| .. | .. | 
|---|
| 1 | 1 | // SPDX-License-Identifier: GPL-2.0 | 
|---|
| 2 | 2 | /* | 
|---|
| 3 |  | - * DMA operations that map physical memory directly without using an IOMMU or | 
|---|
| 4 |  | - * flushing caches. | 
|---|
|  | 3 | + * Copyright (C) 2018-2020 Christoph Hellwig. | 
|---|
|  | 4 | + * | 
|---|
|  | 5 | + * DMA operations that map physical memory directly without using an IOMMU. | 
|---|
| 5 | 6 | */ | 
|---|
|  | 7 | +#include <linux/memblock.h> /* for max_pfn */ | 
|---|
| 6 | 8 | #include <linux/export.h> | 
|---|
| 7 | 9 | #include <linux/mm.h> | 
|---|
| 8 |  | -#include <linux/dma-direct.h> | 
|---|
|  | 10 | +#include <linux/dma-map-ops.h> | 
|---|
| 9 | 11 | #include <linux/scatterlist.h> | 
|---|
| 10 |  | -#include <linux/dma-contiguous.h> | 
|---|
| 11 | 12 | #include <linux/pfn.h> | 
|---|
|  | 13 | +#include <linux/vmalloc.h> | 
|---|
| 12 | 14 | #include <linux/set_memory.h> | 
|---|
| 13 |  | - | 
|---|
| 14 |  | -#define DIRECT_MAPPING_ERROR		0 | 
|---|
|  | 15 | +#include <linux/slab.h> | 
|---|
|  | 16 | +#include "direct.h" | 
|---|
| 15 | 17 |  | 
|---|
| 16 | 18 | /* | 
|---|
| 17 |  | - * Most architectures use ZONE_DMA for the first 16 Megabytes, but | 
|---|
| 18 |  | - * some use it for entirely different regions: | 
|---|
|  | 19 | + * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use | 
|---|
|  | 20 | + * it for entirely different regions. In that case the arch code needs to | 
|---|
|  | 21 | + * override the variable below for dma-direct to work properly. | 
|---|
| 19 | 22 | */ | 
|---|
| 20 |  | -#ifndef ARCH_ZONE_DMA_BITS | 
|---|
| 21 |  | -#define ARCH_ZONE_DMA_BITS 24 | 
|---|
| 22 |  | -#endif | 
|---|
|  | 23 | +unsigned int zone_dma_bits __ro_after_init = 24; | 
|---|
| 23 | 24 |  | 
|---|
| 24 |  | -/* | 
|---|
| 25 |  | - * For AMD SEV all DMA must be to unencrypted addresses. | 
|---|
| 26 |  | - */ | 
|---|
| 27 |  | -static inline bool force_dma_unencrypted(void) | 
|---|
|  | 25 | +static inline dma_addr_t phys_to_dma_direct(struct device *dev, | 
|---|
|  | 26 | +		phys_addr_t phys) | 
|---|
| 28 | 27 | { | 
|---|
| 29 |  | -	return sev_active(); | 
|---|
|  | 28 | +	if (force_dma_unencrypted(dev)) | 
|---|
|  | 29 | +		return phys_to_dma_unencrypted(dev, phys); | 
|---|
|  | 30 | +	return phys_to_dma(dev, phys); | 
|---|
| 30 | 31 | } | 
|---|
| 31 | 32 |  | 
|---|
| 32 |  | -static bool | 
|---|
| 33 |  | -check_addr(struct device *dev, dma_addr_t dma_addr, size_t size, | 
|---|
| 34 |  | -		const char *caller) | 
|---|
|  | 33 | +static inline struct page *dma_direct_to_page(struct device *dev, | 
|---|
|  | 34 | +		dma_addr_t dma_addr) | 
|---|
| 35 | 35 | { | 
|---|
| 36 |  | -	if (unlikely(dev && !dma_capable(dev, dma_addr, size))) { | 
|---|
| 37 |  | -		if (!dev->dma_mask) { | 
|---|
| 38 |  | -			dev_err(dev, | 
|---|
| 39 |  | -				"%s: call on device without dma_mask\n", | 
|---|
| 40 |  | -				caller); | 
|---|
| 41 |  | -			return false; | 
|---|
| 42 |  | -		} | 
|---|
|  | 36 | +	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr))); | 
|---|
|  | 37 | +} | 
|---|
| 43 | 38 |  | 
|---|
| 44 |  | -		if (*dev->dma_mask >= DMA_BIT_MASK(32)) { | 
|---|
| 45 |  | -			dev_err(dev, | 
|---|
| 46 |  | -				"%s: overflow %pad+%zu of device mask %llx\n", | 
|---|
| 47 |  | -				caller, &dma_addr, size, *dev->dma_mask); | 
|---|
| 48 |  | -		} | 
|---|
| 49 |  | -		return false; | 
|---|
| 50 |  | -	} | 
|---|
| 51 |  | -	return true; | 
|---|
|  | 39 | +u64 dma_direct_get_required_mask(struct device *dev) | 
|---|
|  | 40 | +{ | 
|---|
|  | 41 | +	phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT; | 
|---|
|  | 42 | +	u64 max_dma = phys_to_dma_direct(dev, phys); | 
|---|
|  | 43 | + | 
|---|
|  | 44 | +	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1; | 
|---|
|  | 45 | +} | 
|---|
|  | 46 | + | 
|---|
|  | 47 | +static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask, | 
|---|
|  | 48 | +				  u64 *phys_limit) | 
|---|
|  | 49 | +{ | 
|---|
|  | 50 | +	u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit); | 
|---|
|  | 51 | + | 
|---|
|  | 52 | +	/* | 
|---|
|  | 53 | +	 * Optimistically try the zone that the physical address mask falls | 
|---|
|  | 54 | +	 * into first.  If that returns memory that isn't actually addressable | 
