// Copyright 2014 the V8 project authors. All rights reserved.
|
// Use of this source code is governed by a BSD-style license that can be
|
// found in the LICENSE file.
|
|
#if V8_TARGET_ARCH_PPC
|
|
#include "src/regexp/ppc/regexp-macro-assembler-ppc.h"
|
|
#include "src/assembler-inl.h"
|
#include "src/base/bits.h"
|
#include "src/code-stubs.h"
|
#include "src/log.h"
|
#include "src/macro-assembler.h"
|
#include "src/regexp/regexp-macro-assembler.h"
|
#include "src/regexp/regexp-stack.h"
|
#include "src/unicode.h"
|
|
namespace v8 {
|
namespace internal {
|
|
#ifndef V8_INTERPRETED_REGEXP
|
/*
|
* This assembler uses the following register assignment convention
|
* - r25: Temporarily stores the index of capture start after a matching pass
|
* for a global regexp.
|
* - r26: Pointer to current code object (Code*) including heap object tag.
|
* - r27: Current position in input, as negative offset from end of string.
|
* Please notice that this is the byte offset, not the character offset!
|
* - r28: Currently loaded character. Must be loaded using
|
* LoadCurrentCharacter before using any of the dispatch methods.
|
* - r29: Points to tip of backtrack stack
|
* - r30: End of input (points to byte after last character in input).
|
* - r31: Frame pointer. Used to access arguments, local variables and
|
* RegExp registers.
|
* - r12: IP register, used by assembler. Very volatile.
|
* - r1/sp : Points to tip of C stack.
|
*
|
* The remaining registers are free for computations.
|
* Each call to a public method should retain this convention.
|
*
|
* The stack will have the following structure:
|
* - fp[40] Isolate* isolate (address of the current isolate)
|
* - fp[36] lr save area (currently unused)
|
* - fp[32] backchain (currently unused)
|
* --- sp when called ---
|
* - fp[28] return address (lr).
|
* - fp[24] old frame pointer (r31).
|
* - fp[0..20] backup of registers r25..r30
|
* --- frame pointer ----
|
* - fp[-4] direct_call (if 1, direct call from JavaScript code,
|
* if 0, call through the runtime system).
|
* - fp[-8] stack_area_base (high end of the memory area to use as
|
* backtracking stack).
|
* - fp[-12] capture array size (may fit multiple sets of matches)
|
* - fp[-16] int* capture_array (int[num_saved_registers_], for output).
|
* - fp[-20] end of input (address of end of string).
|
* - fp[-24] start of input (address of first character in string).
|
* - fp[-28] start index (character index of start).
|
* - fp[-32] void* input_string (location of a handle containing the string).
|
* - fp[-36] success counter (only for global regexps to count matches).
|
* - fp[-40] Offset of location before start of input (effectively character
|
* string start - 1). Used to initialize capture registers to a
|
* non-position.
|
* - fp[-44] At start (if 1, we are starting at the start of the
|
* string, otherwise 0)
|
* - fp[-48] register 0 (Only positions must be stored in the first
|
* - register 1 num_saved_registers_ registers)
|
* - ...
|
* - register num_registers-1
|
* --- sp ---
|
*
|
* The first num_saved_registers_ registers are initialized to point to
|
* "character -1" in the string (i.e., char_size() bytes before the first
|
* character of the string). The remaining registers start out as garbage.
|
*
|
* The data up to the return address must be placed there by the calling
|
* code and the remaining arguments are passed in registers, e.g. by calling the
|
* code entry as cast to a function with the signature:
|
* int (*match)(String* input_string,
|
* int start_index,
|
* Address start,
|
* Address end,
|
* int* capture_output_array,
|
* int num_capture_registers,
|
* byte* stack_area_base,
|
* bool direct_call = false,
|
* Isolate* isolate);
|
* The call is performed by NativeRegExpMacroAssembler::Execute()
|
* (in regexp-macro-assembler.cc) via the GeneratedCode wrapper.
|
*/
|
|
#define __ ACCESS_MASM(masm_)
|
|
RegExpMacroAssemblerPPC::RegExpMacroAssemblerPPC(Isolate* isolate, Zone* zone,
|
Mode mode,
|
int registers_to_save)
|
: NativeRegExpMacroAssembler(isolate, zone),
|
masm_(new MacroAssembler(isolate, nullptr, kRegExpCodeSize,
|
CodeObjectRequired::kYes)),
|
mode_(mode),
|
num_registers_(registers_to_save),
|
num_saved_registers_(registers_to_save),
|
entry_label_(),
|
start_label_(),
|
success_label_(),
|
backtrack_label_(),
|
exit_label_(),
|
internal_failure_label_() {
|
DCHECK_EQ(0, registers_to_save % 2);
|
|
// Called from C
|
__ function_descriptor();
|
|
__ b(&entry_label_); // We'll write the entry code later.
|
// If the code gets too big or corrupted, an internal exception will be
|
// raised, and we will exit right away.
|
__ bind(&internal_failure_label_);
|
__ li(r3, Operand(FAILURE));
|
__ Ret();
|
__ bind(&start_label_); // And then continue from here.
|
}
|
|
|
RegExpMacroAssemblerPPC::~RegExpMacroAssemblerPPC() {
|
delete masm_;
|
// Unuse labels in case we throw away the assembler without calling GetCode.
|
entry_label_.Unuse();
|
start_label_.Unuse();
|
success_label_.Unuse();
|
backtrack_label_.Unuse();
|
exit_label_.Unuse();
|
check_preempt_label_.Unuse();
|
stack_overflow_label_.Unuse();
|
internal_failure_label_.Unuse();
|
}
|
|
|
int RegExpMacroAssemblerPPC::stack_limit_slack() {
|
return RegExpStack::kStackLimitSlack;
|
}
|
|
|
void RegExpMacroAssemblerPPC::AdvanceCurrentPosition(int by) {
|
if (by != 0) {
|
__ addi(current_input_offset(), current_input_offset(),
|
Operand(by * char_size()));
|
}
|
}
|
|
|
void RegExpMacroAssemblerPPC::AdvanceRegister(int reg, int by) {
|
DCHECK_LE(0, reg);
|
DCHECK_GT(num_registers_, reg);
|
if (by != 0) {
|
__ LoadP(r3, register_location(reg), r0);
|
__ mov(r0, Operand(by));
|
__ add(r3, r3, r0);
|
__ StoreP(r3, register_location(reg), r0);
|
}
|
}
|
|
|
void RegExpMacroAssemblerPPC::Backtrack() {
|
CheckPreemption();
|
// Pop Code* offset from backtrack stack, add Code* and jump to location.
