.. | .. |
---|
| 1 | +// SPDX-License-Identifier: GPL-2.0-or-later |
---|
1 | 2 | /* mpihelp-div.c - MPI helper functions |
---|
2 | 3 | * Copyright (C) 1994, 1996 Free Software Foundation, Inc. |
---|
3 | 4 | * Copyright (C) 1998, 1999 Free Software Foundation, Inc. |
---|
4 | 5 | * |
---|
5 | 6 | * This file is part of GnuPG. |
---|
6 | | - * |
---|
7 | | - * GnuPG is free software; you can redistribute it and/or modify |
---|
8 | | - * it under the terms of the GNU General Public License as published by |
---|
9 | | - * the Free Software Foundation; either version 2 of the License, or |
---|
10 | | - * (at your option) any later version. |
---|
11 | | - * |
---|
12 | | - * GnuPG is distributed in the hope that it will be useful, |
---|
13 | | - * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
14 | | - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
15 | | - * GNU General Public License for more details. |
---|
16 | | - * |
---|
17 | | - * You should have received a copy of the GNU General Public License |
---|
18 | | - * along with this program; if not, write to the Free Software |
---|
19 | | - * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA |
---|
20 | 7 | * |
---|
21 | 8 | * Note: This code is heavily based on the GNU MP Library. |
---|
22 | 9 | * Actually it's the same code with only minor changes in the |
---|
.. | .. |
---|
36 | 23 | #ifndef UDIV_TIME |
---|
37 | 24 | #define UDIV_TIME UMUL_TIME |
---|
38 | 25 | #endif |
---|
| 26 | + |
---|
| 27 | + |
---|
| 28 | +mpi_limb_t |
---|
| 29 | +mpihelp_mod_1(mpi_ptr_t dividend_ptr, mpi_size_t dividend_size, |
---|
| 30 | + mpi_limb_t divisor_limb) |
---|
| 31 | +{ |
---|
| 32 | + mpi_size_t i; |
---|
| 33 | + mpi_limb_t n1, n0, r; |
---|
| 34 | + mpi_limb_t dummy __maybe_unused; |
---|
| 35 | + |
---|
| 36 | + /* Botch: Should this be handled at all? Rely on callers? */ |
---|
| 37 | + if (!dividend_size) |
---|
| 38 | + return 0; |
---|
| 39 | + |
---|
| 40 | + /* If multiplication is much faster than division, and the |
---|
| 41 | + * dividend is large, pre-invert the divisor, and use |
---|
| 42 | + * only multiplications in the inner loop. |
---|
| 43 | + * |
---|
| 44 | + * This test should be read: |
---|
| 45 | + * Does it ever help to use udiv_qrnnd_preinv? |
---|
| 46 | + * && Does what we save compensate for the inversion overhead? |
---|
| 47 | + */ |
---|
| 48 | + if (UDIV_TIME > (2 * UMUL_TIME + 6) |
---|
| 49 | + && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) { |
---|
| 50 | + int normalization_steps; |
---|
| 51 | + |
---|
| 52 | + normalization_steps = count_leading_zeros(divisor_limb); |
---|
| 53 | + if (normalization_steps) { |
---|
| 54 | + mpi_limb_t divisor_limb_inverted; |
---|
| 55 | + |
---|
| 56 | + divisor_limb <<= normalization_steps; |
---|
| 57 | + |
---|
| 58 | + /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The |
---|
| 59 | + * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the |
---|
| 60 | + * most significant bit (with weight 2**N) implicit. |
---|
| 61 | + * |
---|
| 62 | + * Special case for DIVISOR_LIMB == 100...000. |
---|
| 63 | + */ |
---|
| 64 | + if (!(divisor_limb << 1)) |
---|
| 65 | + divisor_limb_inverted = ~(mpi_limb_t)0; |
---|
| 66 | + else |
---|
| 67 | + udiv_qrnnd(divisor_limb_inverted, dummy, |
---|
| 68 | + -divisor_limb, 0, divisor_limb); |
---|
| 69 | + |
---|
| 70 | + n1 = dividend_ptr[dividend_size - 1]; |
---|
| 71 | + r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); |
