem_to_shadow(address + size);
156
-
157
- __memset(shadow_start, value, shadow_end - shadow_start);
158
-}
159
-
160
-void kasan_unpoison_shadow(const void *address, size_t size)
161
-{
162
- u8 tag = get_tag(address);
163
-
164
- /*
165
- * Perform shadow offset calculation based on untagged address, as
166
- * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
167
- * addresses to this function.
168
- */
169
- address = reset_tag(address);
170
-
171
- kasan_poison_shadow(address, size, tag);
172
-
173
- if (size & KASAN_SHADOW_MASK) {
174
- u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
175
-
176
- if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
177
- *shadow = tag;
178
- else
179
- *shadow = size & KASAN_SHADOW_MASK;
180
- }
181
-}
182
-
183
-static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
184
-{
185
- void *base = task_stack_page(task);
186
- size_t size = sp - base;
187
-
188
- kasan_unpoison_shadow(base, size);
189
-}
190
-
66
+#ifdef CONFIG_KASAN_STACK
19167 /* Unpoison the entire stack for a task. */
19268 void kasan_unpoison_task_stack(struct task_struct *task)
19369 {
194
- __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
70
+ void *base = task_stack_page(task);
71
+
72
+ kasan_unpoison(base, THREAD_SIZE, false);
19573 }
19674
19775 /* Unpoison the stack for the current task beyond a watermark sp value. */
....@@ -204,25 +82,22 @@
20482 */
20583 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
20684
207
- kasan_unpoison_shadow(base, watermark - base);
85
+ kasan_unpoison(base, watermark - base, false);
20886 }
87
+#endif /* CONFIG_KASAN_STACK */
20988
21089 /*
211
- * Clear all poison for the region between the current SP and a provided
212
- * watermark value, as is sometimes required prior to hand-crafted asm function
213
- * returns in the middle of functions.
90
+ * Only allow cache merging when stack collection is disabled and no metadata
91
+ * is present.
21492 */
215
-void kasan_unpoison_stack_above_sp_to(const void *watermark)
93
+slab_flags_t __kasan_never_merge(void)
21694 {
217
- const void *sp = __builtin_frame_address(0);
218
- size_t size = watermark - sp;
219
-
220
- if (WARN_ON(sp > watermark))
221
- return;
222
- kasan_unpoison_shadow(sp, size);
95
+ if (kasan_stack_collection_enabled())
96
+ return SLAB_KASAN;
97
+ return 0;
22398 }
22499
225
-void kasan_alloc_pages(struct page *page, unsigned int order)
100
+void __kasan_unpoison_pages(struct page *page, unsigned int order, bool init)
226101 {
227102 u8 tag;
228103 unsigned long i;
....@@ -230,18 +105,17 @@
230105 if (unlikely(PageHighMem(page)))
231106 return;
232107
233
- tag = random_tag();
108
+ tag = kasan_random_tag();
234109 for (i = 0; i < (1 << order); i++)
235110 page_kasan_tag_set(page + i, tag);
236
- kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
111
+ kasan_unpoison(page_address(page), PAGE_SIZE << order, init);
237112 }
238113
239
-void kasan_free_pages(struct page *page, unsigned int order)
114
+void __kasan_poison_pages(struct page *page, unsigned int order, bool init)
240115 {
241116 if (likely(!PageHighMem(page)))
242
- kasan_poison_shadow(page_address(page),
243
- PAGE_SIZE << order,
244
- KASAN_FREE_PAGE);
117
+ kasan_poison(page_address(page), PAGE_SIZE << order,
118
+ KASAN_FREE_PAGE, init);
245119 }
246120
247121 /*
....@@ -250,9 +124,6 @@
250124 */
251125 static inline unsigned int optimal_redzone(unsigned int object_size)
252126 {
253
- if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
254
- return 0;
255
-
256127 return
257128 object_size <= 64 - 16 ? 16 :
258129 object_size <= 128 - 32 ? 32 :
....@@ -263,90 +134,135 @@
263134 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
264135 }
265136
266
-void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
267
- slab_flags_t *flags)
137
+void __kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
138
+ slab_flags_t *flags)
268139 {
269
- unsigned int orig_size = *size;
270
- unsigned int redzone_size;
271
- int redzone_adjust;
140
+ unsigned int ok_size;
141
+ unsigned int optimal_size;
272142
273
- /* Add alloc meta. */
143
+ /*
144
+ * SLAB_KASAN is used to mark caches as ones that are sanitized by
145
+ * KASAN. Currently this flag is used in two places:
146
+ * 1. In slab_ksize() when calculating the size of the accessible
147
+ * memory within the object.