|
Pop(r3);
|
__ add(r3, r3, code_pointer());
|
__ Jump(r3);
|
}
|
|
|
void RegExpMacroAssemblerPPC::Bind(Label* label) { __ bind(label); }
|
|
|
void RegExpMacroAssemblerPPC::CheckCharacter(uint32_t c, Label* on_equal) {
|
__ Cmpli(current_character(), Operand(c), r0);
|
BranchOrBacktrack(eq, on_equal);
|
}
|
|
|
void RegExpMacroAssemblerPPC::CheckCharacterGT(uc16 limit, Label* on_greater) {
|
__ Cmpli(current_character(), Operand(limit), r0);
|
BranchOrBacktrack(gt, on_greater);
|
}
|
|
|
void RegExpMacroAssemblerPPC::CheckAtStart(Label* on_at_start) {
|
__ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
|
__ addi(r3, current_input_offset(), Operand(-char_size()));
|
__ cmp(r3, r4);
|
BranchOrBacktrack(eq, on_at_start);
|
}
|
|
|
void RegExpMacroAssemblerPPC::CheckNotAtStart(int cp_offset,
|
Label* on_not_at_start) {
|
__ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
|
__ addi(r3, current_input_offset(),
|
Operand(-char_size() + cp_offset * char_size()));
|
__ cmp(r3, r4);
|
BranchOrBacktrack(ne, on_not_at_start);
|
}
|
|
|
void RegExpMacroAssemblerPPC::CheckCharacterLT(uc16 limit, Label* on_less) {
|
__ Cmpli(current_character(), Operand(limit), r0);
|
BranchOrBacktrack(lt, on_less);
|
}
|
|
|
void RegExpMacroAssemblerPPC::CheckGreedyLoop(Label* on_equal) {
|
Label backtrack_non_equal;
|
__ LoadP(r3, MemOperand(backtrack_stackpointer(), 0));
|
__ cmp(current_input_offset(), r3);
|
__ bne(&backtrack_non_equal);
|
__ addi(backtrack_stackpointer(), backtrack_stackpointer(),
|
Operand(kPointerSize));
|
|
__ bind(&backtrack_non_equal);
|
BranchOrBacktrack(eq, on_equal);
|
}
|
|
void RegExpMacroAssemblerPPC::CheckNotBackReferenceIgnoreCase(
|
int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
|
Label fallthrough;
|
__ LoadP(r3, register_location(start_reg), r0); // Index of start of capture
|
__ LoadP(r4, register_location(start_reg + 1), r0); // Index of end
|
__ sub(r4, r4, r3, LeaveOE, SetRC); // Length of capture.
|
|
// At this point, the capture registers are either both set or both cleared.
|
// If the capture length is zero, then the capture is either empty or cleared.
|
// Fall through in both cases.
|
__ beq(&fallthrough, cr0);
|
|
// Check that there are enough characters left in the input.
|
if (read_backward) {
|
__ LoadP(r6, MemOperand(frame_pointer(), kStringStartMinusOne));
|
__ add(r6, r6, r4);
|
__ cmp(current_input_offset(), r6);
|
BranchOrBacktrack(le, on_no_match);
|
} else {
|
__ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
|
BranchOrBacktrack(gt, on_no_match, cr0);
|
}
|
|
if (mode_ == LATIN1) {
|
Label success;
|
Label fail;
|
Label loop_check;
|
|
// r3 - offset of start of capture
|
// r4 - length of capture
|
__ add(r3, r3, end_of_input_address());
|
__ add(r5, end_of_input_address(), current_input_offset());
|
if (read_backward) {
|
__ sub(r5, r5, r4); // Offset by length when matching backwards.
|
}
|
__ add(r4, r3, r4);
|
|
// r3 - Address of start of capture.
|
// r4 - Address of end of capture
|
// r5 - Address of current input position.
|
|
Label loop;
|
__ bind(&loop);
|
__ lbz(r6, MemOperand(r3));
|
__ addi(r3, r3, Operand(char_size()));
|
__ lbz(r25, MemOperand(r5));
|
__ addi(r5, r5, Operand(char_size()));
|
__ cmp(r25, r6);
|
__ beq(&loop_check);
|
|
// Mismatch, try case-insensitive match (converting letters to lower-case).
|
__ ori(r6, r6, Operand(0x20)); // Convert capture character to lower-case.
|
__ ori(r25, r25, Operand(0x20)); // Also convert input character.
|
__ cmp(r25, r6);
|
__ bne(&fail);
|
__ subi(r6, r6, Operand('a'));
|
__ cmpli(r6, Operand('z' - 'a')); // Is r6 a lowercase letter?
|
__ ble(&loop_check); // In range 'a'-'z'.
|
// Latin-1: Check for values in range [224,254] but not 247.
|
__ subi(r6, r6, Operand(224 - 'a'));
|
__ cmpli(r6, Operand(254 - 224));
|
__ bgt(&fail); // Weren't Latin-1 letters.
|
__ cmpi(r6, Operand(247 - 224)); // Check for 247.
|
__ beq(&fail);
|
|
__ bind(&loop_check);
|
__ cmp(r3, r4);
|
__ blt(&loop);
|
__ b(&success);
|
|
__ bind(&fail);
|
BranchOrBacktrack(al, on_no_match);
|
|
__ bind(&success);
|
// Compute new value of character position after the matched part.
|
__ sub(current_input_offset(), r5, end_of_input_address());
|
if (read_backward) {
|
__ LoadP(r3, register_location(start_reg)); // Index of start of capture
|
__ LoadP(r4,
|
register_location(start_reg + 1)); // Index of end of capture
|
__ add(current_input_offset(), current_input_offset(), r3);
|
__ sub(current_input_offset(), current_input_offset(), r4);
|
}
|
} else {
|
DCHECK(mode_ == UC16);
|
int argument_count = 4;
|
__ PrepareCallCFunction(argument_count, r5);
|
|
// r3 - offset of start of capture
|
// r4 - length of capture
|
|
// Put arguments into arguments registers.
|
// Parameters are
|
// r3: Address byte_offset1 - Address captured substring's start.
|
// r4: Address byte_offset2 - Address of current character position.
|
// r5: size_t byte_length - length of capture in bytes(!)
|
// r6: Isolate* isolate or 0 if unicode flag.
|
|
// Address of start of capture.
|
__ add(r3, r3, end_of_input_address());
|
// Length of capture.