|---|
|  | 55 | +	 * we will fallback to the next lower zone and try again. | 
|---|
|  | 56 | +	 * | 
|---|
|  | 57 | +	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding | 
|---|
|  | 58 | +	 * zones. | 
|---|
|  | 59 | +	 */ | 
|---|
|  | 60 | +	*phys_limit = dma_to_phys(dev, dma_limit); | 
|---|
|  | 61 | +	if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits)) | 
|---|
|  | 62 | +		return GFP_DMA; | 
|---|
|  | 63 | +	if (*phys_limit <= DMA_BIT_MASK(32) && | 
|---|
|  | 64 | +		!zone_dma32_are_empty()) | 
|---|
|  | 65 | +		return GFP_DMA32; | 
|---|
|  | 66 | +	return 0; | 
|---|
| 52 | 67 | } | 
|---|
| 53 | 68 |  | 
|---|
| 54 | 69 | static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) | 
|---|
| 55 | 70 | { | 
|---|
| 56 |  | -	dma_addr_t addr = force_dma_unencrypted() ? | 
|---|
| 57 |  | -		__phys_to_dma(dev, phys) : phys_to_dma(dev, phys); | 
|---|
| 58 |  | -	return addr + size - 1 <= dev->coherent_dma_mask; | 
|---|
|  | 71 | +	dma_addr_t dma_addr = phys_to_dma_direct(dev, phys); | 
|---|
|  | 72 | + | 
|---|
|  | 73 | +	if (dma_addr == DMA_MAPPING_ERROR) | 
|---|
|  | 74 | +		return false; | 
|---|
|  | 75 | +	return dma_addr + size - 1 <= | 
|---|
|  | 76 | +		min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); | 
|---|
| 59 | 77 | } | 
|---|
| 60 | 78 |  | 
|---|
| 61 |  | -void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, | 
|---|
| 62 |  | -		gfp_t gfp, unsigned long attrs) | 
|---|
|  | 79 | +static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, | 
|---|
|  | 80 | +		gfp_t gfp) | 
|---|
| 63 | 81 | { | 
|---|
| 64 |  | -	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
|---|
| 65 |  | -	int page_order = get_order(size); | 
|---|
|  | 82 | +	int node = dev_to_node(dev); | 
|---|
| 66 | 83 | struct page *page = NULL; | 
|---|
| 67 |  | -	void *ret; | 
|---|
|  | 84 | +	u64 phys_limit; | 
|---|
| 68 | 85 |  | 
|---|
| 69 |  | -	/* we always manually zero the memory once we are done: */ | 
|---|
| 70 |  | -	gfp &= ~__GFP_ZERO; | 
|---|
|  | 86 | +	WARN_ON_ONCE(!PAGE_ALIGNED(size)); | 
|---|
| 71 | 87 |  | 
|---|
| 72 |  | -	/* GFP_DMA32 and GFP_DMA are no ops without the corresponding zones: */ | 
|---|
| 73 |  | -	if (dev->coherent_dma_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS)) | 
|---|
| 74 |  | -		gfp |= GFP_DMA; | 
|---|
| 75 |  | -	if (dev->coherent_dma_mask <= DMA_BIT_MASK(32) && !(gfp & GFP_DMA)) | 
|---|
| 76 |  | -		gfp |= GFP_DMA32; | 
|---|
| 77 |  | - | 
|---|
| 78 |  | -again: | 
|---|
| 79 |  | -	/* CMA can be used only in the context which permits sleeping */ | 
|---|
| 80 |  | -	if (gfpflags_allow_blocking(gfp)) { | 
|---|
| 81 |  | -		page = dma_alloc_from_contiguous(dev, count, page_order, | 
|---|
| 82 |  | -						 gfp & __GFP_NOWARN); | 
|---|
| 83 |  | -		if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { | 
|---|
| 84 |  | -			dma_release_from_contiguous(dev, page, count); | 
|---|
| 85 |  | -			page = NULL; | 
|---|
| 86 |  | -		} | 
|---|
| 87 |  | -	} | 
|---|
| 88 |  | -	if (!page) | 
|---|
| 89 |  | -		page = alloc_pages_node(dev_to_node(dev), gfp, page_order); | 
|---|
| 90 |  | - | 
|---|
|  | 88 | +	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, | 
|---|
|  | 89 | +					   &phys_limit); | 
|---|
|  | 90 | +	page = dma_alloc_contiguous(dev, size, gfp); | 
|---|
| 91 | 91 | if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { | 
|---|
| 92 |  | -		__free_pages(page, page_order); | 
|---|
|  | 92 | +		dma_free_contiguous(dev, page, size); | 
|---|
|  | 93 | +		page = NULL; | 
|---|
|  | 94 | +	} | 
|---|
|  | 95 | +again: | 
|---|
|  | 96 | +	if (!page) | 
|---|
|  | 97 | +		page = alloc_pages_node(node, gfp, get_order(size)); | 
|---|
|  | 98 | +	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { | 
|---|
|  | 99 | +		dma_free_contiguous(dev, page, size); | 
|---|
| 93 | 100 | page = NULL; | 
|---|
| 94 | 101 |  | 
|---|
| 95 | 102 | if (IS_ENABLED(CONFIG_ZONE_DMA32) && | 
|---|
| 96 |  | -		    dev->coherent_dma_mask < DMA_BIT_MASK(64) && | 
|---|
| 97 |  | -		    !(gfp & (GFP_DMA32 | GFP_DMA))) { | 
|---|
|  | 103 | +		    phys_limit < DMA_BIT_MASK(64) && | 
|---|
|  | 104 | +		    !(gfp & (GFP_DMA32 | GFP_DMA)) && | 
|---|
