hc
2024-05-11 04dd17822334871b23ea2862f7798fb0e0007777
kernel/drivers/firmware/efi/libstub/random.c
....@@ -1,192 +1,143 @@
1
+// SPDX-License-Identifier: GPL-2.0
12 /*
23 * Copyright (C) 2016 Linaro Ltd; <ard.biesheuvel@linaro.org>
3
- *
4
- * This program is free software; you can redistribute it and/or modify
5
- * it under the terms of the GNU General Public License version 2 as
6
- * published by the Free Software Foundation.
7
- *
84 */
95
106 #include <linux/efi.h>
11
-#include <linux/log2.h>
127 #include <asm/efi.h>
138
149 #include "efistub.h"
1510
16
-struct efi_rng_protocol {
17
- efi_status_t (*get_info)(struct efi_rng_protocol *,
18
- unsigned long *, efi_guid_t *);
19
- efi_status_t (*get_rng)(struct efi_rng_protocol *,
20
- efi_guid_t *, unsigned long, u8 *out);
11
+typedef union efi_rng_protocol efi_rng_protocol_t;
12
+
13
+union efi_rng_protocol {
14
+ struct {
15
+ efi_status_t (__efiapi *get_info)(efi_rng_protocol_t *,
16
+ unsigned long *,
17
+ efi_guid_t *);
18
+ efi_status_t (__efiapi *get_rng)(efi_rng_protocol_t *,
19
+ efi_guid_t *, unsigned long,
20
+ u8 *out);
21
+ };
22
+ struct {
23
+ u32 get_info;
24
+ u32 get_rng;
25
+ } mixed_mode;
2126 };
2227
23
-efi_status_t efi_get_random_bytes(efi_system_table_t *sys_table_arg,
24
- unsigned long size, u8 *out)
28
+/**
29
+ * efi_get_random_bytes() - fill a buffer with random bytes
30
+ * @size: size of the buffer
31
+ * @out: caller allocated buffer to receive the random bytes
32
+ *
33
+ * The call will fail if either the firmware does not implement the
34
+ * EFI_RNG_PROTOCOL or there are not enough random bytes available to fill
35
+ * the buffer.
36
+ *
37
+ * Return: status code
38
+ */
39
+efi_status_t efi_get_random_bytes(unsigned long size, u8 *out)
2540 {
2641 efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
2742 efi_status_t status;
28
- struct efi_rng_protocol *rng;
43
+ efi_rng_protocol_t *rng = NULL;
2944
30
- status = efi_call_early(locate_protocol, &rng_proto, NULL,
31
- (void **)&rng);
45
+ status = efi_bs_call(locate_protocol, &rng_proto, NULL, (void **)&rng);
3246 if (status != EFI_SUCCESS)
3347 return status;
3448
35
- return rng->get_rng(rng, NULL, size, out);
49
+ return efi_call_proto(rng, get_rng, NULL, size, out);
3650 }
3751
38
-/*
39
- * Return the number of slots covered by this entry, i.e., the number of
40
- * addresses it covers that are suitably aligned and supply enough room
41
- * for the allocation.
52
+/**
53
+ * efi_random_get_seed() - provide random seed as configuration table
54
+ *
55
+ * The EFI_RNG_PROTOCOL is used to read random bytes. These random bytes are
56
+ * saved as a configuration table which can be used as entropy by the kernel
57
+ * for the initialization of its pseudo random number generator.
58
+ *
59
+ * If the EFI_RNG_PROTOCOL is not available or there are not enough random bytes
60
+ * available, the configuration table will not be installed and an error code
61
+ * will be returned.