|
__ mr(r5, r4);
|
// Save length in callee-save register for use on return.
|
__ mr(r25, r4);
|
// Address of current input position.
|
__ add(r4, current_input_offset(), end_of_input_address());
|
if (read_backward) {
|
__ sub(r4, r4, r25);
|
}
|
// Isolate.
|
#ifdef V8_INTL_SUPPORT
|
if (unicode) {
|
__ li(r6, Operand::Zero());
|
} else // NOLINT
|
#endif // V8_INTL_SUPPORT
|
{
|
__ mov(r6, Operand(ExternalReference::isolate_address(isolate())));
|
}
|
|
{
|
AllowExternalCallThatCantCauseGC scope(masm_);
|
ExternalReference function =
|
ExternalReference::re_case_insensitive_compare_uc16(isolate());
|
__ CallCFunction(function, argument_count);
|
}
|
|
// Check if function returned non-zero for success or zero for failure.
|
__ cmpi(r3, Operand::Zero());
|
BranchOrBacktrack(eq, on_no_match);
|
|
// On success, advance position by length of capture.
|
if (read_backward) {
|
__ sub(current_input_offset(), current_input_offset(), r25);
|
} else {
|
__ add(current_input_offset(), current_input_offset(), r25);
|
}
|
}
|
|
__ bind(&fallthrough);
|
}
|
|
|
void RegExpMacroAssemblerPPC::CheckNotBackReference(int start_reg,
|
bool read_backward,
|
Label* on_no_match) {
|
Label fallthrough;
|
Label success;
|
|
// Find length of back-referenced capture.
|
__ LoadP(r3, register_location(start_reg), r0);
|
__ LoadP(r4, register_location(start_reg + 1), r0);
|
__ sub(r4, r4, r3, LeaveOE, SetRC); // Length to check.
|
|
// At this point, the capture registers are either both set or both cleared.
|
// If the capture length is zero, then the capture is either empty or cleared.
|
// Fall through in both cases.
|
__ beq(&fallthrough, cr0);
|
|
// Check that there are enough characters left in the input.
|
if (read_backward) {
|
__ LoadP(r6, MemOperand(frame_pointer(), kStringStartMinusOne));
|
__ add(r6, r6, r4);
|
__ cmp(current_input_offset(), r6);
|
BranchOrBacktrack(le, on_no_match);
|
} else {
|
__ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
|
BranchOrBacktrack(gt, on_no_match, cr0);
|
}
|
|
// r3 - offset of start of capture
|
// r4 - length of capture
|
__ add(r3, r3, end_of_input_address());
|
__ add(r5, end_of_input_address(), current_input_offset());
|
if (read_backward) {
|
__ sub(r5, r5, r4); // Offset by length when matching backwards.
|
}
|
__ add(r4, r4, r3);
|
|
Label loop;
|
__ bind(&loop);
|
if (mode_ == LATIN1) {
|
__ lbz(r6, MemOperand(r3));
|
__ addi(r3, r3, Operand(char_size()));
|
__ lbz(r25, MemOperand(r5));
|
__ addi(r5, r5, Operand(char_size()));
|
} else {
|
DCHECK(mode_ == UC16);
|
__ lhz(r6, MemOperand(r3));
|
__ addi(r3, r3, Operand(char_size()));
|
__ lhz(r25, MemOperand(r5));
|
__ addi(r5, r5, Operand(char_size()));
|
}
|
__ cmp(r6, r25);
|
BranchOrBacktrack(ne, on_no_match);
|
__ cmp(r3, r4);
|
__ blt(&loop);
|
|
// Move current character position to position after match.
|
__ sub(current_input_offset(), r5, end_of_input_address());
|
if (read_backward) {
|
__ LoadP(r3, register_location(start_reg)); // Index of start of capture
|
__ LoadP(r4, register_location(start_reg + 1)); // Index of end of capture
|
__ add(current_input_offset(), current_input_offset(), r3);
|
__ sub(current_input_offset(), current_input_offset(), r4);
|
}
|
|
__ bind(&fallthrough);
|
}
|
|
|
void RegExpMacroAssemblerPPC::CheckNotCharacter(unsigned c,
|
Label* on_not_equal) {
|
__ Cmpli(current_character(), Operand(c), r0);
|
BranchOrBacktrack(ne, on_not_equal);
|
}
|
|
|
void RegExpMacroAssemblerPPC::CheckCharacterAfterAnd(uint32_t c, uint32_t mask,
|
Label* on_equal) {
|
__ mov(r0, Operand(mask));
|
if (c == 0) {
|
__ and_(r3, current_character(), r0, SetRC);
|
} else {
|
__ and_(r3, current_character(), r0);
|
__ Cmpli(r3, Operand(c), r0, cr0);
|
}
|
BranchOrBacktrack(eq, on_equal, cr0);
|
}
|
|
|
void RegExpMacroAssemblerPPC::CheckNotCharacterAfterAnd(unsigned c,
|
unsigned mask,
|
Label* on_not_equal) {
|
__ mov(r0, Operand(mask));
|
if (c == 0) {
|
__ and_(r3, current_character(), r0, SetRC);
|
} else {
|
__ and_(r3, current_character(), r0);
|
__ Cmpli(r3, Operand(c), r0, cr0);
|
}
|
BranchOrBacktrack(ne, on_not_equal, cr0);
|
}
|
|
|
void RegExpMacroAssemblerPPC::CheckNotCharacterAfterMinusAnd(
|
uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) {
|
DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
|
__ subi(r3, current_character(), Operand(minus));
|
__ mov(r0, Operand(mask));
|
__ and_(r3, r3, r0);
|
__ Cmpli(r3, Operand(c), r0);
|
BranchOrBacktrack(ne, on_not_equal);
|
}
|
|
|
void RegExpMacroAssemblerPPC::CheckCharacterInRange(uc16 from, uc16 to,
|
Label* on_in_range) {
|
__ mov(r0, Operand(from));
|
__ sub(r3, current_character(), r0);
|
__ Cmpli(r3, Operand(to - from), r0);
|
BranchOrBacktrack(le, on_in_range); // Unsigned lower-or-same condition.
|
}
|
|
|
void RegExpMacroAssemblerPPC::CheckCharacterNotInRange(uc16 from, uc16 to,
|
Label* on_not_in_range) {
|
__ mov(r0, Operand(from));
|
__ sub(r3, current_character(), r0);
|
__ Cmpli(r3, Operand(to - from), r0);
|
BranchOrBacktrack(gt, on_not_in_range); // Unsigned higher condition.