148
+ * 2. In slab_common.c to prevent merging of sanitized caches.
149
+ */
150
+ *flags |= SLAB_KASAN;
151
+
152
+ if (!kasan_stack_collection_enabled())
153
+ return;
154
+
155
+ ok_size = *size;
156
+
157
+ /* Add alloc meta into redzone. */
274158 cache->kasan_info.alloc_meta_offset = *size;
275159 *size += sizeof(struct kasan_alloc_meta);
276160
277
- /* Add free meta. */
278
- if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
279
- (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
280
- cache->object_size < sizeof(struct kasan_free_meta))) {
281
- cache->kasan_info.free_meta_offset = *size;
282
- *size += sizeof(struct kasan_free_meta);
161
+ /*
162
+ * If alloc meta doesn't fit, don't add it.
163
+ * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal
164
+ * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for
165
+ * larger sizes.
166
+ */
167
+ if (*size > KMALLOC_MAX_SIZE) {
168
+ cache->kasan_info.alloc_meta_offset = 0;
169
+ *size = ok_size;
170
+ /* Continue, since free meta might still fit. */
283171 }
284172
285
- redzone_size = optimal_redzone(cache->object_size);
286
- redzone_adjust = redzone_size - (*size - cache->object_size);
287
- if (redzone_adjust > 0)
288
- *size += redzone_adjust;
289
-
290
- *size = min_t(unsigned int, KMALLOC_MAX_SIZE,
291
- max(*size, cache->object_size + redzone_size));
292
-
293
- /*
294
- * If the metadata doesn't fit, don't enable KASAN at all.
295
- */
296
- if (*size <= cache->kasan_info.alloc_meta_offset ||
297
- *size <= cache->kasan_info.free_meta_offset) {
298
- cache->kasan_info.alloc_meta_offset = 0;
299
- cache->kasan_info.free_meta_offset = 0;
300
- *size = orig_size;
173
+ /* Only the generic mode uses free meta or flexible redzones. */
174
+ if (!IS_ENABLED(CONFIG_KASAN_GENERIC)) {
175
+ cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
301176 return;
302177 }
303178
304
- *flags |= SLAB_KASAN;
179
+ /*
180
+ * Add free meta into redzone when it's not possible to store
181
+ * it in the object. This is the case when:
182
+ * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
183
+ * be touched after it was freed, or
184
+ * 2. Object has a constructor, which means it's expected to
185
+ * retain its content until the next allocation, or
186
+ * 3. Object is too small.
187
+ * Otherwise cache->kasan_info.free_meta_offset = 0 is implied.