62
+ *
63
+ * Return: status code
4264 */
43
-static unsigned long get_entry_num_slots(efi_memory_desc_t *md,
44
- unsigned long size,
45
- unsigned long align_shift)
46
-{
47
- unsigned long align = 1UL << align_shift;
48
- u64 first_slot, last_slot, region_end;
49
-
50
- if (md->type != EFI_CONVENTIONAL_MEMORY)
51
- return 0;
52
-
53
- region_end = min((u64)ULONG_MAX, md->phys_addr + md->num_pages*EFI_PAGE_SIZE - 1);
54
-
55
- first_slot = round_up(md->phys_addr, align);
56
- last_slot = round_down(region_end - size + 1, align);
57
-
58
- if (first_slot > last_slot)
59
- return 0;
60
-
61
- return ((unsigned long)(last_slot - first_slot) >> align_shift) + 1;
62
-}
63
-
64
-/*
65
- * The UEFI memory descriptors have a virtual address field that is only used
66
- * when installing the virtual mapping using SetVirtualAddressMap(). Since it
67
- * is unused here, we can reuse it to keep track of each descriptor's slot
68
- * count.
69
- */
70
-#define MD_NUM_SLOTS(md) ((md)->virt_addr)
71
-
72
-efi_status_t efi_random_alloc(efi_system_table_t *sys_table_arg,
73
- unsigned long size,
74
- unsigned long align,
75
- unsigned long *addr,
76
- unsigned long random_seed)
77
-{
78
- unsigned long map_size, desc_size, total_slots = 0, target_slot;
79
- unsigned long buff_size;
80
- efi_status_t status;
81
- efi_memory_desc_t *memory_map;
82
- int map_offset;
83
- struct efi_boot_memmap map;
84
-
85
- map.map = &memory_map;
86
- map.map_size = &map_size;
87
- map.desc_size = &desc_size;
88
- map.desc_ver = NULL;
89
- map.key_ptr = NULL;
90
- map.buff_size = &buff_size;
91
-
92
- status = efi_get_memory_map(sys_table_arg, &map);
93
- if (status != EFI_SUCCESS)
94
- return status;
95
-
96
- if (align < EFI_ALLOC_ALIGN)
97
- align = EFI_ALLOC_ALIGN;
98
-
99
- /* count the suitable slots in each memory map entry */
100
- for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
101
- efi_memory_desc_t *md = (void *)memory_map + map_offset;
102
- unsigned long slots;
103
-
104
- slots = get_entry_num_slots(md, size, ilog2(align));
105
- MD_NUM_SLOTS(md) = slots;
106
- total_slots += slots;
107
- }
108
-
109
- /* find a random number between 0 and total_slots */
110
- target_slot = (total_slots * (u16)random_seed) >> 16;
111
-
112
- /*
113
- * target_slot is now a value in the range [0, total_slots), and so
114
- * it corresponds with exactly one of the suitable slots we recorded
115
- * when iterating over the memory map the first time around.
116
- *
117
- * So iterate over the memory map again, subtracting the number of
118
- * slots of each entry at each iteration, until we have found the entry
119
- * that covers our chosen slot. Use the residual value of target_slot
120
- * to calculate the randomly chosen address, and allocate it directly
121
- * using EFI_ALLOCATE_ADDRESS.
122
- */
123
- for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
124
- efi_memory_desc_t *md = (void *)memory_map + map_offset;
125
- efi_physical_addr_t target;
126
- unsigned long pages;
127
-
128
- if (target_slot >= MD_NUM_SLOTS(md)) {
129
- target_slot -= MD_NUM_SLOTS(md);
130
- continue;
131
- }
132
-
133
- target = round_up(md->phys_addr, align) + target_slot * align;
134
- pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
135
-
136
- status = efi_call_early(allocate_pages, EFI_ALLOCATE_ADDRESS,
137
- EFI_LOADER_DATA, pages, &target);
138
- if (status == EFI_SUCCESS)
139
- *addr = target;
140
- break;
141
- }
142
-
143
- efi_call_early(free_pool, memory_map);
144
-
145
- return status;
146
-}
147
-
148
-efi_status_t efi_random_get_seed(efi_system_table_t *sys_table_arg)
65
+efi_status_t efi_random_get_seed(void)
14966 {
15067 efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
15168 efi_guid_t rng_algo_raw = EFI_RNG_ALGORITHM_RAW;
15269 efi_guid_t rng_table_guid = LINUX_EFI_RANDOM_SEED_TABLE_GUID;
153
- struct efi_rng_protocol *rng;
154
- struct linux_efi_random_seed *seed;
70
+ struct linux_efi_random_seed *prev_seed, *seed = NULL;
71
+ int prev_seed_size = 0, seed_size = EFI_RANDOM_SEED_SIZE;
72
+ efi_rng_protocol_t *rng = NULL;
15573 efi_status_t status;
15674
157
- status = efi_call_early(locate_protocol, &rng_proto, NULL,
158
- (void **)&rng);
75
+ status = efi_bs_call(locate_protocol, &rng_proto, NULL, (void **)&rng);
15976 if (status != EFI_SUCCESS)
16077 return status;
16178
162
- status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
163
- sizeof(*seed) + EFI_RANDOM_SEED_SIZE,
164
- (void **)&seed);
165
- if (status != EFI_SUCCESS)
166
- return status;
79
+ /*
80
+ * Check whether a seed was provided by a prior boot stage. In that
81
+ * case, instead of overwriting it, let's create a new buffer that can
82
+ * hold both, and concatenate the existing and the new seeds.