|
}
|
|
|
void RegExpMacroAssemblerPPC::CheckBitInTable(Handle<ByteArray> table,
|
Label* on_bit_set) {
|
__ mov(r3, Operand(table));
|
if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
|
__ andi(r4, current_character(), Operand(kTableSize - 1));
|
__ addi(r4, r4, Operand(ByteArray::kHeaderSize - kHeapObjectTag));
|
} else {
|
__ addi(r4, current_character(),
|
Operand(ByteArray::kHeaderSize - kHeapObjectTag));
|
}
|
__ lbzx(r3, MemOperand(r3, r4));
|
__ cmpi(r3, Operand::Zero());
|
BranchOrBacktrack(ne, on_bit_set);
|
}
|
|
|
bool RegExpMacroAssemblerPPC::CheckSpecialCharacterClass(uc16 type,
|
Label* on_no_match) {
|
// Range checks (c in min..max) are generally implemented by an unsigned
|
// (c - min) <= (max - min) check
|
switch (type) {
|
case 's':
|
// Match space-characters
|
if (mode_ == LATIN1) {
|
// One byte space characters are '\t'..'\r', ' ' and \u00a0.
|
Label success;
|
__ cmpi(current_character(), Operand(' '));
|
__ beq(&success);
|
// Check range 0x09..0x0D
|
__ subi(r3, current_character(), Operand('\t'));
|
__ cmpli(r3, Operand('\r' - '\t'));
|
__ ble(&success);
|
// \u00a0 (NBSP).
|
__ cmpi(r3, Operand(0x00A0 - '\t'));
|
BranchOrBacktrack(ne, on_no_match);
|
__ bind(&success);
|
return true;
|
}
|
return false;
|
case 'S':
|
// The emitted code for generic character classes is good enough.
|
return false;
|
case 'd':
|
// Match ASCII digits ('0'..'9')
|
__ subi(r3, current_character(), Operand('0'));
|
__ cmpli(r3, Operand('9' - '0'));
|
BranchOrBacktrack(gt, on_no_match);
|
return true;
|
case 'D':
|
// Match non ASCII-digits
|
__ subi(r3, current_character(), Operand('0'));
|
__ cmpli(r3, Operand('9' - '0'));
|
BranchOrBacktrack(le, on_no_match);
|
return true;
|
case '.': {
|
// Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029)
|
__ xori(r3, current_character(), Operand(0x01));
|
// See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C
|
__ subi(r3, r3, Operand(0x0B));
|
__ cmpli(r3, Operand(0x0C - 0x0B));
|
BranchOrBacktrack(le, on_no_match);
|
if (mode_ == UC16) {
|
// Compare original value to 0x2028 and 0x2029, using the already
|
// computed (current_char ^ 0x01 - 0x0B). I.e., check for
|
// 0x201D (0x2028 - 0x0B) or 0x201E.
|
__ subi(r3, r3, Operand(0x2028 - 0x0B));
|
__ cmpli(r3, Operand(1));
|
BranchOrBacktrack(le, on_no_match);
|
}
|
return true;
|
}
|
case 'n': {
|
// Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029)
|
__ xori(r3, current_character(), Operand(0x01));
|
// See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C
|
__ subi(r3, r3, Operand(0x0B));
|
__ cmpli(r3, Operand(0x0C - 0x0B));
|
if (mode_ == LATIN1) {
|
BranchOrBacktrack(gt, on_no_match);
|
} else {
|
Label done;
|
__ ble(&done);
|
// Compare original value to 0x2028 and 0x2029, using the already
|
// computed (current_char ^ 0x01 - 0x0B). I.e., check for
|
// 0x201D (0x2028 - 0x0B) or 0x201E.
|
__ subi(r3, r3, Operand(0x2028 - 0x0B));
|
__ cmpli(r3, Operand(1));
|
BranchOrBacktrack(gt, on_no_match);
|
__ bind(&done);
|
}
|
return true;
|
}
|
case 'w': {
|
if (mode_ != LATIN1) {
|
// Table is 256 entries, so all Latin1 characters can be tested.
|
__ cmpi(current_character(), Operand('z'));
|
BranchOrBacktrack(gt, on_no_match);
|
}
|
ExternalReference map =
|
ExternalReference::re_word_character_map(isolate());
|
__ mov(r3, Operand(map));
|
__ lbzx(r3, MemOperand(r3, current_character()));
|
__ cmpli(r3, Operand::Zero());
|
BranchOrBacktrack(eq, on_no_match);
|
return true;
|
}
|
case 'W': {
|
Label done;
|
if (mode_ != LATIN1) {
|
// Table is 256 entries, so all Latin1 characters can be tested.
|
__ cmpli(current_character(), Operand('z'));
|
__ bgt(&done);
|
}
|
ExternalReference map =
|
ExternalReference::re_word_character_map(isolate());
|
__ mov(r3, Operand(map));
|
__ lbzx(r3, MemOperand(r3, current_character()));
|
__ cmpli(r3, Operand::Zero());
|
BranchOrBacktrack(ne, on_no_match);
|
if (mode_ != LATIN1) {
|
__ bind(&done);
|
}
|
return true;
|
}
|
case '*':
|
// Match any character.
|
return true;
|
// No custom implementation (yet): s(UC16), S(UC16).
|
default:
|
return false;
|
}
|
}
|
|
|
void RegExpMacroAssemblerPPC::Fail() {
|
__ li(r3, Operand(FAILURE));
|
__ b(&exit_label_);
|
}
|
|
|
Handle<HeapObject> RegExpMacroAssemblerPPC::GetCode(Handle<String> source) {
|
Label return_r3;
|
|
if (masm_->has_exception()) {
|
// If the code gets corrupted due to long regular expressions and lack of
|
// space on trampolines, an internal exception flag is set. If this case
|
// is detected, we will jump into exit sequence right away.
|
__ bind_to(&entry_label_, internal_failure_label_.pos());
|
} else {
|
// Finalize code - write the entry point code now we know how many
|
// registers we need.
|
|
// Entry code:
|
__ bind(&entry_label_);
|
|
// Tell the system that we have a stack frame. Because the type
|
// is MANUAL, no is generated.
