hc
2024-02-20 102a0743326a03cd1a1202ceda21e175b7d3575c
kernel/crypto/aes_ti.c
....@@ -1,281 +1,26 @@
1
+// SPDX-License-Identifier: GPL-2.0-only
12 /*
23 * Scalar fixed time AES core transform
34 *
45 * Copyright (C) 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
5
- *
6
- * This program is free software; you can redistribute it and/or modify
7
- * it under the terms of the GNU General Public License version 2 as
8
- * published by the Free Software Foundation.
96 */
107
118 #include <crypto/aes.h>
129 #include <linux/crypto.h>
1310 #include <linux/module.h>
14
-#include <asm/unaligned.h>
15
-
16
-/*
17
- * Emit the sbox as volatile const to prevent the compiler from doing
18
- * constant folding on sbox references involving fixed indexes.
19
- */
20
-static volatile const u8 __cacheline_aligned __aesti_sbox[] = {
21
- 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
22
- 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
23
- 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
24
- 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
25
- 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
26
- 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
27
- 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
28
- 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
29
- 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
30
- 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
31
- 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
32
- 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
33
- 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
34
- 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
35
- 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
36
- 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
37
- 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
38
- 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
39
- 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
40
- 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
41
- 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
42
- 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
43
- 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
44
- 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
45
- 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
46
- 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
47
- 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
48
- 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
49
- 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
50
- 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
51
- 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
52
- 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16,
53
-};
54
-
55
-static volatile const u8 __cacheline_aligned __aesti_inv_sbox[] = {
56
- 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38,
57
- 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
58
- 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87,
59
- 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
60
- 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d,
61
- 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
62
- 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2,
63
- 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
64
- 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16,
65
- 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
66
- 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
67
- 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
68
- 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a,
69
- 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
70
- 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,
71
- 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
72
- 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea,
73
- 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
74
- 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85,
75
- 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
76
- 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89,
77
- 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
78
- 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20,
79
- 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
80
