forked from ~ljy/RK356X_SDK_RELEASE

hc
2023-12-11 072de836f53be56a70cecf70b43ae43b7ce17376
kernel/drivers/infiniband/core/umem.c
....@@ -37,64 +37,121 @@
3737 #include <linux/sched/signal.h>
3838 #include <linux/sched/mm.h>
3939 #include <linux/export.h>
40
-#include <linux/hugetlb.h>
4140 #include <linux/slab.h>
41
+#include <linux/pagemap.h>
42
+#include <linux/count_zeros.h>
4243 #include <rdma/ib_umem_odp.h>
4344
4445 #include "uverbs.h"
4546
46
-
4747 static void __ib_umem_release(struct ib_device *dev, struct ib_umem *umem, int dirty)
4848 {
49
- struct scatterlist *sg;
49
+ struct sg_page_iter sg_iter;
5050 struct page *page;
51
- int i;
5251
5352 if (umem->nmap > 0)
54
- ib_dma_unmap_sg(dev, umem->sg_head.sgl,
55
- umem->npages,
53
+ ib_dma_unmap_sg(dev, umem->sg_head.sgl, umem->sg_nents,
5654 DMA_BIDIRECTIONAL);
5755
58
- for_each_sg(umem->sg_head.sgl, sg, umem->npages, i) {
59
-
60
- page = sg_page(sg);
61
- if (!PageDirty(page) && umem->writable && dirty)
62
- set_page_dirty_lock(page);
63
- put_page(page);
56
+ for_each_sg_page(umem->sg_head.sgl, &sg_iter, umem->sg_nents, 0) {
57
+ page = sg_page_iter_page(&sg_iter);
58
+ unpin_user_pages_dirty_lock(&page, 1, umem->writable && dirty);
6459 }
6560
6661 sg_free_table(&umem->sg_head);
6762 }
6863
6964 /**
65
+ * ib_umem_find_best_pgsz - Find best HW page size to use for this MR
66
+ *
67
+ * @umem: umem struct
68
+ * @pgsz_bitmap: bitmap of HW supported page sizes
69
+ * @virt: IOVA
70
+ *
71
+ * This helper is intended for HW that support multiple page
72
+ * sizes but can do only a single page size in an MR.
73
+ *
74
+ * Returns 0 if the umem requires page sizes not supported by
75
+ * the driver to be mapped. Drivers always supporting PAGE_SIZE
76
+ * or smaller will never see a 0 result.
77
+ */
78
+unsigned long ib_umem_find_best_pgsz(struct ib_umem *umem,
79
+ unsigned long pgsz_bitmap,
80
+ unsigned long virt)
81
+{
82
+ struct scatterlist *sg;
83
+ unsigned long va, pgoff;
84
+ dma_addr_t mask;
85
+ int i;
86
+
87
+ /* rdma_for_each_block() has a bug if the page size is smaller than the
88
+ * page size used to build the umem. For now prevent smaller page sizes
89
+ * from being returned.
90
+ */
91
+ pgsz_bitmap &= GENMASK(BITS_PER_LONG - 1, PAGE_SHIFT);
92
+
93
+ /* At minimum, drivers must support PAGE_SIZE or smaller */
94
+ if (WARN_ON(!(pgsz_bitmap & GENMASK(PAGE_SHIFT, 0))))
95
+ return 0;
96
+
97
+ umem->iova = va = virt;
98
+ /* The best result is the smallest page size that results in the minimum
99
+ * number of required pages. Compute the largest page size that could
100
+ * work based on VA address bits that don't change.
101
+ */
102
+ mask = pgsz_bitmap &
103
+ GENMASK(BITS_PER_LONG - 1,
104
+ bits_per((umem->length - 1 + virt) ^ virt));
105
+ /* offset into first SGL */
106
+ pgoff = umem->address & ~PAGE_MASK;
107
+
108
+ for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) {
109
+ /* Walk SGL and reduce max page size if VA/PA bits differ
110
+ * for any address.
111
+ */
112
+ mask |= (sg_dma_address(sg) + pgoff) ^ va;
113
+ va += sg_dma_len(sg) - pgoff;
114
+ /* Except for the last entry, the ending iova alignment sets
115
+ * the maximum possible page size as the low bits of the iova
116
+ * must be zero when starting the next chunk.