|
FrameScope scope(masm_, StackFrame::MANUAL);
|
|
// Ensure register assigments are consistent with callee save mask
|
DCHECK(r25.bit() & kRegExpCalleeSaved);
|
DCHECK(code_pointer().bit() & kRegExpCalleeSaved);
|
DCHECK(current_input_offset().bit() & kRegExpCalleeSaved);
|
DCHECK(current_character().bit() & kRegExpCalleeSaved);
|
DCHECK(backtrack_stackpointer().bit() & kRegExpCalleeSaved);
|
DCHECK(end_of_input_address().bit() & kRegExpCalleeSaved);
|
DCHECK(frame_pointer().bit() & kRegExpCalleeSaved);
|
|
// Actually emit code to start a new stack frame.
|
// Push arguments
|
// Save callee-save registers.
|
// Start new stack frame.
|
// Store link register in existing stack-cell.
|
// Order here should correspond to order of offset constants in header file.
|
RegList registers_to_retain = kRegExpCalleeSaved;
|
RegList argument_registers = r3.bit() | r4.bit() | r5.bit() | r6.bit() |
|
r7.bit() | r8.bit() | r9.bit() | r10.bit();
|
__ mflr(r0);
|
__ push(r0);
|
__ MultiPush(argument_registers | registers_to_retain);
|
// Set frame pointer in space for it if this is not a direct call
|
// from generated code.
|
__ addi(frame_pointer(), sp, Operand(8 * kPointerSize));
|
__ li(r3, Operand::Zero());
|
__ push(r3); // Make room for success counter and initialize it to 0.
|
__ push(r3); // Make room for "string start - 1" constant.
|
// Check if we have space on the stack for registers.
|
Label stack_limit_hit;
|
Label stack_ok;
|
|
ExternalReference stack_limit =
|
ExternalReference::address_of_stack_limit(isolate());
|
__ mov(r3, Operand(stack_limit));
|
__ LoadP(r3, MemOperand(r3));
|
__ sub(r3, sp, r3, LeaveOE, SetRC);
|
// Handle it if the stack pointer is already below the stack limit.
|
__ ble(&stack_limit_hit, cr0);
|
// Check if there is room for the variable number of registers above
|
// the stack limit.
|
__ Cmpli(r3, Operand(num_registers_ * kPointerSize), r0);
|
__ bge(&stack_ok);
|
// Exit with OutOfMemory exception. There is not enough space on the stack
|
// for our working registers.
|
__ li(r3, Operand(EXCEPTION));
|
__ b(&return_r3);
|
|
__ bind(&stack_limit_hit);
|
CallCheckStackGuardState(r3);
|
__ cmpi(r3, Operand::Zero());
|
// If returned value is non-zero, we exit with the returned value as result.
|
__ bne(&return_r3);
|
|
__ bind(&stack_ok);
|
|
// Allocate space on stack for registers.
|
__ Add(sp, sp, -num_registers_ * kPointerSize, r0);
|
// Load string end.
|
__ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
|
// Load input start.
|
__ LoadP(r3, MemOperand(frame_pointer(), kInputStart));
|
// Find negative length (offset of start relative to end).
|
__ sub(current_input_offset(), r3, end_of_input_address());
|
// Set r3 to address of char before start of the input string
|
// (effectively string position -1).
|
__ LoadP(r4, MemOperand(frame_pointer(), kStartIndex));
|
__ subi(r3, current_input_offset(), Operand(char_size()));
|
if (mode_ == UC16) {
|
__ ShiftLeftImm(r0, r4, Operand(1));
|
__ sub(r3, r3, r0);
|
} else {
|
__ sub(r3, r3, r4);
|
}
|
// Store this value in a local variable, for use when clearing
|
// position registers.
|
__ StoreP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
|
|
// Initialize code pointer register
|
__ mov(code_pointer(), Operand(masm_->CodeObject()));
|
|
Label load_char_start_regexp, start_regexp;
|
// Load newline if index is at start, previous character otherwise.
|
__ cmpi(r4, Operand::Zero());
|
__ bne(&load_char_start_regexp);
|
__ li(current_character(), Operand('\n'));
|
__ b(&start_regexp);
|
|
// Global regexp restarts matching here.
|
__ bind(&load_char_start_regexp);
|
// Load previous char as initial value of current character register.
|
LoadCurrentCharacterUnchecked(-1, 1);
|
__ bind(&start_regexp);
|
|
// Initialize on-stack registers.
|
if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
|
// Fill saved registers with initial value = start offset - 1
|
if (num_saved_registers_ > 8) {
|
// One slot beyond address of register 0.
|
__ addi(r4, frame_pointer(), Operand(kRegisterZero + kPointerSize));
|
__ li(r5, Operand(num_saved_registers_));
|
__ mtctr(r5);
|
Label init_loop;
|
__ bind(&init_loop);
|
__ StorePU(r3, MemOperand(r4, -kPointerSize));
|
__ bdnz(&init_loop);
|
} else {
|
for (int i = 0; i < num_saved_registers_; i++) {
|
__ StoreP(r3, register_location(i), r0);
|
}
|
}
|
}
|
|
// Initialize backtrack stack pointer.
|
__ LoadP(backtrack_stackpointer(),
|
MemOperand(frame_pointer(), kStackHighEnd));
|
|
__ b(&start_label_);
|
|
// Exit code:
|
if (success_label_.is_linked()) {
|
// Save captures when successful.
|
__ bind(&success_label_);
|
if (num_saved_registers_ > 0) {
|
// copy captures to output
|
__ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
|
__ LoadP(r3, MemOperand(frame_pointer(), kRegisterOutput));
|
__ LoadP(r5, MemOperand(frame_pointer(), kStartIndex));
|
__ sub(r4, end_of_input_address(), r4);
|
// r4 is length of input in bytes.
|
if (mode_ == UC16) {
|
__ ShiftRightImm(r4, r4, Operand(1));
|
}
|
// r4 is length of input in characters.
|
__ add(r4, r4, r5);
|
// r4 is length of string in characters.
|
|
DCHECK_EQ(0, num_saved_registers_ % 2);
|
// Always an even number of capture registers. This allows us to
|
// unroll the loop once to add an operation between a load of a register
|
// and the following use of that register.
|
for (int i = 0; i < num_saved_registers_; i += 2) {
|
__ LoadP(r5, register_location(i), r0);
|
__ LoadP(r6, register_location(i + 1), r0);
|
if (i == 0 && global_with_zero_length_check()) {
|
// Keep capture start in r25 for the zero-length check later.