|  | 105 | +		    !zone_dma32_are_empty()) { | 
|---|
| 98 | 106 | gfp |= GFP_DMA32; | 
|---|
| 99 | 107 | goto again; | 
|---|
| 100 | 108 | } | 
|---|
| 101 | 109 |  | 
|---|
| 102 |  | -		if (IS_ENABLED(CONFIG_ZONE_DMA) && | 
|---|
| 103 |  | -		    dev->coherent_dma_mask < DMA_BIT_MASK(32) && | 
|---|
| 104 |  | -		    !(gfp & GFP_DMA)) { | 
|---|
|  | 110 | +		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) { | 
|---|
| 105 | 111 | gfp = (gfp & ~GFP_DMA32) | GFP_DMA; | 
|---|
| 106 | 112 | goto again; | 
|---|
| 107 | 113 | } | 
|---|
| 108 | 114 | } | 
|---|
| 109 | 115 |  | 
|---|
|  | 116 | +	return page; | 
|---|
|  | 117 | +} | 
|---|
|  | 118 | + | 
|---|
|  | 119 | +static void *dma_direct_alloc_from_pool(struct device *dev, size_t size, | 
|---|
|  | 120 | +		dma_addr_t *dma_handle, gfp_t gfp) | 
|---|
|  | 121 | +{ | 
|---|
|  | 122 | +	struct page *page; | 
|---|
|  | 123 | +	u64 phys_mask; | 
|---|
|  | 124 | +	void *ret; | 
|---|
|  | 125 | + | 
|---|
|  | 126 | +	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, | 
|---|
|  | 127 | +					   &phys_mask); | 
|---|
|  | 128 | +	page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok); | 
|---|
| 110 | 129 | if (!page) | 
|---|
| 111 | 130 | return NULL; | 
|---|
| 112 |  | -	ret = page_address(page); | 
|---|
| 113 |  | -	if (force_dma_unencrypted()) { | 
|---|
| 114 |  | -		set_memory_decrypted((unsigned long)ret, 1 << page_order); | 
|---|
| 115 |  | -		*dma_handle = __phys_to_dma(dev, page_to_phys(page)); | 
|---|
| 116 |  | -	} else { | 
|---|
| 117 |  | -		*dma_handle = phys_to_dma(dev, page_to_phys(page)); | 
|---|
| 118 |  | -	} | 
|---|
| 119 |  | -	memset(ret, 0, size); | 
|---|
|  | 131 | +	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); | 
|---|
| 120 | 132 | return ret; | 
|---|
| 121 | 133 | } | 
|---|
| 122 | 134 |  | 
|---|
| 123 |  | -/* | 
|---|
| 124 |  | - * NOTE: this function must never look at the dma_addr argument, because we want | 
|---|
| 125 |  | - * to be able to use it as a helper for iommu implementations as well. | 
|---|
| 126 |  | - */ | 
|---|
| 127 |  | -void dma_direct_free(struct device *dev, size_t size, void *cpu_addr, | 
|---|
| 128 |  | -		dma_addr_t dma_addr, unsigned long attrs) | 
|---|
|  | 135 | +void *dma_direct_alloc(struct device *dev, size_t size, | 
|---|
|  | 136 | +		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) | 
|---|
| 129 | 137 | { | 
|---|
| 130 |  | -	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
|---|
| 131 |  | -	unsigned int page_order = get_order(size); | 
|---|
|  | 138 | +	struct page *page; | 
|---|
|  | 139 | +	void *ret; | 
|---|
|  | 140 | +	int err; | 
|---|
| 132 | 141 |  | 
|---|
| 133 |  | -	if (force_dma_unencrypted()) | 
|---|
| 134 |  | -		set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order); | 
|---|
| 135 |  | -	if (!dma_release_from_contiguous(dev, virt_to_page(cpu_addr), count)) | 
|---|
| 136 |  | -		free_pages((unsigned long)cpu_addr, page_order); | 
|---|
|  | 142 | +	size = PAGE_ALIGN(size); | 
|---|
|  | 143 | +	if (attrs & DMA_ATTR_NO_WARN) | 
|---|
|  | 144 | +		gfp |= __GFP_NOWARN; | 
|---|
|  | 145 | + | 
|---|
|  | 146 | +	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && | 
|---|
|  | 147 | +	    !force_dma_unencrypted(dev)) { | 
|---|
|  | 148 | +		page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO); | 
|---|
|  | 149 | +		if (!page) | 
|---|
|  | 150 | +			return NULL; | 
|---|
|  | 151 | +		/* remove any dirty cache lines on the kernel alias */ | 
|---|
|  | 152 | +		if (!PageHighMem(page)) | 
|---|
|  | 153 | +			arch_dma_prep_coherent(page, size); | 
|---|
|  | 154 | +		*dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); | 
|---|
|  | 155 | +		/* return the page pointer as the opaque cookie */ | 
|---|
|  | 156 | +		return page; | 
|---|
|  | 157 | +	} | 
|---|
|  | 158 | + | 
|---|
|  | 159 | +	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && | 
|---|
|  | 160 | +	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && | 
|---|
|  | 161 | +	    !dev_is_dma_coherent(dev)) | 
|---|
|  | 162 | +		return arch_dma_alloc(dev, size, dma_handle, gfp, attrs); | 
|---|
|  | 163 | + | 
|---|
|  | 164 | +	/* | 
|---|
|  | 165 | +	 * Remapping or decrypting memory may block. If either is required and | 