117
+ */
118
+ if (i != (umem->nmap - 1))
119
+ mask |= va;
120
+ pgoff = 0;
121
+ }
122
+
123
+ /* The mask accumulates 1's in each position where the VA and physical
124
+ * address differ, thus the length of trailing 0 is the largest page
125
+ * size that can pass the VA through to the physical.
126
+ */
127
+ if (mask)
128
+ pgsz_bitmap &= GENMASK(count_trailing_zeros(mask), 0);
129
+ return pgsz_bitmap ? rounddown_pow_of_two(pgsz_bitmap) : 0;
130
+}
131
+EXPORT_SYMBOL(ib_umem_find_best_pgsz);
132
+
133
+/**
70134 * ib_umem_get - Pin and DMA map userspace memory.
71135 *
72
- * If access flags indicate ODP memory, avoid pinning. Instead, stores
73
- * the mm for future page fault handling in conjunction with MMU notifiers.
74
- *
75
- * @context: userspace context to pin memory for
136
+ * @device: IB device to connect UMEM
76137 * @addr: userspace virtual address to start at
77138 * @size: length of region to pin
78139 * @access: IB_ACCESS_xxx flags for memory being pinned
79
- * @dmasync: flush in-flight DMA when the memory region is written
80140 */
81
-struct ib_umem *ib_umem_get(struct ib_ucontext *context, unsigned long addr,
82
- size_t size, int access, int dmasync)
141
+struct ib_umem *ib_umem_get(struct ib_device *device, unsigned long addr,
142
+ size_t size, int access)
83143 {
84144 struct ib_umem *umem;
85145 struct page **page_list;
86
- struct vm_area_struct **vma_list;
87146 unsigned long lock_limit;
147
+ unsigned long new_pinned;
88148 unsigned long cur_base;
149
+ unsigned long dma_attr = 0;
150
+ struct mm_struct *mm;
89151 unsigned long npages;
90152 int ret;
91
- int i;
92
- unsigned long dma_attrs = 0;
93
- struct scatterlist *sg, *sg_list_start;
153
+ struct scatterlist *sg = NULL;
94154 unsigned int gup_flags = FOLL_WRITE;
95
-
96
- if (dmasync)
97
- dma_attrs |= DMA_ATTR_WRITE_BARRIER;
98155
99156 /*
100157 * If the combination of the addr and size requested for this memory
....@@ -107,27 +164,23 @@
107164 if (!can_do_mlock())
108165 return ERR_PTR(-EPERM);
109166
110
- umem = kzalloc(sizeof *umem, GFP_KERNEL);
167
+ if (access & IB_ACCESS_ON_DEMAND)
168
+ return ERR_PTR(-EOPNOTSUPP);
169
+
170
+ umem = kzalloc(sizeof(*umem), GFP_KERNEL);
111171 if (!umem)
112172 return ERR_PTR(-ENOMEM);
113
-
114
- umem->context = context;
173
+ umem->ibdev = device;
115174 umem->length = size;
116175 umem->address = addr;
117
- umem->page_shift = PAGE_SHIFT;
176
+ /*
177
+ * Drivers should call ib_umem_find_best_pgsz() to set the iova
178
+ * correctly.