|
__ mr(r25, r5);
|
}
|
if (mode_ == UC16) {
|
__ ShiftRightArithImm(r5, r5, 1);
|
__ add(r5, r4, r5);
|
__ ShiftRightArithImm(r6, r6, 1);
|
__ add(r6, r4, r6);
|
} else {
|
__ add(r5, r4, r5);
|
__ add(r6, r4, r6);
|
}
|
__ stw(r5, MemOperand(r3));
|
__ addi(r3, r3, Operand(kIntSize));
|
__ stw(r6, MemOperand(r3));
|
__ addi(r3, r3, Operand(kIntSize));
|
}
|
}
|
|
if (global()) {
|
// Restart matching if the regular expression is flagged as global.
|
__ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
|
__ LoadP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
|
__ LoadP(r5, MemOperand(frame_pointer(), kRegisterOutput));
|
// Increment success counter.
|
__ addi(r3, r3, Operand(1));
|
__ StoreP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
|
// Capture results have been stored, so the number of remaining global
|
// output registers is reduced by the number of stored captures.
|
__ subi(r4, r4, Operand(num_saved_registers_));
|
// Check whether we have enough room for another set of capture results.
|
__ cmpi(r4, Operand(num_saved_registers_));
|
__ blt(&return_r3);
|
|
__ StoreP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
|
// Advance the location for output.
|
__ addi(r5, r5, Operand(num_saved_registers_ * kIntSize));
|
__ StoreP(r5, MemOperand(frame_pointer(), kRegisterOutput));
|
|
// Prepare r3 to initialize registers with its value in the next run.
|
__ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
|
|
if (global_with_zero_length_check()) {
|
// Special case for zero-length matches.
|
// r25: capture start index
|
__ cmp(current_input_offset(), r25);
|
// Not a zero-length match, restart.
|
__ bne(&load_char_start_regexp);
|
// Offset from the end is zero if we already reached the end.
|
__ cmpi(current_input_offset(), Operand::Zero());
|
__ beq(&exit_label_);
|
// Advance current position after a zero-length match.
|
Label advance;
|
__ bind(&advance);
|
__ addi(current_input_offset(), current_input_offset(),
|
Operand((mode_ == UC16) ? 2 : 1));
|
if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
|
}
|
|
__ b(&load_char_start_regexp);
|
} else {
|
__ li(r3, Operand(SUCCESS));
|
}
|
}
|
|
// Exit and return r3
|
__ bind(&exit_label_);
|
if (global()) {
|
__ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
|
}
|
|
__ bind(&return_r3);
|
// Skip sp past regexp registers and local variables..
|
__ mr(sp, frame_pointer());
|
// Restore registers r25..r31 and return (restoring lr to pc).
|
__ MultiPop(registers_to_retain);
|
__ pop(r0);
|
__ mtlr(r0);
|
__ blr();
|
|
// Backtrack code (branch target for conditional backtracks).
|
if (backtrack_label_.is_linked()) {
|
__ bind(&backtrack_label_);
|
Backtrack();
|
}
|
|
Label exit_with_exception;
|
|
// Preempt-code
|
if (check_preempt_label_.is_linked()) {
|
SafeCallTarget(&check_preempt_label_);
|
|
CallCheckStackGuardState(r3);
|
__ cmpi(r3, Operand::Zero());
|
// If returning non-zero, we should end execution with the given
|
// result as return value.
|
__ bne(&return_r3);
|
|
// String might have moved: Reload end of string from frame.
|
__ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
|
SafeReturn();
|
}
|
|
// Backtrack stack overflow code.
|
if (stack_overflow_label_.is_linked()) {
|
SafeCallTarget(&stack_overflow_label_);
|
// Reached if the backtrack-stack limit has been hit.
|
Label grow_failed;
|
|
// Call GrowStack(backtrack_stackpointer(), &stack_base)
|
static const int num_arguments = 3;
|
__ PrepareCallCFunction(num_arguments, r3);
|
__ mr(r3, backtrack_stackpointer());
|
__ addi(r4, frame_pointer(), Operand(kStackHighEnd));
|
__ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
|
ExternalReference grow_stack =
|
ExternalReference::re_grow_stack(isolate());
|
__ CallCFunction(grow_stack, num_arguments);
|
// If return nullptr, we have failed to grow the stack, and
|
// must exit with a stack-overflow exception.
|
__ cmpi(r3, Operand::Zero());
|
__ beq(&exit_with_exception);
|
// Otherwise use return value as new stack pointer.
|
__ mr(backtrack_stackpointer(), r3);
|
// Restore saved registers and continue.
|
SafeReturn();
|
}
|
|
if (exit_with_exception.is_linked()) {
|
// If any of the code above needed to exit with an exception.
|
__ bind(&exit_with_exception);
|
// Exit with Result EXCEPTION(-1) to signal thrown exception.
|
__ li(r3, Operand(EXCEPTION));
|
__ b(&return_r3);
|
}
|
}
|
|
CodeDesc code_desc;
|
masm_->GetCode(isolate(), &code_desc);
|
Handle<Code> code = isolate()->factory()->NewCode(code_desc, Code::REGEXP,
|
masm_->CodeObject());
|
PROFILE(masm_->isolate(),
|
RegExpCodeCreateEvent(AbstractCode::cast(*code), *source));
|
return Handle<HeapObject>::cast(code);
|
}
|
|
|
void RegExpMacroAssemblerPPC::GoTo(Label* to) { BranchOrBacktrack(al, to); }
|
|
|
void RegExpMacroAssemblerPPC::IfRegisterGE(int reg, int comparand,
|
Label* if_ge) {
|
__ LoadP(r3, register_location(reg), r0);
|
__ Cmpi(r3, Operand(comparand), r0);
|
BranchOrBacktrack(ge, if_ge);
|
}
|
|
|
void RegExpMacroAssemblerPPC::IfRegisterLT(int reg, int comparand,
|
Label* if_lt) {
|
__ LoadP(r3, register_location(reg), r0);
|
__ Cmpi(r3, Operand(comparand), r0);
|
BranchOrBacktrack(lt, if_lt);
|
}
|
|
|
void RegExpMacroAssemblerPPC::IfRegisterEqPos(int reg, Label* if_eq) {
|
__ LoadP(r3, register_location(reg), r0);
|
__ cmp(r3, current_input_offset());
|
BranchOrBacktrack(eq, if_eq);