188
+ */
189
+ if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor ||
190
+ cache->object_size < sizeof(struct kasan_free_meta)) {
191
+ ok_size = *size;
192
+
193
+ cache->kasan_info.free_meta_offset = *size;
194
+ *size += sizeof(struct kasan_free_meta);
195
+
196
+ /* If free meta doesn't fit, don't add it. */
197
+ if (*size > KMALLOC_MAX_SIZE) {
198
+ cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
199
+ *size = ok_size;
200
+ }
201
+ }
202
+
203
+ /* Calculate size with optimal redzone. */
204
+ optimal_size = cache->object_size + optimal_redzone(cache->object_size);
205
+ /* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */
206
+ if (optimal_size > KMALLOC_MAX_SIZE)
207
+ optimal_size = KMALLOC_MAX_SIZE;
208
+ /* Use optimal size if the size with added metas is not large enough. */
209
+ if (*size < optimal_size)
210
+ *size = optimal_size;
305211 }
306212
307
-size_t kasan_metadata_size(struct kmem_cache *cache)
213
+void __kasan_cache_create_kmalloc(struct kmem_cache *cache)
308214 {
215
+ cache->kasan_info.is_kmalloc = true;
216
+}
217
+
218
+size_t __kasan_metadata_size(struct kmem_cache *cache)
219
+{
220
+ if (!kasan_stack_collection_enabled())
221
+ return 0;
309222 return (cache->kasan_info.alloc_meta_offset ?
310223 sizeof(struct kasan_alloc_meta) : 0) +
311224 (cache->kasan_info.free_meta_offset ?
312225 sizeof(struct kasan_free_meta) : 0);
313226 }
314227
315
-struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
316
- const void *object)
228
+struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
229
+ const void *object)
317230 {
318
- BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
319
- return (void *)object + cache->kasan_info.alloc_meta_offset;
231
+ if (!cache->kasan_info.alloc_meta_offset)
232
+ return NULL;
233
+ return kasan_reset_tag(object) + cache->kasan_info.alloc_meta_offset;
320234 }
321235
322
-struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
323
- const void *object)
236
+#ifdef CONFIG_KASAN_GENERIC
237
+struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
238
+ const void *object)
324239 {
325240 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
326
- return (void *)object + cache->kasan_info.free_meta_offset;
241
+ if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
242
+ return NULL;
243
+ return kasan_reset_tag(object) + cache->kasan_info.free_meta_offset;
327244 }
245
+#endif
328246
329
-void kasan_poison_slab(struct page *page)
247
+void __kasan_poison_slab(struct page *page)
330248 {
331249 unsigned long i;
332250
333
- for (i = 0; i < (1 << compound_order(page)); i++)
251
+ for (i = 0; i < compound_nr(page); i++)
334252 page_kasan_tag_reset(page + i);
335
- kasan_poison_shadow(page_address(page),
336
- PAGE_SIZE << compound_order(page),
337
- KASAN_KMALLOC_REDZONE);
253
+ kasan_poison(page_address(page), page_size(page),
254
+ KASAN_KMALLOC_REDZONE, false);
338255 }
339256
340
-void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
257
+void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
341258 {
342
- kasan_unpoison_shadow(object, cache->object_size);
259
+ kasan_unpoison(object, cache->object_size, false);
343260 }
344261
345
-void kasan_poison_object_data(struct kmem_cache *cache, void *object)
262
+void __kasan_poison_object_data(struct kmem_cache *cache, void *object)
346263 {
347
- kasan_poison_shadow(object,
348
- round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
349
- KASAN_KMALLOC_REDZONE);
264
+ kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
265
+ KASAN_KMALLOC_REDZONE, false);
350266 }
351267
352268 /*
....@@ -363,24 +279,18 @@
363279 * based on objects indexes, so that objects that are next to each other
364280 * get different tags.
365281 */
366
-static u8 assign_tag(struct kmem_cache *cache, const void *object,
367
- bool init, bool keep_tag)
282
+static inline u8 assign_tag(struct kmem_cache *cache,
283
+ const void *object, bool init)
368284 {
369
- /*
370
- * 1. When an object is kmalloc()'ed, two hooks are called:
371
- * kasan_slab_alloc() and kasan_kmalloc(). We assign the
372
- * tag only in the first one.
373
- * 2. We reuse the same tag for krealloc'ed objects.
374
- */
375
- if (keep_tag)
376
- return get_tag(object);
285
+ if (IS_ENABLED(CONFIG_KASAN_GENERIC))
286
+ return 0xff;
377287
378288 /*
379289 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
380290 * set, assign a tag when the object is being allocated (init == false).