---|
| 72 | + |
---|
| 73 | + /* Possible optimization: |
---|
| 74 | + * if (r == 0 |
---|
| 75 | + * && divisor_limb > ((n1 << normalization_steps) |
---|
| 76 | + * | (dividend_ptr[dividend_size - 2] >> ...))) |
---|
| 77 | + * ...one division less... |
---|
| 78 | + */ |
---|
| 79 | + for (i = dividend_size - 2; i >= 0; i--) { |
---|
| 80 | + n0 = dividend_ptr[i]; |
---|
| 81 | + UDIV_QRNND_PREINV(dummy, r, r, |
---|
| 82 | + ((n1 << normalization_steps) |
---|
| 83 | + | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))), |
---|
| 84 | + divisor_limb, divisor_limb_inverted); |
---|
| 85 | + n1 = n0; |
---|
| 86 | + } |
---|
| 87 | + UDIV_QRNND_PREINV(dummy, r, r, |
---|
| 88 | + n1 << normalization_steps, |
---|
| 89 | + divisor_limb, divisor_limb_inverted); |
---|
| 90 | + return r >> normalization_steps; |
---|
| 91 | + } else { |
---|
| 92 | + mpi_limb_t divisor_limb_inverted; |
---|
| 93 | + |
---|
| 94 | + /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The |
---|
| 95 | + * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the |
---|
| 96 | + * most significant bit (with weight 2**N) implicit. |
---|
| 97 | + * |
---|
| 98 | + * Special case for DIVISOR_LIMB == 100...000. |
---|
| 99 | + */ |
---|
| 100 | + if (!(divisor_limb << 1)) |
---|
| 101 | + divisor_limb_inverted = ~(mpi_limb_t)0; |
---|
| 102 | + else |
---|
| 103 | + udiv_qrnnd(divisor_limb_inverted, dummy, |
---|
| 104 | + -divisor_limb, 0, divisor_limb); |
---|
| 105 | + |
---|
| 106 | + i = dividend_size - 1; |
---|
| 107 | + r = dividend_ptr[i]; |
---|
| 108 | + |
---|
| 109 | + if (r >= divisor_limb) |
---|
| 110 | + r = 0; |
---|
| 111 | + else |
---|
| 112 | + i--; |
---|
| 113 | + |
---|
| 114 | + for ( ; i >= 0; i--) { |
---|
| 115 | + n0 = dividend_ptr[i]; |
---|
| 116 | + UDIV_QRNND_PREINV(dummy, r, r, |
---|
| 117 | + n0, divisor_limb, divisor_limb_inverted); |
---|
| 118 | + } |
---|
| 119 | + return r; |
---|
| 120 | + } |
---|
| 121 | + } else { |
---|
| 122 | + if (UDIV_NEEDS_NORMALIZATION) { |
---|
| 123 | + int normalization_steps; |
---|
| 124 | + |
---|
| 125 | + normalization_steps = count_leading_zeros(divisor_limb); |
---|
| 126 | + if (normalization_steps) { |
---|
| 127 | + divisor_limb <<= normalization_steps; |
---|
| 128 | + |
---|
| 129 | + n1 = dividend_ptr[dividend_size - 1]; |
---|
| 130 | + r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); |
---|
| 131 | + |
---|
| 132 | + /* Possible optimization: |
---|
| 133 | + * if (r == 0 |
---|
| 134 | + * && divisor_limb > ((n1 << normalization_steps) |
---|
| 135 | + * | (dividend_ptr[dividend_size - 2] >> ...))) |
---|
| 136 | + * ...one division less... |
---|
| 137 | + */ |
---|
| 138 | + for (i = dividend_size - 2; i >= 0; i--) { |
---|
| 139 | + n0 = dividend_ptr[i]; |
---|
| 140 | + udiv_qrnnd(dummy, r, r, |
---|
| 141 | + ((n1 << normalization_steps) |
---|
| 142 | + | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))), |
---|
| 143 | + divisor_limb); |
---|
| 144 | + n1 = n0; |
---|
| 145 | + } |
---|
| 146 | + udiv_qrnnd(dummy, r, r, |
---|
| 147 | + n1 << normalization_steps, |
---|
| 148 | + divisor_limb); |
---|
| 149 | + return r >> normalization_steps; |
---|
| 150 | + } |
---|
| 151 | + } |
---|
| 152 | + /* No normalization needed, either because udiv_qrnnd doesn't require |
---|
| 153 | + * it, or because DIVISOR_LIMB is already normalized. |
---|
| 154 | + */ |
---|
| 155 | + i = dividend_size - 1; |
---|
| 156 | + r = dividend_ptr[i]; |
---|
| 157 | + |