|---|
|  | 166 | +	 * we can't block, allocate the memory from the atomic pools. | 
|---|
|  | 167 | +	 */ | 
|---|
|  | 168 | +	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && | 
|---|
|  | 169 | +	    !gfpflags_allow_blocking(gfp) && | 
|---|
|  | 170 | +	    (force_dma_unencrypted(dev) || | 
|---|
|  | 171 | +	     (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev)))) | 
|---|
|  | 172 | +		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); | 
|---|
|  | 173 | + | 
|---|
|  | 174 | +	/* we always manually zero the memory once we are done */ | 
|---|
|  | 175 | +	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO); | 
|---|
|  | 176 | +	if (!page) | 
|---|
|  | 177 | +		return NULL; | 
|---|
|  | 178 | + | 
|---|
|  | 179 | +	if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && | 
|---|
|  | 180 | +	     !dev_is_dma_coherent(dev)) || | 
|---|
|  | 181 | +	    (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) { | 
|---|
|  | 182 | +		/* remove any dirty cache lines on the kernel alias */ | 
|---|
|  | 183 | +		arch_dma_prep_coherent(page, size); | 
|---|
|  | 184 | + | 
|---|
|  | 185 | +		/* create a coherent mapping */ | 
|---|
|  | 186 | +		ret = dma_common_contiguous_remap(page, size, | 
|---|
|  | 187 | +				dma_pgprot(dev, PAGE_KERNEL, attrs), | 
|---|
|  | 188 | +				__builtin_return_address(0)); | 
|---|
|  | 189 | +		if (!ret) | 
|---|
|  | 190 | +			goto out_free_pages; | 
|---|
|  | 191 | +		if (force_dma_unencrypted(dev)) { | 
|---|
|  | 192 | +			err = set_memory_decrypted((unsigned long)ret, | 
|---|
|  | 193 | +						   PFN_UP(size)); | 
|---|
|  | 194 | +			if (err) | 
|---|
|  | 195 | +				goto out_free_pages; | 
|---|
|  | 196 | +		} | 
|---|
|  | 197 | +		memset(ret, 0, size); | 
|---|
|  | 198 | +		goto done; | 
|---|
|  | 199 | +	} | 
|---|
|  | 200 | + | 
|---|
|  | 201 | +	if (PageHighMem(page)) { | 
|---|
|  | 202 | +		/* | 
|---|
|  | 203 | +		 * Depending on the cma= arguments and per-arch setup | 
|---|
|  | 204 | +		 * dma_alloc_contiguous could return highmem pages. | 
|---|
|  | 205 | +		 * Without remapping there is no way to return them here, | 
|---|
|  | 206 | +		 * so log an error and fail. | 
|---|
|  | 207 | +		 */ | 
|---|
|  | 208 | +		dev_info(dev, "Rejecting highmem page from CMA.\n"); | 
|---|
|  | 209 | +		goto out_free_pages; | 
|---|
|  | 210 | +	} | 
|---|
|  | 211 | + | 
|---|
|  | 212 | +	ret = page_address(page); | 
|---|
|  | 213 | +	if (force_dma_unencrypted(dev)) { | 
|---|
|  | 214 | +		err = set_memory_decrypted((unsigned long)ret, | 
|---|
|  | 215 | +					   PFN_UP(size)); | 
|---|
|  | 216 | +		if (err) | 
|---|
|  | 217 | +			goto out_free_pages; | 
|---|
|  | 218 | +	} | 
|---|
|  | 219 | + | 
|---|
|  | 220 | +	memset(ret, 0, size); | 
|---|
|  | 221 | + | 
|---|
|  | 222 | +	if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && | 
|---|
|  | 223 | +	    !dev_is_dma_coherent(dev)) { | 
|---|
|  | 224 | +		arch_dma_prep_coherent(page, size); | 
|---|
|  | 225 | +		ret = arch_dma_set_uncached(ret, size); | 
|---|
|  | 226 | +		if (IS_ERR(ret)) | 
|---|
|  | 227 | +			goto out_encrypt_pages; | 
|---|
|  | 228 | +	} | 
|---|
|  | 229 | +done: | 
|---|
|  | 230 | +	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); | 
|---|
|  | 231 | +	return ret; | 
|---|
|  | 232 | + | 
|---|
|  | 233 | +out_encrypt_pages: | 
|---|
|  | 234 | +	if (force_dma_unencrypted(dev)) { | 
|---|
|  | 235 | +		err = set_memory_encrypted((unsigned long)page_address(page), | 
|---|
|  | 236 | +					   PFN_UP(size)); | 
|---|
|  | 237 | +		/* If memory cannot be re-encrypted, it must be leaked */ | 
|---|
|  | 238 | +		if (err) | 
|---|
|  | 239 | +			return NULL; | 
|---|
|  | 240 | +	} | 
|---|
|  | 241 | +out_free_pages: | 
|---|
|  | 242 | +	dma_free_contiguous(dev, page, size); | 
|---|
|  | 243 | +	return NULL; | 
|---|
| 137 | 244 | } | 
|---|
| 138 | 245 |  | 
|---|
| 139 |  | -dma_addr_t dma_direct_map_page(struct device *dev, struct page *page, | 
|---|
| 140 |  | -		unsigned long offset, size_t size, enum dma_data_direction dir, | 
|---|
| 141 |  | -		unsigned long attrs) | 
|---|
|  | 246 | +void dma_direct_free(struct device *dev, size_t size, | 
|---|
|  | 247 | +		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) | 