381291 */
382292 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
383
- return init ? KASAN_TAG_KERNEL : random_tag();
293
+ return init ? KASAN_TAG_KERNEL : kasan_random_tag();
384294
385295 /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
386296 #ifdef CONFIG_SLAB
....@@ -391,54 +301,39 @@
391301 * For SLUB assign a random tag during slab creation, otherwise reuse
392302 * the already assigned tag.
393303 */
394
- return init ? random_tag() : get_tag(object);
304
+ return init ? kasan_random_tag() : get_tag(object);
395305 #endif
396306 }
397307
398
-void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
308
+void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache,
399309 const void *object)
400310 {
401
- struct kasan_alloc_meta *alloc_info;
311
+ struct kasan_alloc_meta *alloc_meta;
402312
403
- if (!(cache->flags & SLAB_KASAN))
404
- return (void *)object;
313
+ if (kasan_stack_collection_enabled()) {
314
+ alloc_meta = kasan_get_alloc_meta(cache, object);
315
+ if (alloc_meta)
316
+ __memset(alloc_meta, 0, sizeof(*alloc_meta));
317
+ }
405318
406
- alloc_info = get_alloc_info(cache, object);
407
- __memset(alloc_info, 0, sizeof(*alloc_info));
408
-
409
- if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
410
- object = set_tag(object,
411
- assign_tag(cache, object, true, false));
319
+ /* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */
320
+ object = set_tag(object, assign_tag(cache, object, true));
412321
413322 return (void *)object;
414323 }
415324
416
-static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
325
+static inline bool ____kasan_slab_free(struct kmem_cache *cache, void *object,
326
+ unsigned long ip, bool quarantine, bool init)
417327 {
418
- if (IS_ENABLED(CONFIG_KASAN_GENERIC))
419
- return shadow_byte < 0 ||
420
- shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
421
-
422
- /* else CONFIG_KASAN_SW_TAGS: */
423
- if ((u8)shadow_byte == KASAN_TAG_INVALID)
424
- return true;
425
- if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte))
426
- return true;
427
-
428
- return false;
429
-}
430
-
431
-static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
432
- unsigned long ip, bool quarantine)
433
-{
434
- s8 shadow_byte;
435328 u8 tag;
436329 void *tagged_object;
437
- unsigned long rounded_up_size;
438330
439331 tag = get_tag(object);
440332 tagged_object = object;
441
- object = reset_tag(object);
333
+ object = kasan_reset_tag(object);
334
+
335
+ if (is_kfence_address(object))
336
+ return false;
442337
443338 if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
444339 object)) {
....@@ -450,292 +345,241 @@
450345 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
451346 return false;
452347
453
- shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
454
- if (shadow_invalid(tag, shadow_byte)) {
348
+ if (!kasan_byte_accessible(tagged_object)) {
455349 kasan_report_invalid_free(tagged_object, ip);
456350 return true;
457351 }
458352
459
- rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
460
- kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
353
+ kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
354
+ KASAN_KMALLOC_FREE, init);
461355
462
- if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
463
- unlikely(!(cache->flags & SLAB_KASAN)))
356
+ if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine))
464357 return false;
465358
466
- set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT);
467
- quarantine_put(get_free_info(cache, object), cache);
359
+ if (kasan_stack_collection_enabled())
360
+ kasan_set_free_info(cache, object, tag);
468361
469
- return IS_ENABLED(CONFIG_KASAN_GENERIC);
362
+ return kasan_quarantine_put(cache, object);
470363 }
471364
472
-bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
365
+bool __kasan_slab_free(struct kmem_cache *cache, void *object,
366
+ unsigned long ip, bool init)
473367 {
474
- return __kasan_slab_free(cache, object, ip, true);
368
+ return ____kasan_slab_free(cache, object, ip, true, init);
475369 }
476370
477
-static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object,
478
- size_t size, gfp_t flags, bool keep_tag)
371
+static inline bool ____kasan_kfree_large(void *ptr, unsigned long ip)
479372 {
480
- unsigned long redzone_start;
481
- unsigned long redzone_end;
482
- u8 tag = 0xff;
373
+ if (ptr != page_address(virt_to_head_page(ptr))) {
374
+ kasan_report_invalid_free(ptr, ip);
375
+ return true;
376
+ }
377
+
378
+ if (!kasan_byte_accessible(ptr)) {
379
+ kasan_report_invalid_free(ptr, ip);
380
+ return true;
381
+ }
382
+
383
+ /*
384
+ * The object will be poisoned by kasan_free_pages() or
385
+ * kasan_slab_free_mempool().