|
}
|
|
|
RegExpMacroAssembler::IrregexpImplementation
|
RegExpMacroAssemblerPPC::Implementation() {
|
return kPPCImplementation;
|
}
|
|
|
void RegExpMacroAssemblerPPC::LoadCurrentCharacter(int cp_offset,
|
Label* on_end_of_input,
|
bool check_bounds,
|
int characters) {
|
DCHECK(cp_offset < (1 << 30)); // Be sane! (And ensure negation works)
|
if (check_bounds) {
|
if (cp_offset >= 0) {
|
CheckPosition(cp_offset + characters - 1, on_end_of_input);
|
} else {
|
CheckPosition(cp_offset, on_end_of_input);
|
}
|
}
|
LoadCurrentCharacterUnchecked(cp_offset, characters);
|
}
|
|
|
void RegExpMacroAssemblerPPC::PopCurrentPosition() {
|
Pop(current_input_offset());
|
}
|
|
|
void RegExpMacroAssemblerPPC::PopRegister(int register_index) {
|
Pop(r3);
|
__ StoreP(r3, register_location(register_index), r0);
|
}
|
|
|
void RegExpMacroAssemblerPPC::PushBacktrack(Label* label) {
|
__ mov_label_offset(r3, label);
|
Push(r3);
|
CheckStackLimit();
|
}
|
|
|
void RegExpMacroAssemblerPPC::PushCurrentPosition() {
|
Push(current_input_offset());
|
}
|
|
|
void RegExpMacroAssemblerPPC::PushRegister(int register_index,
|
StackCheckFlag check_stack_limit) {
|
__ LoadP(r3, register_location(register_index), r0);
|
Push(r3);
|
if (check_stack_limit) CheckStackLimit();
|
}
|
|
|
void RegExpMacroAssemblerPPC::ReadCurrentPositionFromRegister(int reg) {
|
__ LoadP(current_input_offset(), register_location(reg), r0);
|
}
|
|
|
void RegExpMacroAssemblerPPC::ReadStackPointerFromRegister(int reg) {
|
__ LoadP(backtrack_stackpointer(), register_location(reg), r0);
|
__ LoadP(r3, MemOperand(frame_pointer(), kStackHighEnd));
|
__ add(backtrack_stackpointer(), backtrack_stackpointer(), r3);
|
}
|
|
|
void RegExpMacroAssemblerPPC::SetCurrentPositionFromEnd(int by) {
|
Label after_position;
|
__ Cmpi(current_input_offset(), Operand(-by * char_size()), r0);
|
__ bge(&after_position);
|
__ mov(current_input_offset(), Operand(-by * char_size()));
|
// On RegExp code entry (where this operation is used), the character before
|
// the current position is expected to be already loaded.
|
// We have advanced the position, so it's safe to read backwards.
|
LoadCurrentCharacterUnchecked(-1, 1);
|
__ bind(&after_position);
|
}
|
|
|
void RegExpMacroAssemblerPPC::SetRegister(int register_index, int to) {
|
DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
|
__ mov(r3, Operand(to));
|
__ StoreP(r3, register_location(register_index), r0);
|
}
|
|
|
bool RegExpMacroAssemblerPPC::Succeed() {
|
__ b(&success_label_);
|
return global();
|
}
|
|
|
void RegExpMacroAssemblerPPC::WriteCurrentPositionToRegister(int reg,
|
int cp_offset) {
|
if (cp_offset == 0) {
|
__ StoreP(current_input_offset(), register_location(reg), r0);
|
} else {
|
__ mov(r0, Operand(cp_offset * char_size()));
|
__ add(r3, current_input_offset(), r0);
|
__ StoreP(r3, register_location(reg), r0);
|
}
|
}
|
|
|
void RegExpMacroAssemblerPPC::ClearRegisters(int reg_from, int reg_to) {
|
DCHECK(reg_from <= reg_to);
|
__ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
|
for (int reg = reg_from; reg <= reg_to; reg++) {
|
__ StoreP(r3, register_location(reg), r0);
|
}
|
}
|
|
|
void RegExpMacroAssemblerPPC::WriteStackPointerToRegister(int reg) {
|
__ LoadP(r4, MemOperand(frame_pointer(), kStackHighEnd));
|
__ sub(r3, backtrack_stackpointer(), r4);
|
__ StoreP(r3, register_location(reg), r0);
|
}
|
|
|
// Private methods:
|
|
void RegExpMacroAssemblerPPC::CallCheckStackGuardState(Register scratch) {
|
int frame_alignment = masm_->ActivationFrameAlignment();
|
int stack_space = kNumRequiredStackFrameSlots;
|
int stack_passed_arguments = 1; // space for return address pointer
|
|
// The following stack manipulation logic is similar to
|
// PrepareCallCFunction. However, we need an extra slot on the
|
// stack to house the return address parameter.
|
if (frame_alignment > kPointerSize) {
|
// Make stack end at alignment and make room for stack arguments
|
// -- preserving original value of sp.
|
__ mr(scratch, sp);
|
__ addi(sp, sp, Operand(-(stack_passed_arguments + 1) * kPointerSize));
|
DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
|
__ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
|
__ StoreP(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
|
} else {
|
// Make room for stack arguments
|
stack_space += stack_passed_arguments;
|
}
|
|
// Allocate frame with required slots to make ABI work.
|
__ li(r0, Operand::Zero());
|
__ StorePU(r0, MemOperand(sp, -stack_space * kPointerSize));
|
|
// RegExp code frame pointer.
|
__ mr(r5, frame_pointer());
|
// Code* of self.
|
__ mov(r4, Operand(masm_->CodeObject()));
|
// r3 will point to the return address, placed by DirectCEntry.
|
__ addi(r3, sp, Operand(kStackFrameExtraParamSlot * kPointerSize));
|
|
ExternalReference stack_guard_check =
|
ExternalReference::re_check_stack_guard_state(isolate());
|
__ mov(ip, Operand(stack_guard_check));
|
DirectCEntryStub stub(isolate());
|
stub.GenerateCall(masm_, ip);
|
|
// Restore the stack pointer
|
stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments;
|
if (frame_alignment > kPointerSize) {
|
__ LoadP(sp, MemOperand(sp, stack_space * kPointerSize));
|
} else {
|
__ addi(sp, sp, Operand(stack_space * kPointerSize));
|
}
|
|
__ mov(code_pointer(), Operand(masm_->CodeObject()));
|
}
|
|
|
// Helper function for reading a value out of a stack frame.