|---|
| 142 | 248 | { | 
|---|
| 143 |  | -	dma_addr_t dma_addr = phys_to_dma(dev, page_to_phys(page)) + offset; | 
|---|
|  | 249 | +	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && | 
|---|
|  | 250 | +	    !force_dma_unencrypted(dev)) { | 
|---|
|  | 251 | +		/* cpu_addr is a struct page cookie, not a kernel address */ | 
|---|
|  | 252 | +		dma_free_contiguous(dev, cpu_addr, size); | 
|---|
|  | 253 | +		return; | 
|---|
|  | 254 | +	} | 
|---|
| 144 | 255 |  | 
|---|
| 145 |  | -	if (!check_addr(dev, dma_addr, size, __func__)) | 
|---|
| 146 |  | -		return DIRECT_MAPPING_ERROR; | 
|---|
| 147 |  | -	return dma_addr; | 
|---|
|  | 256 | +	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && | 
|---|
|  | 257 | +	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && | 
|---|
|  | 258 | +	    !dev_is_dma_coherent(dev)) { | 
|---|
|  | 259 | +		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); | 
|---|
|  | 260 | +		return; | 
|---|
|  | 261 | +	} | 
|---|
|  | 262 | + | 
|---|
|  | 263 | +	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ | 
|---|
|  | 264 | +	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && | 
|---|
|  | 265 | +	    dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size))) | 
|---|
|  | 266 | +		return; | 
|---|
|  | 267 | + | 
|---|
|  | 268 | +	if (force_dma_unencrypted(dev)) | 
|---|
|  | 269 | +		set_memory_encrypted((unsigned long)cpu_addr, PFN_UP(size)); | 
|---|
|  | 270 | + | 
|---|
|  | 271 | +	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) | 
|---|
|  | 272 | +		vunmap(cpu_addr); | 
|---|
|  | 273 | +	else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED)) | 
|---|
|  | 274 | +		arch_dma_clear_uncached(cpu_addr, size); | 
|---|
|  | 275 | + | 
|---|
|  | 276 | +	dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size); | 
|---|
| 148 | 277 | } | 
|---|
|  | 278 | + | 
|---|
|  | 279 | +struct page *dma_direct_alloc_pages(struct device *dev, size_t size, | 
|---|
|  | 280 | +		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) | 
|---|
|  | 281 | +{ | 
|---|
|  | 282 | +	struct page *page; | 
|---|
|  | 283 | +	void *ret; | 
|---|
|  | 284 | + | 
|---|
|  | 285 | +	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && | 
|---|
|  | 286 | +	    force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp)) | 
|---|
|  | 287 | +		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); | 
|---|
|  | 288 | + | 
|---|
|  | 289 | +	page = __dma_direct_alloc_pages(dev, size, gfp); | 
|---|
|  | 290 | +	if (!page) | 
|---|
|  | 291 | +		return NULL; | 
|---|
|  | 292 | +	if (PageHighMem(page)) { | 
|---|
|  | 293 | +		/* | 
|---|
|  | 294 | +		 * Depending on the cma= arguments and per-arch setup | 
|---|
|  | 295 | +		 * dma_alloc_contiguous could return highmem pages. | 
|---|
|  | 296 | +		 * Without remapping there is no way to return them here, | 
|---|
|  | 297 | +		 * so log an error and fail. | 
|---|
|  | 298 | +		 */ | 
|---|
|  | 299 | +		dev_info(dev, "Rejecting highmem page from CMA.\n"); | 
|---|
|  | 300 | +		goto out_free_pages; | 
|---|
|  | 301 | +	} | 
|---|
|  | 302 | + | 
|---|
|  | 303 | +	ret = page_address(page); | 
|---|
|  | 304 | +	if (force_dma_unencrypted(dev)) { | 
|---|
|  | 305 | +		if (set_memory_decrypted((unsigned long)ret, PFN_UP(size))) | 
|---|
|  | 306 | +			goto out_free_pages; | 
|---|
|  | 307 | +	} | 
|---|
|  | 308 | +	memset(ret, 0, size); | 
|---|
|  | 309 | +	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); | 
|---|
|  | 310 | +	return page; | 
|---|
|  | 311 | +out_free_pages: | 
|---|
|  | 312 | +	dma_free_contiguous(dev, page, size); | 
|---|
|  | 313 | +	return NULL; | 
|---|
|  | 314 | +} | 
|---|
|  | 315 | + | 
|---|
|  | 316 | +void dma_direct_free_pages(struct device *dev, size_t size, | 
|---|
|  | 317 | +		struct page *page, dma_addr_t dma_addr, | 
|---|
|  | 318 | +		enum dma_data_direction dir) | 
|---|
|  | 319 | +{ | 
|---|
|  | 320 | +	void *vaddr = page_address(page); | 
|---|
|  | 321 | + | 
|---|
|  | 322 | +	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ | 
|---|
|  | 323 | +	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && | 
|---|
|  | 324 | +	    dma_free_from_pool(dev, vaddr, size)) | 
|---|
|  | 325 | +		return; | 