386
+ */
387
+
388
+ return false;
389
+}
390
+
391
+void __kasan_kfree_large(void *ptr, unsigned long ip)
392
+{
393
+ ____kasan_kfree_large(ptr, ip);
394
+}
395
+
396
+void __kasan_slab_free_mempool(void *ptr, unsigned long ip)
397
+{
398
+ struct page *page;
399
+
400
+ page = virt_to_head_page(ptr);
401
+
402
+ /*
403
+ * Even though this function is only called for kmem_cache_alloc and
404
+ * kmalloc backed mempool allocations, those allocations can still be
405
+ * !PageSlab() when the size provided to kmalloc is larger than
406
+ * KMALLOC_MAX_SIZE, and kmalloc falls back onto page_alloc.
407
+ */
408
+ if (unlikely(!PageSlab(page))) {
409
+ if (____kasan_kfree_large(ptr, ip))
410
+ return;
411
+ kasan_poison(ptr, page_size(page), KASAN_FREE_PAGE, false);
412
+ } else {
413
+ ____kasan_slab_free(page->slab_cache, ptr, ip, false, false);
414
+ }
415
+}
416
+
417
+static void set_alloc_info(struct kmem_cache *cache, void *object,
418
+ gfp_t flags, bool is_kmalloc)
419
+{
420
+ struct kasan_alloc_meta *alloc_meta;
421
+
422
+ /* Don't save alloc info for kmalloc caches in kasan_slab_alloc(). */
423
+ if (cache->kasan_info.is_kmalloc && !is_kmalloc)
424
+ return;
425
+
426
+ alloc_meta = kasan_get_alloc_meta(cache, object);
427
+ if (alloc_meta)
428
+ kasan_set_track(&alloc_meta->alloc_track, flags);
429
+}
430
+
431
+void * __must_check __kasan_slab_alloc(struct kmem_cache *cache,
432
+ void *object, gfp_t flags, bool init)
433
+{
434
+ u8 tag;
435
+ void *tagged_object;
483436
484437 if (gfpflags_allow_blocking(flags))
485
- quarantine_reduce();
438
+ kasan_quarantine_reduce();
486439
487440 if (unlikely(object == NULL))
488441 return NULL;
489442
490
- redzone_start = round_up((unsigned long)(object + size),
491
- KASAN_SHADOW_SCALE_SIZE);
492
- redzone_end = round_up((unsigned long)object + cache->object_size,
493
- KASAN_SHADOW_SCALE_SIZE);
443
+ if (is_kfence_address(object))
444
+ return (void *)object;
494445
495
- if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
496
- tag = assign_tag(cache, object, false, keep_tag);
446
+ /*
447
+ * Generate and assign random tag for tag-based modes.
448
+ * Tag is ignored in set_tag() for the generic mode.
449
+ */
450
+ tag = assign_tag(cache, object, false);
451
+ tagged_object = set_tag(object, tag);
497452
498
- /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
499
- kasan_unpoison_shadow(set_tag(object, tag), size);
500
- kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
501
- KASAN_KMALLOC_REDZONE);
453
+ /*
454
+ * Unpoison the whole object.
455
+ * For kmalloc() allocations, kasan_kmalloc() will do precise poisoning.