- 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31,
81
- 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
82
- 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d,
83
- 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
84
- 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0,
85
- 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
86
- 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26,
87
- 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d,
88
-};
89
-
90
-static u32 mul_by_x(u32 w)
91
-{
92
- u32 x = w & 0x7f7f7f7f;
93
- u32 y = w & 0x80808080;
94
-
95
- /* multiply by polynomial 'x' (0b10) in GF(2^8) */
96
- return (x << 1) ^ (y >> 7) * 0x1b;
97
-}
98
-
99
-static u32 mul_by_x2(u32 w)
100
-{
101
- u32 x = w & 0x3f3f3f3f;
102
- u32 y = w & 0x80808080;
103
- u32 z = w & 0x40404040;
104
-
105
- /* multiply by polynomial 'x^2' (0b100) in GF(2^8) */
106
- return (x << 2) ^ (y >> 7) * 0x36 ^ (z >> 6) * 0x1b;
107
-}
108
-
109
-static u32 mix_columns(u32 x)
110
-{
111
- /*
112
- * Perform the following matrix multiplication in GF(2^8)
113
- *
114
- * | 0x2 0x3 0x1 0x1 | | x[0] |
115
- * | 0x1 0x2 0x3 0x1 | | x[1] |
116
- * | 0x1 0x1 0x2 0x3 | x | x[2] |
117
- * | 0x3 0x1 0x1 0x2 | | x[3] |
118
- */
119
- u32 y = mul_by_x(x) ^ ror32(x, 16);
120
-
121
- return y ^ ror32(x ^ y, 8);
122
-}
123
-
124
-static u32 inv_mix_columns(u32 x)
125
-{
126
- /*
127
- * Perform the following matrix multiplication in GF(2^8)
128
- *
129
- * | 0xe 0xb 0xd 0x9 | | x[0] |
130
- * | 0x9 0xe 0xb 0xd | | x[1] |
131
- * | 0xd 0x9 0xe 0xb | x | x[2] |
132
- * | 0xb 0xd 0x9 0xe | | x[3] |
133
- *
134
- * which can conveniently be reduced to
135
- *
136
- * | 0x2 0x3 0x1 0x1 | | 0x5 0x0 0x4 0x0 | | x[0] |
137
- * | 0x1 0x2 0x3 0x1 | | 0x0 0x5 0x0 0x4 | | x[1] |
138
- * | 0x1 0x1 0x2 0x3 | x | 0x4 0x0 0x5 0x0 | x | x[2] |
139
- * | 0x3 0x1 0x1 0x2 | | 0x0 0x4 0x0 0x5 | | x[3] |
140
- */
141
- u32 y = mul_by_x2(x);
142
-
143
- return mix_columns(x ^ y ^ ror32(y, 16));
144
-}
145
-
146
-static __always_inline u32 subshift(u32 in[], int pos)
147
-{
148
- return (__aesti_sbox[in[pos] & 0xff]) ^
149
- (__aesti_sbox[(in[(pos + 1) % 4] >> 8) & 0xff] << 8) ^
150
- (__aesti_sbox[(in[(pos + 2) % 4] >> 16) & 0xff] << 16) ^
151
- (__aesti_sbox[(in[(pos + 3) % 4] >> 24) & 0xff] << 24);
152
-}
153
-
154
-static __always_inline u32 inv_subshift(u32 in[], int pos)
155
-{
156
- return (__aesti_inv_sbox[in[pos] & 0xff]) ^
157
- (__aesti_inv_sbox[(in[(pos + 3) % 4] >> 8) & 0xff] << 8) ^
158
- (__aesti_inv_sbox[(in[(pos + 2) % 4] >> 16) & 0xff] << 16) ^
159
- (__aesti_inv_sbox[(in[(pos + 1) % 4] >> 24) & 0xff] << 24);
160
-}
161
-
162
-static u32 subw(u32 in)
163
-{
164
- return (__aesti_sbox[in & 0xff]) ^
165
- (__aesti_sbox[(in >> 8) & 0xff] << 8) ^
166
- (__aesti_sbox[(in >> 16) & 0xff] << 16) ^
167
- (__aesti_sbox[(in >> 24) & 0xff] << 24);
168
-}
169
-
170
-static int aesti_expand_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
171
- unsigned int key_len)
172
-{
173
- u32 kwords = key_len / sizeof(u32);
174
- u32 rc, i, j;
175
-
176
- if (key_len != AES_KEYSIZE_128 &&
177
- key_len != AES_KEYSIZE_192 &&
178
- key_len != AES_KEYSIZE_256)
179
- return -EINVAL;
180
-
181
- ctx->key_length = key_len;
182
-
183
- for (i = 0; i < kwords; i++)
184
- ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32));
185
-
186
- for (i = 0, rc = 1; i < 10; i++, rc = mul_by_x(rc)) {
187
- u32 *rki = ctx->key_enc + (i * kwords);
188
- u32 *rko = rki + kwords;
189
-
190
- rko[0] = ror32(subw(rki[kwords - 1]), 8) ^ rc ^ rki[0];
191
- rko[1] = rko[0] ^ rki[1];
192
- rko[2] = rko[1] ^ rki[2];
193
- rko[3] = rko[2] ^ rki[3];
194
-
195
- if (key_len == 24) {
196
- if (i >= 7)
197
- break;
198
- rko[4] = rko[3] ^ rki[4];
199
- rko[5] = rko[4] ^ rki[5];
200
- } else if (key_len == 32) {
201
- if (i >= 6)
202
- break;
203
- rko[4] = subw(rko[3]) ^ rki[4];
204
- rko[5] = rko[4] ^ rki[5];
205
- rko[6] = rko[5] ^ rki[6];
206
- rko[7] = rko[6] ^ rki[7];
207
- }
208
- }
209
-
210
- /*
211
- * Generate the decryption keys for the Equivalent Inverse Cipher.
212
- * This involves reversing the order of the round keys, and applying
213
- * the Inverse Mix Columns transformation to all but the first and
214
- * the last one.