|
template <typename T>
|
static T& frame_entry(Address re_frame, int frame_offset) {
|
return reinterpret_cast<T&>(Memory<int32_t>(re_frame + frame_offset));
|
}
|
|
|
template <typename T>
|
static T* frame_entry_address(Address re_frame, int frame_offset) {
|
return reinterpret_cast<T*>(re_frame + frame_offset);
|
}
|
|
|
int RegExpMacroAssemblerPPC::CheckStackGuardState(Address* return_address,
|
Code* re_code,
|
Address re_frame) {
|
return NativeRegExpMacroAssembler::CheckStackGuardState(
|
frame_entry<Isolate*>(re_frame, kIsolate),
|
frame_entry<intptr_t>(re_frame, kStartIndex),
|
frame_entry<intptr_t>(re_frame, kDirectCall) == 1, return_address,
|
re_code, frame_entry_address<String*>(re_frame, kInputString),
|
frame_entry_address<const byte*>(re_frame, kInputStart),
|
frame_entry_address<const byte*>(re_frame, kInputEnd));
|
}
|
|
|
MemOperand RegExpMacroAssemblerPPC::register_location(int register_index) {
|
DCHECK(register_index < (1 << 30));
|
if (num_registers_ <= register_index) {
|
num_registers_ = register_index + 1;
|
}
|
return MemOperand(frame_pointer(),
|
kRegisterZero - register_index * kPointerSize);
|
}
|
|
|
void RegExpMacroAssemblerPPC::CheckPosition(int cp_offset,
|
Label* on_outside_input) {
|
if (cp_offset >= 0) {
|
__ Cmpi(current_input_offset(), Operand(-cp_offset * char_size()), r0);
|
BranchOrBacktrack(ge, on_outside_input);
|
} else {
|
__ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
|
__ addi(r3, current_input_offset(), Operand(cp_offset * char_size()));
|
__ cmp(r3, r4);
|
BranchOrBacktrack(le, on_outside_input);
|
}
|
}
|
|
|
void RegExpMacroAssemblerPPC::BranchOrBacktrack(Condition condition, Label* to,
|
CRegister cr) {
|
if (condition == al) { // Unconditional.
|
if (to == nullptr) {
|
Backtrack();
|
return;
|
}
|
__ b(to);
|
return;
|
}
|
if (to == nullptr) {
|
__ b(condition, &backtrack_label_, cr);
|
return;
|
}
|
__ b(condition, to, cr);
|
}
|
|
|
void RegExpMacroAssemblerPPC::SafeCall(Label* to, Condition cond,
|
CRegister cr) {
|
__ b(cond, to, cr, SetLK);
|
}
|
|
|
void RegExpMacroAssemblerPPC::SafeReturn() {
|
__ pop(r0);
|
__ mov(ip, Operand(masm_->CodeObject()));
|
__ add(r0, r0, ip);
|
__ mtlr(r0);
|
__ blr();
|
}
|
|
|
void RegExpMacroAssemblerPPC::SafeCallTarget(Label* name) {
|
__ bind(name);
|
__ mflr(r0);
|
__ mov(ip, Operand(masm_->CodeObject()));
|
__ sub(r0, r0, ip);
|
__ push(r0);
|
}
|
|
|
void RegExpMacroAssemblerPPC::Push(Register source) {
|
DCHECK(source != backtrack_stackpointer());
|
__ StorePU(source, MemOperand(backtrack_stackpointer(), -kPointerSize));
|
}
|
|
|
void RegExpMacroAssemblerPPC::Pop(Register target) {
|
DCHECK(target != backtrack_stackpointer());
|
__ LoadP(target, MemOperand(backtrack_stackpointer()));
|
__ addi(backtrack_stackpointer(), backtrack_stackpointer(),
|
Operand(kPointerSize));
|
}
|
|
|
void RegExpMacroAssemblerPPC::CheckPreemption() {
|
// Check for preemption.
|
ExternalReference stack_limit =
|
ExternalReference::address_of_stack_limit(isolate());
|
__ mov(r3, Operand(stack_limit));
|
__ LoadP(r3, MemOperand(r3));
|
__ cmpl(sp, r3);
|
SafeCall(&check_preempt_label_, le);
|
}
|
|
|
void RegExpMacroAssemblerPPC::CheckStackLimit() {
|
ExternalReference stack_limit =
|
ExternalReference::address_of_regexp_stack_limit(isolate());
|
__ mov(r3, Operand(stack_limit));
|
__ LoadP(r3, MemOperand(r3));
|
__ cmpl(backtrack_stackpointer(), r3);
|
SafeCall(&stack_overflow_label_, le);
|
}
|
|
|
void RegExpMacroAssemblerPPC::LoadCurrentCharacterUnchecked(int cp_offset,
|
int characters) {
|
Register offset = current_input_offset();
|
if (cp_offset != 0) {
|
// r25 is not being used to store the capture start index at this point.
|
__ addi(r25, current_input_offset(), Operand(cp_offset * char_size()));
|
offset = r25;
|
}
|
// The lwz, stw, lhz, sth instructions can do unaligned accesses, if the CPU
|
// and the operating system running on the target allow it.
|
// We assume we don't want to do unaligned loads on PPC, so this function
|
// must only be used to load a single character at a time.
|
|
__ add(current_character(), end_of_input_address(), offset);
|
#if V8_TARGET_LITTLE_ENDIAN
|
if (mode_ == LATIN1) {
|
if (characters == 4) {
|
__ lwz(current_character(), MemOperand(current_character()));
|
} else if (characters == 2) {
|
__ lhz(current_character(), MemOperand(current_character()));
|
} else {
|
DCHECK_EQ(1, characters);
|
__ lbz(current_character(), MemOperand(current_character()));
|
}
|
} else {
|
DCHECK(mode_ == UC16);
|
if (characters == 2) {
|
__ lwz(current_character(), MemOperand(current_character()));
|
} else {
|
DCHECK_EQ(1, characters);
|
__ lhz(current_character(), MemOperand(current_character()));
|
}
|
}
|
#else
|
if (mode_ == LATIN1) {
|
if (characters == 4) {
|
__ lwbrx(current_character(), MemOperand(r0, current_character()));
|
} else if (characters == 2) {
|
__ lhbrx(current_character(), MemOperand(r0, current_character()));
|
} else {
|
DCHECK_EQ(1, characters);
|
__ lbz(current_character(), MemOperand(current_character()));
|
}
|
} else {
|
DCHECK(mode_ == UC16);
|
if (characters == 2) {
|
__ lwz(current_character(), MemOperand(current_character()));
|
__ rlwinm(current_character(), current_character(), 16, 0, 31);
|
} else {
|
DCHECK_EQ(1, characters);
|
__ lhz(current_character(), MemOperand(current_character()));
|
}
|
}
|
#endif
|
}
|
|
|
#undef __
|
|
#endif // V8_INTERPRETED_REGEXP
|
} // namespace internal
|
} // namespace v8
|
|
#endif // V8_TARGET_ARCH_PPC
|