83
+ * Note that we should read the seed size with caution, in case the
84
+ * table got corrupted in memory somehow.
85
+ */
86
+ prev_seed = get_efi_config_table(LINUX_EFI_RANDOM_SEED_TABLE_GUID);
87
+ if (prev_seed && prev_seed->size <= 512U) {
88
+ prev_seed_size = prev_seed->size;
89
+ seed_size += prev_seed_size;
90
+ }
16791
168
- status = rng->get_rng(rng, &rng_algo_raw, EFI_RANDOM_SEED_SIZE,
169
- seed->bits);
92
+ /*
93
+ * Use EFI_ACPI_RECLAIM_MEMORY here so that it is guaranteed that the
94
+ * allocation will survive a kexec reboot (although we refresh the seed
95
+ * beforehand)
96
+ */
97
+ status = efi_bs_call(allocate_pool, EFI_ACPI_RECLAIM_MEMORY,
98
+ struct_size(seed, bits, seed_size),
99
+ (void **)&seed);
100
+ if (status != EFI_SUCCESS) {
101
+ efi_warn("Failed to allocate memory for RNG seed.\n");
102
+ goto err_warn;
103
+ }
104
+
105
+ status = efi_call_proto(rng, get_rng, &rng_algo_raw,
106
+ EFI_RANDOM_SEED_SIZE, seed->bits);
107
+
170108 if (status == EFI_UNSUPPORTED)
171109 /*
172110 * Use whatever algorithm we have available if the raw algorithm
173111 * is not implemented.
174112 */
175
- status = rng->get_rng(rng, NULL, EFI_RANDOM_SEED_SIZE,
176
- seed->bits);
113
+ status = efi_call_proto(rng, get_rng, NULL,
114
+ EFI_RANDOM_SEED_SIZE, seed->bits);
177115
178116 if (status != EFI_SUCCESS)
179117 goto err_freepool;
180118
181
- seed->size = EFI_RANDOM_SEED_SIZE;
182
- status = efi_call_early(install_configuration_table, &rng_table_guid,
183
- seed);
119
+ seed->size = seed_size;
120
+ if (prev_seed_size)
121
+ memcpy(seed->bits + EFI_RANDOM_SEED_SIZE, prev_seed->bits,
122
+ prev_seed_size);
123
+
124
+ status = efi_bs_call(install_configuration_table, &rng_table_guid, seed);
184125 if (status != EFI_SUCCESS)
185126 goto err_freepool;
186127
128
+ if (prev_seed_size) {
129
+ /* wipe and free the old seed if we managed to install the new one */
130
+ memzero_explicit(prev_seed->bits, prev_seed_size);
131
+ efi_bs_call(free_pool, prev_seed);
132
+ }
187133 return EFI_SUCCESS;
188134
189135 err_freepool:
190
- efi_call_early(free_pool, seed);
136
+ memzero_explicit(seed, struct_size(seed, bits, seed_size));
137
+ efi_bs_call(free_pool, seed);
138
+ efi_warn("Failed to obtain seed from EFI_RNG_PROTOCOL\n");
139
+err_warn:
140
+ if (prev_seed)
141
+ efi_warn("Retaining bootloader-supplied seed only");
191142 return status;
192143 }