215
- */
216
- ctx->key_dec[0] = ctx->key_enc[key_len + 24];
217
- ctx->key_dec[1] = ctx->key_enc[key_len + 25];
218
- ctx->key_dec[2] = ctx->key_enc[key_len + 26];
219
- ctx->key_dec[3] = ctx->key_enc[key_len + 27];
220
-
221
- for (i = 4, j = key_len + 20; j > 0; i += 4, j -= 4) {
222
- ctx->key_dec[i] = inv_mix_columns(ctx->key_enc[j]);
223
- ctx->key_dec[i + 1] = inv_mix_columns(ctx->key_enc[j + 1]);
224
- ctx->key_dec[i + 2] = inv_mix_columns(ctx->key_enc[j + 2]);
225
- ctx->key_dec[i + 3] = inv_mix_columns(ctx->key_enc[j + 3]);
226
- }
227
-
228
- ctx->key_dec[i] = ctx->key_enc[0];
229
- ctx->key_dec[i + 1] = ctx->key_enc[1];
230
- ctx->key_dec[i + 2] = ctx->key_enc[2];
231
- ctx->key_dec[i + 3] = ctx->key_enc[3];
232
-
233
- return 0;
234
-}
23511
23612 static int aesti_set_key(struct crypto_tfm *tfm, const u8 *in_key,
23713 unsigned int key_len)
23814 {
23915 struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
240
- int err;
24116
242
- err = aesti_expand_key(ctx, in_key, key_len);
243
- if (err)
244
- return err;
245
-
246
- /*
247
- * In order to force the compiler to emit data independent Sbox lookups
248
- * at the start of each block, xor the first round key with values at
249
- * fixed indexes in the Sbox. This will need to be repeated each time
250
- * the key is used, which will pull the entire Sbox into the D-cache
251
- * before any data dependent Sbox lookups are performed.
252
- */
253
- ctx->key_enc[0] ^= __aesti_sbox[ 0] ^ __aesti_sbox[128];
254
- ctx->key_enc[1] ^= __aesti_sbox[32] ^ __aesti_sbox[160];
255
- ctx->key_enc[2] ^= __aesti_sbox[64] ^ __aesti_sbox[192];
256
- ctx->key_enc[3] ^= __aesti_sbox[96] ^ __aesti_sbox[224];
257
-
258
- ctx->key_dec[0] ^= __aesti_inv_sbox[ 0] ^ __aesti_inv_sbox[128];
259
- ctx->key_dec[1] ^= __aesti_inv_sbox[32] ^ __aesti_inv_sbox[160];
260
- ctx->key_dec[2] ^= __aesti_inv_sbox[64] ^ __aesti_inv_sbox[192];
261
- ctx->key_dec[3] ^= __aesti_inv_sbox[96] ^ __aesti_inv_sbox[224];
262
-
263
- return 0;
17
+ return aes_expandkey(ctx, in_key, key_len);
26418 }
26519
26620 static void aesti_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
26721 {
26822 const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
269
- const u32 *rkp = ctx->key_enc + 4;
270
- int rounds = 6 + ctx->key_length / 4;
271
- u32 st0[4], st1[4];
27223 unsigned long flags;
273
- int round;
274
-
275
- st0[0] = ctx->key_enc[0] ^ get_unaligned_le32(in);
276
- st0[1] = ctx->key_enc[1] ^ get_unaligned_le32(in + 4);
277
- st0[2] = ctx->key_enc[2] ^ get_unaligned_le32(in + 8);
278
- st0[3] = ctx->key_enc[3] ^ get_unaligned_le32(in + 12);
27924
28025 /*
28126 * Temporarily disable interrupts to avoid races where cachelines are
....@@ -283,30 +28,7 @@
28328 */
28429 local_irq_save(flags);
28530
286
- st0[0] ^= __aesti_sbox[ 0] ^ __aesti_sbox[128];
287
- st0[1] ^= __aesti_sbox[32] ^ __aesti_sbox[160];
288
- st0[2] ^= __aesti_sbox[64] ^ __aesti_sbox[192];