179
+ */
180
+ umem->iova = addr;
118181 umem->writable = ib_access_writable(access);
119
-
120
- if (access & IB_ACCESS_ON_DEMAND) {
121
- ret = ib_umem_odp_get(context, umem, access);
122
- if (ret)
123
- goto umem_kfree;
124
- return umem;
125
- }
126
-
127
- umem->odp_data = NULL;
128
-
129
- /* We assume the memory is from hugetlb until proved otherwise */
130
- umem->hugetlb = 1;
182
+ umem->owning_mm = mm = current->mm;
183
+ mmgrab(mm);
131184
132185 page_list = (struct page **) __get_free_page(GFP_KERNEL);
133186 if (!page_list) {
....@@ -135,75 +188,56 @@
135188 goto umem_kfree;
136189 }
137190
138
- /*
139
- * if we can't alloc the vma_list, it's not so bad;
140
- * just assume the memory is not hugetlb memory
141
- */
142
- vma_list = (struct vm_area_struct **) __get_free_page(GFP_KERNEL);
143
- if (!vma_list)
144
- umem->hugetlb = 0;
145
-
146191 npages = ib_umem_num_pages(umem);
192
+ if (npages == 0 || npages > UINT_MAX) {
193
+ ret = -EINVAL;
194
+ goto out;
195
+ }
147196
148197 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
149198
150
- down_write(&current->mm->mmap_sem);
151
- current->mm->pinned_vm += npages;
152
- if ((current->mm->pinned_vm > lock_limit) && !capable(CAP_IPC_LOCK)) {
153
- up_write(&current->mm->mmap_sem);
199
+ new_pinned = atomic64_add_return(npages, &mm->pinned_vm);
200
+ if (new_pinned > lock_limit && !capable(CAP_IPC_LOCK)) {
201
+ atomic64_sub(npages, &mm->pinned_vm);
154202 ret = -ENOMEM;
155
- goto vma;
203
+ goto out;
156204 }
157
- up_write(&current->mm->mmap_sem);
158205
159206 cur_base = addr & PAGE_MASK;
160
-
161
- if (npages == 0 || npages > UINT_MAX) {
162
- ret = -EINVAL;
163
- goto vma;
164
- }
165
-
166
- ret = sg_alloc_table(&umem->sg_head, npages, GFP_KERNEL);
167
- if (ret)
168
- goto vma;
169207
170208 if (!umem->writable)
171209 gup_flags |= FOLL_FORCE;
172210
173
- sg_list_start = umem->sg_head.sgl;
174
-
175
- down_read(&current->mm->mmap_sem);
176211 while (npages) {
177
- ret = get_user_pages_longterm(cur_base,
178
- min_t(unsigned long, npages,
179
- PAGE_SIZE / sizeof (struct page *)),
180
- gup_flags, page_list, vma_list);
181
- if (ret < 0) {
182
- up_read(&current->mm->mmap_sem);
212
+ cond_resched();
213
+ ret = pin_user_pages_fast(cur_base,
214
+ min_t(unsigned long, npages,
215
+ PAGE_SIZE /
216
+ sizeof(struct page *)),
217
+ gup_flags | FOLL_LONGTERM, page_list);
218
+ if (ret < 0)
219
+ goto umem_release;
220
+
221
+ cur_base += ret * PAGE_SIZE;
222
+ npages -= ret;
223
+ sg = __sg_alloc_table_from_pages(&umem->sg_head, page_list, ret,
224
+ 0, ret << PAGE_SHIFT,
225
+ ib_dma_max_seg_size(device), sg, npages,
226
+ GFP_KERNEL);
227
+ umem->sg_nents = umem->sg_head.nents;
228
+ if (IS_ERR(sg)) {
229
+ unpin_user_pages_dirty_lock(page_list, ret, 0);
230
+ ret = PTR_ERR(sg);
183231 goto umem_release;
184232 }
185
-
186
- umem->npages += ret;
187
- cur_base += ret * PAGE_SIZE;
188
- npages -= ret;
189
-
190
- for_each_sg(sg_list_start, sg, ret, i) {
191
- if (vma_list && !is_vm_hugetlb_page(vma_list[i]))
192
- umem->hugetlb = 0;
193
-
194
- sg_set_page(sg, page_list[i], PAGE_SIZE, 0);
195
- }
196
-
197
- /* preparing for next loop */
198
- sg_list_start = sg;
199233 }
200
- up_read(&current->mm->mmap_sem);
201234
202
- umem->nmap = ib_dma_map_sg_attrs(context->device,
203
- umem->sg_head.sgl,
204
- umem->npages,
205
- DMA_BIDIRECTIONAL,
206
- dma_attrs);
235
+ if (access & IB_ACCESS_RELAXED_ORDERING)
236
+ dma_attr |= DMA_ATTR_WEAK_ORDERING;
237
+
238
+ umem->nmap =
239
+ ib_dma_map_sg_attrs(device, umem->sg_head.sgl, umem->sg_nents,
240
+ DMA_BIDIRECTIONAL, dma_attr);
207241