456
+ */
457
+ kasan_unpoison(tagged_object, cache->object_size, init);
502458
503
- if (cache->flags & SLAB_KASAN)
504
- set_track(&get_alloc_info(cache, object)->alloc_track, flags);
459
+ /* Save alloc info (if possible) for non-kmalloc() allocations. */
460
+ if (kasan_stack_collection_enabled())
461
+ set_alloc_info(cache, (void *)object, flags, false);
505462
506
- return set_tag(object, tag);
463
+ return tagged_object;
507464 }
508465
509
-void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
510
- gfp_t flags)
466
+static inline void *____kasan_kmalloc(struct kmem_cache *cache,
467
+ const void *object, size_t size, gfp_t flags)
511468 {
512
- return __kasan_kmalloc(cache, object, cache->object_size, flags, false);
513
-}
514
-
515
-void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
516
- size_t size, gfp_t flags)
517
-{
518
- return __kasan_kmalloc(cache, object, size, flags, true);
519
-}
520
-EXPORT_SYMBOL(kasan_kmalloc);
521
-
522
-void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
523
- gfp_t flags)
524
-{
525
- struct page *page;
526469 unsigned long redzone_start;
527470 unsigned long redzone_end;
528471
529472 if (gfpflags_allow_blocking(flags))
530
- quarantine_reduce();
473
+ kasan_quarantine_reduce();
474
+
475
+ if (unlikely(object == NULL))
476
+ return NULL;
477
+
478
+ if (is_kfence_address(kasan_reset_tag(object)))
479
+ return (void *)object;
480
+
481
+ /*
482
+ * The object has already been unpoisoned by kasan_slab_alloc() for
483
+ * kmalloc() or by kasan_krealloc() for krealloc().
484
+ */
485
+
486
+ /*
487
+ * The redzone has byte-level precision for the generic mode.
488
+ * Partially poison the last object granule to cover the unaligned
489
+ * part of the redzone.
490
+ */
491
+ if (IS_ENABLED(CONFIG_KASAN_GENERIC))
492
+ kasan_poison_last_granule((void *)object, size);
493
+
494
+ /* Poison the aligned part of the redzone. */
495
+ redzone_start = round_up((unsigned long)(object + size),
496
+ KASAN_GRANULE_SIZE);
497
+ redzone_end = round_up((unsigned long)(object + cache->object_size),
498
+ KASAN_GRANULE_SIZE);
499
+ kasan_poison((void *)redzone_start, redzone_end - redzone_start,
500
+ KASAN_KMALLOC_REDZONE, false);
501
+
502
+ /*
503
+ * Save alloc info (if possible) for kmalloc() allocations.
504
+ * This also rewrites the alloc info when called from kasan_krealloc().
505
+ */
506
+ if (kasan_stack_collection_enabled())
507
+ set_alloc_info(cache, (void *)object, flags, true);
508
+
509
+ /* Keep the tag that was set by kasan_slab_alloc(). */
510
+ return (void *)object;
511
+}
512
+
513
+void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object,
514
+ size_t size, gfp_t flags)
515
+{
516
+ return ____kasan_kmalloc(cache, object, size, flags);
517
+}
518
+EXPORT_SYMBOL(__kasan_kmalloc);
519
+
520
+void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size,
521
+ gfp_t flags)
522
+{
523
+ unsigned long redzone_start;
524
+ unsigned long redzone_end;
525
+
526
+ if (gfpflags_allow_blocking(flags))
527
+ kasan_quarantine_reduce();
531528
532529 if (unlikely(ptr == NULL))
533530 return NULL;
534531
535
- page = virt_to_page(ptr);
536
- redzone_start = round_up((unsigned long)(ptr + size),
537
- KASAN_SHADOW_SCALE_SIZE);
538
- redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
532
+ /*
533
+ * The object has already been unpoisoned by kasan_alloc_pages() for
534
+ * alloc_pages() or by kasan_krealloc() for krealloc().