|---|
|  | 326 | + | 
|---|
|  | 327 | +	if (force_dma_unencrypted(dev)) | 
|---|
|  | 328 | +		set_memory_encrypted((unsigned long)vaddr, PFN_UP(size)); | 
|---|
|  | 329 | + | 
|---|
|  | 330 | +	dma_free_contiguous(dev, page, size); | 
|---|
|  | 331 | +} | 
|---|
|  | 332 | + | 
|---|
|  | 333 | +#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ | 
|---|
|  | 334 | +    defined(CONFIG_SWIOTLB) | 
|---|
|  | 335 | +void dma_direct_sync_sg_for_device(struct device *dev, | 
|---|
|  | 336 | +		struct scatterlist *sgl, int nents, enum dma_data_direction dir) | 
|---|
|  | 337 | +{ | 
|---|
|  | 338 | +	struct scatterlist *sg; | 
|---|
|  | 339 | +	int i; | 
|---|
|  | 340 | + | 
|---|
|  | 341 | +	for_each_sg(sgl, sg, nents, i) { | 
|---|
|  | 342 | +		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); | 
|---|
|  | 343 | + | 
|---|
|  | 344 | +		if (unlikely(is_swiotlb_buffer(paddr))) | 
|---|
|  | 345 | +			swiotlb_tbl_sync_single(dev, paddr, sg->length, | 
|---|
|  | 346 | +					dir, SYNC_FOR_DEVICE); | 
|---|
|  | 347 | + | 
|---|
|  | 348 | +		if (!dev_is_dma_coherent(dev)) | 
|---|
|  | 349 | +			arch_sync_dma_for_device(paddr, sg->length, | 
|---|
|  | 350 | +					dir); | 
|---|
|  | 351 | +	} | 
|---|
|  | 352 | +} | 
|---|
|  | 353 | +#endif | 
|---|
|  | 354 | + | 
|---|
|  | 355 | +#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ | 
|---|
|  | 356 | +    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ | 
|---|
|  | 357 | +    defined(CONFIG_SWIOTLB) | 
|---|
|  | 358 | +void dma_direct_sync_sg_for_cpu(struct device *dev, | 
|---|
|  | 359 | +		struct scatterlist *sgl, int nents, enum dma_data_direction dir) | 
|---|
|  | 360 | +{ | 
|---|
|  | 361 | +	struct scatterlist *sg; | 
|---|
|  | 362 | +	int i; | 
|---|
|  | 363 | + | 
|---|
|  | 364 | +	for_each_sg(sgl, sg, nents, i) { | 
|---|
|  | 365 | +		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); | 
|---|
|  | 366 | + | 
|---|
|  | 367 | +		if (!dev_is_dma_coherent(dev)) | 
|---|
|  | 368 | +			arch_sync_dma_for_cpu(paddr, sg->length, dir); | 
|---|
|  | 369 | + | 
|---|
|  | 370 | +		if (unlikely(is_swiotlb_buffer(paddr))) | 
|---|
|  | 371 | +			swiotlb_tbl_sync_single(dev, paddr, sg->length, dir, | 
|---|
|  | 372 | +					SYNC_FOR_CPU); | 
|---|
|  | 373 | + | 
|---|
|  | 374 | +		if (dir == DMA_FROM_DEVICE) | 
|---|
|  | 375 | +			arch_dma_mark_clean(paddr, sg->length); | 
|---|
|  | 376 | +	} | 
|---|
|  | 377 | + | 
|---|
|  | 378 | +	if (!dev_is_dma_coherent(dev)) | 
|---|
|  | 379 | +		arch_sync_dma_for_cpu_all(); | 
|---|
|  | 380 | +} | 
|---|
|  | 381 | + | 
|---|
|  | 382 | +void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, | 
|---|
|  | 383 | +		int nents, enum dma_data_direction dir, unsigned long attrs) | 
|---|
|  | 384 | +{ | 
|---|
|  | 385 | +	struct scatterlist *sg; | 
|---|
|  | 386 | +	int i; | 
|---|
|  | 387 | + | 
|---|
|  | 388 | +	for_each_sg(sgl, sg, nents, i) | 
|---|
|  | 389 | +		dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir, | 
|---|
|  | 390 | +			     attrs); | 
|---|
|  | 391 | +} | 
|---|
|  | 392 | +#endif | 
|---|
| 149 | 393 |  | 
|---|
| 150 | 394 | int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, | 
|---|
| 151 | 395 | enum dma_data_direction dir, unsigned long attrs) | 
|---|
| .. | .. | 
|---|
| 154 | 398 | struct scatterlist *sg; | 
|---|
| 155 | 399 |  | 
|---|
| 156 | 400 | for_each_sg(sgl, sg, nents, i) { | 
|---|
| 157 |  | -		BUG_ON(!sg_page(sg)); | 
|---|
| 158 |  | - | 
|---|
| 159 |  | -		sg_dma_address(sg) = phys_to_dma(dev, sg_phys(sg)); | 
|---|
| 160 |  | -		if (!check_addr(dev, sg_dma_address(sg), sg->length, __func__)) | 
|---|
| 161 |  | -			return 0; | 
|---|
|  | 401 | +		sg->dma_address = dma_direct_map_page(dev, sg_page(sg), | 
|---|
|  | 402 | +				sg->offset, sg->length, dir, attrs); | 
|---|
|  | 403 | +		if (sg->dma_address == DMA_MAPPING_ERROR) | 
|---|
|  | 404 | +			goto out_unmap; | 
|---|
| 162 | 405 | sg_dma_len(sg) = sg->length; | 
|---|
| 163 | 406 | } | 
|---|
| 164 | 407 |  | 
|---|
| 165 | 408 | return nents; | 
|---|
|  | 409 | + | 
|---|
|  | 410 | +out_unmap: | 
|---|
|  | 411 | +	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); | 
|---|
|  | 412 | +	return 0; | 
|---|
|  | 413 | +} | 
|---|