289
- st0[3] ^= __aesti_sbox[96] ^ __aesti_sbox[224];
290
-
291
- for (round = 0;; round += 2, rkp += 8) {
292
- st1[0] = mix_columns(subshift(st0, 0)) ^ rkp[0];
293
- st1[1] = mix_columns(subshift(st0, 1)) ^ rkp[1];
294
- st1[2] = mix_columns(subshift(st0, 2)) ^ rkp[2];
295
- st1[3] = mix_columns(subshift(st0, 3)) ^ rkp[3];
296
-
297
- if (round == rounds - 2)
298
- break;
299
-
300
- st0[0] = mix_columns(subshift(st1, 0)) ^ rkp[4];
301
- st0[1] = mix_columns(subshift(st1, 1)) ^ rkp[5];
302
- st0[2] = mix_columns(subshift(st1, 2)) ^ rkp[6];
303
- st0[3] = mix_columns(subshift(st1, 3)) ^ rkp[7];
304
- }
305
-
306
- put_unaligned_le32(subshift(st1, 0) ^ rkp[4], out);
307
- put_unaligned_le32(subshift(st1, 1) ^ rkp[5], out + 4);
308
- put_unaligned_le32(subshift(st1, 2) ^ rkp[6], out + 8);
309
- put_unaligned_le32(subshift(st1, 3) ^ rkp[7], out + 12);
31
+ aes_encrypt(ctx, out, in);
31032
31133 local_irq_restore(flags);
31234 }
....@@ -314,16 +36,7 @@
31436 static void aesti_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
31537 {
31638 const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
317
- const u32 *rkp = ctx->key_dec + 4;
318
- int rounds = 6 + ctx->key_length / 4;
319
- u32 st0[4], st1[4];
32039 unsigned long flags;
321
- int round;
322
-
323
- st0[0] = ctx->key_dec[0] ^ get_unaligned_le32(in);
324
- st0[1] = ctx->key_dec[1] ^ get_unaligned_le32(in + 4);
325
- st0[2] = ctx->key_dec[2] ^ get_unaligned_le32(in + 8);
326
- st0[3] = ctx->key_dec[3] ^ get_unaligned_le32(in + 12);
32740
32841 /*
32942 * Temporarily disable interrupts to avoid races where cachelines are
....@@ -331,30 +44,7 @@
33144 */
33245 local_irq_save(flags);
33346
334
- st0[0] ^= __aesti_inv_sbox[ 0] ^ __aesti_inv_sbox[128];
335
- st0[1] ^= __aesti_inv_sbox[32] ^ __aesti_inv_sbox[160];
336
- st0[2] ^= __aesti_inv_sbox[64] ^ __aesti_inv_sbox[192];
337
- st0[3] ^= __aesti_inv_sbox[96] ^ __aesti_inv_sbox[224];
338
-
339
- for (round = 0;; round += 2, rkp += 8) {
340
- st1[0] = inv_mix_columns(inv_subshift(st0, 0)) ^ rkp[0];
341
- st1[1] = inv_mix_columns(inv_subshift(st0, 1)) ^ rkp[1];
342
- st1[2] = inv_mix_columns(inv_subshift(st0, 2)) ^ rkp[2];
343
- st1[3] = inv_mix_columns(inv_subshift(st0, 3)) ^ rkp[3];
344
-
345
- if (round == rounds - 2)
346
- break;
347
-
348
- st0[0] = inv_mix_columns(inv_subshift(st1, 0)) ^ rkp[4];
349
- st0[1] = inv_mix_columns(inv_subshift(st1, 1)) ^ rkp[5];
350
- st0[2] = inv_mix_columns(inv_subshift(st1, 2)) ^ rkp[6];
351
- st0[3] = inv_mix_columns(inv_subshift(st1, 3)) ^ rkp[7];
352
- }
353
-
354
- put_unaligned_le32(inv_subshift(st1, 0) ^ rkp[4], out);
355
- put_unaligned_le32(inv_subshift(st1, 1) ^ rkp[5], out + 4);
356
- put_unaligned_le32(inv_subshift(st1, 2) ^ rkp[6], out + 8);
357
- put_unaligned_le32(inv_subshift(st1, 3) ^ rkp[7], out + 12);
47
+ aes_decrypt(ctx, out, in);
35848
35949 local_irq_restore(flags);
36050 }