---|
| 158 | + if (r >= divisor_limb) |
---|
| 159 | + r = 0; |
---|
| 160 | + else |
---|
| 161 | + i--; |
---|
| 162 | + |
---|
| 163 | + for (; i >= 0; i--) { |
---|
| 164 | + n0 = dividend_ptr[i]; |
---|
| 165 | + udiv_qrnnd(dummy, r, r, n0, divisor_limb); |
---|
| 166 | + } |
---|
| 167 | + return r; |
---|
| 168 | + } |
---|
| 169 | +} |
---|
39 | 170 | |
---|
40 | 171 | /* Divide num (NP/NSIZE) by den (DP/DSIZE) and write |
---|
41 | 172 | * the NSIZE-DSIZE least significant quotient limbs at QP |
---|
.. | .. |
---|
234 | 365 | |
---|
235 | 366 | return most_significant_q_limb; |
---|
236 | 367 | } |
---|
| 368 | + |
---|
| 369 | +/**************** |
---|
| 370 | + * Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB. |
---|
| 371 | + * Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR. |
---|
| 372 | + * Return the single-limb remainder. |
---|
| 373 | + * There are no constraints on the value of the divisor. |
---|
| 374 | + * |
---|
| 375 | + * QUOT_PTR and DIVIDEND_PTR might point to the same limb. |
---|
| 376 | + */ |
---|
| 377 | + |
---|
| 378 | +mpi_limb_t |
---|
| 379 | +mpihelp_divmod_1(mpi_ptr_t quot_ptr, |
---|
| 380 | + mpi_ptr_t dividend_ptr, mpi_size_t dividend_size, |
---|
| 381 | + mpi_limb_t divisor_limb) |
---|
| 382 | +{ |
---|
| 383 | + mpi_size_t i; |
---|
| 384 | + mpi_limb_t n1, n0, r; |
---|
| 385 | + mpi_limb_t dummy __maybe_unused; |
---|
| 386 | + |
---|
| 387 | + if (!dividend_size) |
---|
| 388 | + return 0; |
---|
| 389 | + |
---|
| 390 | + /* If multiplication is much faster than division, and the |
---|
| 391 | + * dividend is large, pre-invert the divisor, and use |
---|
| 392 | + * only multiplications in the inner loop. |
---|
| 393 | + * |
---|
| 394 | + * This test should be read: |
---|
| 395 | + * Does it ever help to use udiv_qrnnd_preinv? |
---|
| 396 | + * && Does what we save compensate for the inversion overhead? |
---|
| 397 | + */ |
---|
| 398 | + if (UDIV_TIME > (2 * UMUL_TIME + 6) |
---|
| 399 | + && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) { |
---|
| 400 | + int normalization_steps; |
---|
| 401 | + |
---|
| 402 | + normalization_steps = count_leading_zeros(divisor_limb); |
---|
| 403 | + if (normalization_steps) { |
---|
| 404 | + mpi_limb_t divisor_limb_inverted; |
---|
| 405 | + |
---|
| 406 | + divisor_limb <<= normalization_steps; |
---|
| 407 | + |
---|
| 408 | + /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The |
---|
| 409 | + * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the |
---|
| 410 | + * most significant bit (with weight 2**N) implicit. |
---|
| 411 | + */ |
---|
| 412 | + /* Special case for DIVISOR_LIMB == 100...000. */ |
---|
| 413 | + if (!(divisor_limb << 1)) |
---|
| 414 | + divisor_limb_inverted = ~(mpi_limb_t)0; |
---|
| 415 | + else |
---|
| 416 | + udiv_qrnnd(divisor_limb_inverted, dummy, |
---|
| 417 | + -divisor_limb, 0, divisor_limb); |
---|
| 418 | + |
---|
| 419 | + n1 = dividend_ptr[dividend_size - 1]; |
---|
| 420 | + r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); |
---|
| 421 | + |
---|
| 422 | + /* Possible optimization: |
---|
| 423 | + * if (r == 0 |
---|
| 424 | + * && divisor_limb > ((n1 << normalization_steps) |
---|
| 425 | + * | (dividend_ptr[dividend_size - 2] >> ...))) |
---|
| 426 | + * ...one division less... |
---|
| 427 | + */ |
---|
| 428 | + for (i = dividend_size - 2; i >= 0; i--) { |
---|
| 429 | + n0 = dividend_ptr[i]; |
---|
| 430 | + UDIV_QRNND_PREINV(quot_ptr[i + 1], r, r, |