535
+ */
539536
540
- kasan_unpoison_shadow(ptr, size);
541
- kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
542
- KASAN_PAGE_REDZONE);
537
+ /*
538
+ * The redzone has byte-level precision for the generic mode.
539
+ * Partially poison the last object granule to cover the unaligned
540
+ * part of the redzone.
541
+ */
542
+ if (IS_ENABLED(CONFIG_KASAN_GENERIC))
543
+ kasan_poison_last_granule(ptr, size);
544
+
545
+ /* Poison the aligned part of the redzone. */
546
+ redzone_start = round_up((unsigned long)(ptr + size),
547
+ KASAN_GRANULE_SIZE);
548
+ redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr));
549
+ kasan_poison((void *)redzone_start, redzone_end - redzone_start,
550
+ KASAN_PAGE_REDZONE, false);
543551
544552 return (void *)ptr;
545553 }
546554
547
-void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
555
+void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags)
548556 {
549557 struct page *page;
550558
551559 if (unlikely(object == ZERO_SIZE_PTR))
552560 return (void *)object;
553561
562
+ /*
563
+ * Unpoison the object's data.
564
+ * Part of it might already have been unpoisoned, but it's unknown
565
+ * how big that part is.
566
+ */
567
+ kasan_unpoison(object, size, false);
568
+
554569 page = virt_to_head_page(object);
555570
571
+ /* Piggy-back on kmalloc() instrumentation to poison the redzone. */
556572 if (unlikely(!PageSlab(page)))
557
- return kasan_kmalloc_large(object, size, flags);
573
+ return __kasan_kmalloc_large(object, size, flags);
558574 else
559
- return __kasan_kmalloc(page->slab_cache, object, size,
560
- flags, true);
575
+ return ____kasan_kmalloc(page->slab_cache, object, size, flags);
561576 }
562577
563
-void kasan_poison_kfree(void *ptr, unsigned long ip)
578
+bool __kasan_check_byte(const void *address, unsigned long ip)
564579 {
565
- struct page *page;
566
-
567
- page = virt_to_head_page(ptr);
568
-
569
- if (unlikely(!PageSlab(page))) {
570
- if (ptr != page_address(page)) {
571
- kasan_report_invalid_free(ptr, ip);
572
- return;
573
- }
574
- kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
575
- KASAN_FREE_PAGE);
576
- } else {
577
- __kasan_slab_free(page->slab_cache, ptr, ip, false);
578
- }
579
-}
580
-
581
-void kasan_kfree_large(void *ptr, unsigned long ip)
582
-{
583
- if (ptr != page_address(virt_to_head_page(ptr)))
584
- kasan_report_invalid_free(ptr, ip);
585
- /* The object will be poisoned by page_alloc. */
586
-}
587
-
588
-int kasan_module_alloc(void *addr, size_t size)
589
-{
590
- void *ret;
591
- size_t scaled_size;
592
- size_t shadow_size;
593
- unsigned long shadow_start;
594
-
595
- shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
596
- scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
597
- shadow_size = round_up(scaled_size, PAGE_SIZE);
598
-
599
- if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
600
- return -EINVAL;
601
-
602
- ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
603
- shadow_start + shadow_size,
604
- GFP_KERNEL,
605
- PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
606
- __builtin_return_address(0));
607
-
608
- if (ret) {
609
- __memset(ret, KASAN_SHADOW_INIT, shadow_size);
610
- find_vm_area(addr)->flags |= VM_KASAN;
611
- kmemleak_ignore(ret);
612
- return 0;
613
- }
614
-
615
- return -ENOMEM;
616
-}
617
-
618
-void kasan_free_shadow(const struct vm_struct *vm)
619
-{
620
- if (vm->flags & VM_KASAN)
621
- vfree(kasan_mem_to_shadow(vm->addr));
622
-}
623
-
624
-extern void __kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip);
625
-
626
-void kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip)
627
-{
628
- unsigned long flags = user_access_save();
629
- __kasan_report(addr, size, is_write, ip);
630
- user_access_restore(flags);
631
-}
632
-
633
-#ifdef CONFIG_MEMORY_HOTPLUG
634
-static bool shadow_mapped(unsigned long addr)
635
-{
636
- pgd_t *pgd = pgd_offset_k(addr);
637
- p4d_t *p4d;
638
- pud_t *pud;
639
- pmd_t *pmd;
640
- pte_t *pte;
641
-
642
- if (pgd_none(*pgd))
580
+ if (!kasan_byte_accessible(address)) {
581
+ kasan_report((unsigned long)address, 1, false, ip);
643582 return false;
644
- p4d = p4d_offset(pgd, addr);
645
- if (p4d_none(*p4d))
646
- return false;
647
- pud = pud_offset(p4d, addr);
648
- if (pud_none(*pud))
649
- return false;
650
-
651
- /*
652
- * We can't use pud_large() or pud_huge(), the first one is
653
- * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
654
- * pud_bad(), if pud is bad then it's bad because it's huge.