208242 if (!umem->nmap) {
209243 ret = -ENOMEM;
....@@ -214,32 +248,18 @@
214248 goto out;
215249
216250 umem_release:
217
- __ib_umem_release(context->device, umem, 0);
218
-vma:
219
- down_write(&current->mm->mmap_sem);
220
- current->mm->pinned_vm -= ib_umem_num_pages(umem);
221
- up_write(&current->mm->mmap_sem);
251
+ __ib_umem_release(device, umem, 0);
252
+ atomic64_sub(ib_umem_num_pages(umem), &mm->pinned_vm);
222253 out:
223
- if (vma_list)
224
- free_page((unsigned long) vma_list);
225254 free_page((unsigned long) page_list);
226255 umem_kfree:
227
- if (ret)
256
+ if (ret) {
257
+ mmdrop(umem->owning_mm);
228258 kfree(umem);
259
+ }
229260 return ret ? ERR_PTR(ret) : umem;
230261 }
231262 EXPORT_SYMBOL(ib_umem_get);
232
-
233
-static void ib_umem_account(struct work_struct *work)
234
-{
235
- struct ib_umem *umem = container_of(work, struct ib_umem, work);
236
-
237
- down_write(&umem->mm->mmap_sem);
238
- umem->mm->pinned_vm -= umem->diff;
239
- up_write(&umem->mm->mmap_sem);
240
- mmput(umem->mm);
241
- kfree(umem);
242
-}
243263
244264 /**
245265 * ib_umem_release - release memory pinned with ib_umem_get
....@@ -247,72 +267,18 @@
247267 */
248268 void ib_umem_release(struct ib_umem *umem)
249269 {
250
- struct ib_ucontext *context = umem->context;
251
- struct mm_struct *mm;
252
- struct task_struct *task;
253
- unsigned long diff;
254
-
255
- if (umem->odp_data) {
256
- ib_umem_odp_release(umem);
270
+ if (!umem)
257271 return;
258
- }
272
+ if (umem->is_odp)
273
+ return ib_umem_odp_release(to_ib_umem_odp(umem));
259274
260
- __ib_umem_release(umem->context->device, umem, 1);
275
+ __ib_umem_release(umem->ibdev, umem, 1);
261276
262
- task = get_pid_task(umem->context->tgid, PIDTYPE_PID);
263
- if (!task)
264
- goto out;
265
- mm = get_task_mm(task);
266
- put_task_struct(task);
267
- if (!mm)
268
- goto out;
269
-
270
- diff = ib_umem_num_pages(umem);
271
-
272
- /*
273
- * We may be called with the mm's mmap_sem already held. This
274
- * can happen when a userspace munmap() is the call that drops
275
- * the last reference to our file and calls our release
276
- * method. If there are memory regions to destroy, we'll end
277
- * up here and not be able to take the mmap_sem. In that case
278
- * we defer the vm_locked accounting to the system workqueue.
279
- */
280
- if (context->closing) {
281
- if (!down_write_trylock(&mm->mmap_sem)) {
282
- INIT_WORK(&umem->work, ib_umem_account);
283
- umem->mm = mm;
284
- umem->diff = diff;
285
-
286
- queue_work(ib_wq, &umem->work);
287
- return;
288
- }
289
- } else
290
- down_write(&mm->mmap_sem);
291
-
292
- mm->pinned_vm -= diff;
293
- up_write(&mm->mmap_sem);
294
- mmput(mm);
295
-out:
277
+ atomic64_sub(ib_umem_num_pages(umem), &umem->owning_mm->pinned_vm);
278
+ mmdrop(umem->owning_mm);
296279 kfree(umem);
297280 }
298281 EXPORT_SYMBOL(ib_umem_release);
299
-
300
-int ib_umem_page_count(struct ib_umem *umem)
301
-{
302
- int i;
303
- int n;
304
- struct scatterlist *sg;
305
-
306
- if (umem->odp_data)
307
- return ib_umem_num_pages(umem);
308
-
309
- n = 0;
310
- for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i)
311
- n += sg_dma_len(sg) >> umem->page_shift;
312
-
313
- return n;
314
-}
315
-EXPORT_SYMBOL(ib_umem_page_count);
316282
317283 /*
318284 * Copy from the given ib_umem's pages to the given buffer.
....@@ -336,7 +302,7 @@
336302 return -EINVAL;
337303 }
338304
339
- ret = sg_pcopy_to_buffer(umem->sg_head.sgl, umem->npages, dst, length,
305
+ ret = sg_pcopy_to_buffer(umem->sg_head.sgl, umem->sg_nents, dst, length,
340306 offset + ib_umem_offset(umem));
341307
342308 if (ret < 0)