---|
| 431 | + ((n1 << normalization_steps) |
---|
| 432 | + | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))), |
---|
| 433 | + divisor_limb, divisor_limb_inverted); |
---|
| 434 | + n1 = n0; |
---|
| 435 | + } |
---|
| 436 | + UDIV_QRNND_PREINV(quot_ptr[0], r, r, |
---|
| 437 | + n1 << normalization_steps, |
---|
| 438 | + divisor_limb, divisor_limb_inverted); |
---|
| 439 | + return r >> normalization_steps; |
---|
| 440 | + } else { |
---|
| 441 | + mpi_limb_t divisor_limb_inverted; |
---|
| 442 | + |
---|
| 443 | + /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The |
---|
| 444 | + * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the |
---|
| 445 | + * most significant bit (with weight 2**N) implicit. |
---|
| 446 | + */ |
---|
| 447 | + /* Special case for DIVISOR_LIMB == 100...000. */ |
---|
| 448 | + if (!(divisor_limb << 1)) |
---|
| 449 | + divisor_limb_inverted = ~(mpi_limb_t) 0; |
---|
| 450 | + else |
---|
| 451 | + udiv_qrnnd(divisor_limb_inverted, dummy, |
---|
| 452 | + -divisor_limb, 0, divisor_limb); |
---|
| 453 | + |
---|
| 454 | + i = dividend_size - 1; |
---|
| 455 | + r = dividend_ptr[i]; |
---|
| 456 | + |
---|
| 457 | + if (r >= divisor_limb) |
---|
| 458 | + r = 0; |
---|
| 459 | + else |
---|
| 460 | + quot_ptr[i--] = 0; |
---|
| 461 | + |
---|
| 462 | + for ( ; i >= 0; i--) { |
---|
| 463 | + n0 = dividend_ptr[i]; |
---|
| 464 | + UDIV_QRNND_PREINV(quot_ptr[i], r, r, |
---|
| 465 | + n0, divisor_limb, divisor_limb_inverted); |
---|
| 466 | + } |
---|
| 467 | + return r; |
---|
| 468 | + } |
---|
| 469 | + } else { |
---|
| 470 | + if (UDIV_NEEDS_NORMALIZATION) { |
---|
| 471 | + int normalization_steps; |
---|
| 472 | + |
---|
| 473 | + normalization_steps = count_leading_zeros(divisor_limb); |
---|
| 474 | + if (normalization_steps) { |
---|
| 475 | + divisor_limb <<= normalization_steps; |
---|
| 476 | + |
---|
| 477 | + n1 = dividend_ptr[dividend_size - 1]; |
---|
| 478 | + r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); |
---|
| 479 | + |
---|
| 480 | + /* Possible optimization: |
---|
| 481 | + * if (r == 0 |
---|
| 482 | + * && divisor_limb > ((n1 << normalization_steps) |
---|
| 483 | + * | (dividend_ptr[dividend_size - 2] >> ...))) |
---|
| 484 | + * ...one division less... |
---|
| 485 | + */ |
---|
| 486 | + for (i = dividend_size - 2; i >= 0; i--) { |
---|
| 487 | + n0 = dividend_ptr[i]; |
---|
| 488 | + udiv_qrnnd(quot_ptr[i + 1], r, r, |
---|
| 489 | + ((n1 << normalization_steps) |
---|
| 490 | + | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))), |
---|
| 491 | + divisor_limb); |
---|
| 492 | + n1 = n0; |
---|
| 493 | + } |
---|
| 494 | + udiv_qrnnd(quot_ptr[0], r, r, |
---|
| 495 | + n1 << normalization_steps, |
---|
| 496 | + divisor_limb); |
---|
| 497 | + return r >> normalization_steps; |
---|
| 498 | + } |
---|
| 499 | + } |
---|
| 500 | + /* No normalization needed, either because udiv_qrnnd doesn't require |
---|
| 501 | + * it, or because DIVISOR_LIMB is already normalized. |
---|
| 502 | + */ |
---|
| 503 | + i = dividend_size - 1; |
---|
| 504 | + r = dividend_ptr[i]; |
---|
| 505 | + |
---|
| 506 | + if (r >= divisor_limb) |
---|
| 507 | + r = 0; |
---|
| 508 | + else |
---|
| 509 | + quot_ptr[i--] = 0; |
---|
| 510 | + |
---|
| 511 | + for (; i >= 0; i--) { |
---|
| 512 | + n0 = dividend_ptr[i]; |
---|
| 513 | + udiv_qrnnd(quot_ptr[i], r, r, n0, divisor_limb); |
---|
| 514 | + } |
---|
| 515 | + return r; |
---|
| 516 | + } |
---|
| 517 | +} |
---|