|  | 414 | + | 
|---|
|  | 415 | +dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, | 
|---|
|  | 416 | +		size_t size, enum dma_data_direction dir, unsigned long attrs) | 
|---|
|  | 417 | +{ | 
|---|
|  | 418 | +	dma_addr_t dma_addr = paddr; | 
|---|
|  | 419 | + | 
|---|
|  | 420 | +	if (unlikely(!dma_capable(dev, dma_addr, size, false))) { | 
|---|
|  | 421 | +		dev_err_once(dev, | 
|---|
|  | 422 | +			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", | 
|---|
|  | 423 | +			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); | 
|---|
|  | 424 | +		WARN_ON_ONCE(1); | 
|---|
|  | 425 | +		return DMA_MAPPING_ERROR; | 
|---|
|  | 426 | +	} | 
|---|
|  | 427 | + | 
|---|
|  | 428 | +	return dma_addr; | 
|---|
|  | 429 | +} | 
|---|
|  | 430 | + | 
|---|
|  | 431 | +int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, | 
|---|
|  | 432 | +		void *cpu_addr, dma_addr_t dma_addr, size_t size, | 
|---|
|  | 433 | +		unsigned long attrs) | 
|---|
|  | 434 | +{ | 
|---|
|  | 435 | +	struct page *page = dma_direct_to_page(dev, dma_addr); | 
|---|
|  | 436 | +	int ret; | 
|---|
|  | 437 | + | 
|---|
|  | 438 | +	ret = sg_alloc_table(sgt, 1, GFP_KERNEL); | 
|---|
|  | 439 | +	if (!ret) | 
|---|
|  | 440 | +		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); | 
|---|
|  | 441 | +	return ret; | 
|---|
|  | 442 | +} | 
|---|
|  | 443 | + | 
|---|
|  | 444 | +bool dma_direct_can_mmap(struct device *dev) | 
|---|
|  | 445 | +{ | 
|---|
|  | 446 | +	return dev_is_dma_coherent(dev) || | 
|---|
|  | 447 | +		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP); | 
|---|
|  | 448 | +} | 
|---|
|  | 449 | + | 
|---|
|  | 450 | +int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, | 
|---|
|  | 451 | +		void *cpu_addr, dma_addr_t dma_addr, size_t size, | 
|---|
|  | 452 | +		unsigned long attrs) | 
|---|
|  | 453 | +{ | 
|---|
|  | 454 | +	unsigned long user_count = vma_pages(vma); | 
|---|
|  | 455 | +	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
|---|
|  | 456 | +	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr)); | 
|---|
|  | 457 | +	int ret = -ENXIO; | 
|---|
|  | 458 | + | 
|---|
|  | 459 | +	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); | 
|---|
|  | 460 | + | 
|---|
|  | 461 | +	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) | 
|---|
|  | 462 | +		return ret; | 
|---|
|  | 463 | + | 
|---|
|  | 464 | +	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff) | 
|---|
|  | 465 | +		return -ENXIO; | 
|---|
|  | 466 | +	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff, | 
|---|
|  | 467 | +			user_count << PAGE_SHIFT, vma->vm_page_prot); | 
|---|
| 166 | 468 | } | 
|---|
| 167 | 469 |  | 
|---|
| 168 | 470 | int dma_direct_supported(struct device *dev, u64 mask) | 
|---|
| 169 | 471 | { | 
|---|
| 170 |  | -#ifdef CONFIG_ZONE_DMA | 
|---|
| 171 |  | -	/* | 
|---|
| 172 |  | -	 * This check needs to be against the actual bit mask value, so | 
|---|
| 173 |  | -	 * use __phys_to_dma() here so that the SME encryption mask isn't | 
|---|
| 174 |  | -	 * part of the check. | 
|---|
| 175 |  | -	 */ | 
|---|
| 176 |  | -	if (mask < __phys_to_dma(dev, DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))) | 
|---|
| 177 |  | -		return 0; | 
|---|
| 178 |  | -#else | 
|---|
|  | 472 | +	u64 min_mask = (max_pfn - 1) << PAGE_SHIFT; | 
|---|
|  | 473 | + | 
|---|
| 179 | 474 | /* | 
|---|
| 180 | 475 | * Because 32-bit DMA masks are so common we expect every architecture | 
|---|
| 181 | 476 | * to be able to satisfy them - either by not supporting more physical | 
|---|
| 182 | 477 | * memory, or by providing a ZONE_DMA32.  If neither is the case, the | 
|---|
| 183 | 478 | * architecture needs to use an IOMMU instead of the direct mapping. | 
|---|
| 184 |  | -	 * | 
|---|
| 185 |  | -	 * This check needs to be against the actual bit mask value, so | 
|---|
| 186 |  | -	 * use __phys_to_dma() here so that the SME encryption mask isn't | 
|---|
|  | 479 | +	 */ | 
|---|
|  | 480 | +	if (mask >= DMA_BIT_MASK(32)) | 
|---|
|  | 481 | +		return 1; | 
|---|
|  | 482 | + | 
|---|
|  | 483 | +	/* | 
|---|
|  | 484 | +	 * This check needs to be against the actual bit mask value, so use | 
|---|
|  | 485 | +	 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't | 