655
- */
656
- if (pud_bad(*pud))
657
- return true;
658
- pmd = pmd_offset(pud, addr);
659
- if (pmd_none(*pmd))
660
- return false;
661
-
662
- if (pmd_bad(*pmd))
663
- return true;
664
- pte = pte_offset_kernel(pmd, addr);
665
- return !pte_none(*pte);
666
-}
667
-
668
-static int __meminit kasan_mem_notifier(struct notifier_block *nb,
669
- unsigned long action, void *data)
670
-{
671
- struct memory_notify *mem_data = data;
672
- unsigned long nr_shadow_pages, start_kaddr, shadow_start;
673
- unsigned long shadow_end, shadow_size;
674
-
675
- nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
676
- start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
677
- shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
678
- shadow_size = nr_shadow_pages << PAGE_SHIFT;
679
- shadow_end = shadow_start + shadow_size;
680
-
681
- if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
682
- WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
683
- return NOTIFY_BAD;
684
-
685
- switch (action) {
686
- case MEM_GOING_ONLINE: {
687
- void *ret;
688
-
689
- /*
690
- * If shadow is mapped already than it must have been mapped
691
- * during the boot. This could happen if we onlining previously
692
- * offlined memory.
693
- */
694
- if (shadow_mapped(shadow_start))
695
- return NOTIFY_OK;
696
-
697
- ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
698
- shadow_end, GFP_KERNEL,
699
- PAGE_KERNEL, VM_NO_GUARD,
700
- pfn_to_nid(mem_data->start_pfn),
701
- __builtin_return_address(0));
702
- if (!ret)
703
- return NOTIFY_BAD;
704
-
705
- kmemleak_ignore(ret);
706
- return NOTIFY_OK;
707583 }
708
- case MEM_CANCEL_ONLINE:
709
- case MEM_OFFLINE: {
710
- struct vm_struct *vm;
711
-
712
- /*
713
- * shadow_start was either mapped during boot by kasan_init()
714
- * or during memory online by __vmalloc_node_range().
715
- * In the latter case we can use vfree() to free shadow.
716
- * Non-NULL result of the find_vm_area() will tell us if
717
- * that was the second case.
718
- *
719
- * Currently it's not possible to free shadow mapped
720
- * during boot by kasan_init(). It's because the code
721
- * to do that hasn't been written yet. So we'll just
722
- * leak the memory.
723
- */
724
- vm = find_vm_area((void *)shadow_start);
725
- if (vm)
726
- vfree((void *)shadow_start);
727
- }
728
- }
729
-
730
- return NOTIFY_OK;
584
+ return true;
731585 }
732
-
733
-static int __init kasan_memhotplug_init(void)
734
-{
735
- hotplug_memory_notifier(kasan_mem_notifier, 0);
736
-
737
- return 0;
738
-}
739
-
740
-core_initcall(kasan_memhotplug_init);
741
-#endif