|---|
| 187 | 486 | * part of the check. | 
|---|
| 188 | 487 | */ | 
|---|
| 189 |  | -	if (mask < __phys_to_dma(dev, DMA_BIT_MASK(32))) | 
|---|
| 190 |  | -		return 0; | 
|---|
| 191 |  | -#endif | 
|---|
| 192 |  | -	/* | 
|---|
| 193 |  | -	 * Upstream PCI/PCIe bridges or SoC interconnects may not carry | 
|---|
| 194 |  | -	 * as many DMA address bits as the device itself supports. | 
|---|
| 195 |  | -	 */ | 
|---|
| 196 |  | -	if (dev->bus_dma_mask && mask > dev->bus_dma_mask) | 
|---|
| 197 |  | -		return 0; | 
|---|
| 198 |  | -	return 1; | 
|---|
|  | 488 | +	if (IS_ENABLED(CONFIG_ZONE_DMA)) | 
|---|
|  | 489 | +		min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits)); | 
|---|
|  | 490 | +	return mask >= phys_to_dma_unencrypted(dev, min_mask); | 
|---|
| 199 | 491 | } | 
|---|
| 200 | 492 |  | 
|---|
| 201 |  | -int dma_direct_mapping_error(struct device *dev, dma_addr_t dma_addr) | 
|---|
|  | 493 | +size_t dma_direct_max_mapping_size(struct device *dev) | 
|---|
| 202 | 494 | { | 
|---|
| 203 |  | -	return dma_addr == DIRECT_MAPPING_ERROR; | 
|---|
|  | 495 | +	/* If SWIOTLB is active, use its maximum mapping size */ | 
|---|
|  | 496 | +	if (is_swiotlb_active() && | 
|---|
|  | 497 | +	    (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE)) | 
|---|
|  | 498 | +		return swiotlb_max_mapping_size(dev); | 
|---|
|  | 499 | +	return SIZE_MAX; | 
|---|
| 204 | 500 | } | 
|---|
| 205 | 501 |  | 
|---|
| 206 |  | -const struct dma_map_ops dma_direct_ops = { | 
|---|
| 207 |  | -	.alloc			= dma_direct_alloc, | 
|---|
| 208 |  | -	.free			= dma_direct_free, | 
|---|
| 209 |  | -	.map_page		= dma_direct_map_page, | 
|---|
| 210 |  | -	.map_sg			= dma_direct_map_sg, | 
|---|
| 211 |  | -	.dma_supported		= dma_direct_supported, | 
|---|
| 212 |  | -	.mapping_error		= dma_direct_mapping_error, | 
|---|
| 213 |  | -}; | 
|---|
| 214 |  | -EXPORT_SYMBOL(dma_direct_ops); | 
|---|
|  | 502 | +bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr) | 
|---|
|  | 503 | +{ | 
|---|
|  | 504 | +	return !dev_is_dma_coherent(dev) || | 
|---|
|  | 505 | +		is_swiotlb_buffer(dma_to_phys(dev, dma_addr)); | 
|---|
|  | 506 | +} | 
|---|
|  | 507 | + | 
|---|
|  | 508 | +/** | 
|---|
|  | 509 | + * dma_direct_set_offset - Assign scalar offset for a single DMA range. | 
|---|
|  | 510 | + * @dev:	device pointer; needed to "own" the alloced memory. | 
|---|
|  | 511 | + * @cpu_start:  beginning of memory region covered by this offset. | 
|---|
|  | 512 | + * @dma_start:  beginning of DMA/PCI region covered by this offset. | 
|---|
|  | 513 | + * @size:	size of the region. | 
|---|
|  | 514 | + * | 
|---|
|  | 515 | + * This is for the simple case of a uniform offset which cannot | 
|---|
|  | 516 | + * be discovered by "dma-ranges". | 
|---|
|  | 517 | + * | 
|---|
|  | 518 | + * It returns -ENOMEM if out of memory, -EINVAL if a map | 
|---|
|  | 519 | + * already exists, 0 otherwise. | 
|---|
|  | 520 | + * | 
|---|
|  | 521 | + * Note: any call to this from a driver is a bug.  The mapping needs | 
|---|
|  | 522 | + * to be described by the device tree or other firmware interfaces. | 
|---|
|  | 523 | + */ | 
|---|
|  | 524 | +int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start, | 
|---|
|  | 525 | +			 dma_addr_t dma_start, u64 size) | 
|---|
|  | 526 | +{ | 
|---|
|  | 527 | +	struct bus_dma_region *map; | 
|---|
|  | 528 | +	u64 offset = (u64)cpu_start - (u64)dma_start; | 
|---|
|  | 529 | + | 
|---|
|  | 530 | +	if (dev->dma_range_map) { | 
|---|
|  | 531 | +		dev_err(dev, "attempt to add DMA range to existing map\n"); | 
|---|
|  | 532 | +		return -EINVAL; | 
|---|
|  | 533 | +	} | 
|---|
|  | 534 | + | 
|---|
|  | 535 | +	if (!offset) | 
|---|
|  | 536 | +		return 0; | 
|---|
|  | 537 | + | 
|---|
|  | 538 | +	map = kcalloc(2, sizeof(*map), GFP_KERNEL); | 
|---|
|  | 539 | +	if (!map) | 
|---|
|  | 540 | +		return -ENOMEM; | 
|---|
|  | 541 | +	map[0].cpu_start = cpu_start; | 
|---|
|  | 542 | +	map[0].dma_start = dma_start; | 
|---|
|  | 543 | +	map[0].offset = offset; | 
|---|
|  | 544 | +	map[0].size = size; | 
|---|
|  | 545 | +	dev->dma_range_map = map; | 
|---|
|  | 546 | +	return 0; | 
|---|
|  | 547 | +} | 
|---|
|  | 548 | +EXPORT_SYMBOL_GPL(dma_direct_set_offset); | 
|---|