// Copyright 2013 the V8 project authors. All rights reserved.
|
// Use of this source code is governed by a BSD-style license that can be
|
// found in the LICENSE file.
|
|
#if V8_TARGET_ARCH_ARM64
|
|
#include "src/regexp/arm64/regexp-macro-assembler-arm64.h"
|
|
#include "src/arm64/macro-assembler-arm64-inl.h"
|
#include "src/code-stubs.h"
|
#include "src/log.h"
|
#include "src/macro-assembler.h"
|
#include "src/objects-inl.h"
|
#include "src/regexp/regexp-macro-assembler.h"
|
#include "src/regexp/regexp-stack.h"
|
#include "src/unicode.h"
|
|
namespace v8 {
|
namespace internal {
|
|
#ifndef V8_INTERPRETED_REGEXP
|
/*
|
* This assembler uses the following register assignment convention:
|
* - w19 : Used to temporarely store a value before a call to C code.
|
* See CheckNotBackReferenceIgnoreCase.
|
* - x20 : Pointer to the current code object (Code*),
|
* it includes the heap object tag.
|
* - w21 : Current position in input, as negative offset from
|
* the end of the string. Please notice that this is
|
* the byte offset, not the character offset!
|
* - w22 : Currently loaded character. Must be loaded using
|
* LoadCurrentCharacter before using any of the dispatch methods.
|
* - x23 : Points to tip of backtrack stack.
|
* - w24 : Position of the first character minus one: non_position_value.
|
* Used to initialize capture registers.
|
* - x25 : Address at the end of the input string: input_end.
|
* Points to byte after last character in input.
|
* - x26 : Address at the start of the input string: input_start.
|
* - w27 : Where to start in the input string.
|
* - x28 : Output array pointer.
|
* - x29/fp : Frame pointer. Used to access arguments, local variables and
|
* RegExp registers.
|
* - x16/x17 : IP registers, used by assembler. Very volatile.
|
* - sp : Points to tip of C stack.
|
*
|
* - x0-x7 : Used as a cache to store 32 bit capture registers. These
|
* registers need to be retained every time a call to C code
|
* is done.
|
*
|
* The remaining registers are free for computations.
|
* Each call to a public method should retain this convention.
|
*
|
* The stack will have the following structure:
|
*
|
* Location Name Description
|
* (as referred to in
|
* the code)
|
*
|
* - fp[96] isolate Address of the current isolate.
|
* ^^^ sp when called ^^^
|
* - fp[88] lr Return from the RegExp code.
|
* - fp[80] r29 Old frame pointer (CalleeSaved).
|
* - fp[0..72] r19-r28 Backup of CalleeSaved registers.
|
* - fp[-8] direct_call 1 => Direct call from JavaScript code.
|
* 0 => Call through the runtime system.
|
* - fp[-16] stack_base High end of the memory area to use as
|
* the backtracking stack.
|
* - fp[-24] output_size Output may fit multiple sets of matches.
|
* - fp[-32] input Handle containing the input string.
|
* - fp[-40] success_counter
|
* ^^^^^^^^^^^^^ From here and downwards we store 32 bit values ^^^^^^^^^^^^^
|
* - fp[-44] register N Capture registers initialized with
|
* - fp[-48] register N + 1 non_position_value.
|
* ... The first kNumCachedRegisters (N) registers
|
* ... are cached in x0 to x7.
|
* ... Only positions must be stored in the first
|
* - ... num_saved_registers_ registers.
|
* - ...
|
* - register N + num_registers - 1
|
* ^^^^^^^^^ sp ^^^^^^^^^
|
*
|
* The first num_saved_registers_ registers are initialized to point to
|
* "character -1" in the string (i.e., char_size() bytes before the first
|
* character of the string). The remaining registers start out as garbage.
|
*
|
* The data up to the return address must be placed there by the calling
|
* code and the remaining arguments are passed in registers, e.g. by calling the
|
* code entry as cast to a function with the signature:
|
* int (*match)(String* input_string,
|
* int start_index,
|
* Address start,
|
* Address end,
|
* int* capture_output_array,
|
* int num_capture_registers,
|
* byte* stack_area_base,
|
* bool direct_call = false,
|
* Isolate* isolate);
|
* The call is performed by NativeRegExpMacroAssembler::Execute()
|
* (in regexp-macro-assembler.cc) via the GeneratedCode wrapper.
|
*/
|
|
#define __ ACCESS_MASM(masm_)
|
|
RegExpMacroAssemblerARM64::RegExpMacroAssemblerARM64(Isolate* isolate,
|
Zone* zone, Mode mode,
|
int registers_to_save)
|
: NativeRegExpMacroAssembler(isolate, zone),
|
masm_(new MacroAssembler(isolate, nullptr, kRegExpCodeSize,
|
CodeObjectRequired::kYes)),
|
mode_(mode),
|
num_registers_(registers_to_save),
|
num_saved_registers_(registers_to_save),
|
entry_label_(),
|
start_label_(),
|
success_label_(),
|
backtrack_label_(),
|
exit_label_() {
|
DCHECK_EQ(0, registers_to_save % 2);
|
// We can cache at most 16 W registers in x0-x7.
|
STATIC_ASSERT(kNumCachedRegisters <= 16);
|
STATIC_ASSERT((kNumCachedRegisters % 2) == 0);
|
__ B(&entry_label_); // We'll write the entry code later.
|
__ Bind(&start_label_); // And then continue from here.
|
}
|
|
|
RegExpMacroAssemblerARM64::~RegExpMacroAssemblerARM64() {
|
delete masm_;
|
// Unuse labels in case we throw away the assembler without calling GetCode.
|
entry_label_.Unuse();
|
start_label_.Unuse();
|
success_label_.Unuse();
|
backtrack_label_.Unuse();
|
exit_label_.Unuse();
|
check_preempt_label_.Unuse();
|
stack_overflow_label_.Unuse();
|
}
|
|
int RegExpMacroAssemblerARM64::stack_limit_slack() {
|
return RegExpStack::kStackLimitSlack;
|
}
|
|
|
void RegExpMacroAssemblerARM64::AdvanceCurrentPosition(int by) {
|
if (by != 0) {
|
__ Add(current_input_offset(),
|
current_input_offset(), by * char_size());
|
}
|
}
|
|
|
void RegExpMacroAssemblerARM64::AdvanceRegister(int reg, int by) {
|
DCHECK((reg >= 0) && (reg < num_registers_));
|
if (by != 0) {
|
RegisterState register_state = GetRegisterState(reg);
|
switch (register_state) {
|
case STACKED:
|
__ Ldr(w10, register_location(reg));
|
__ Add(w10, w10, by);
|
__ Str(w10, register_location(reg));
|
break;
|
case CACHED_LSW: {
|
Register to_advance = GetCachedRegister(reg);
|
__ Add(to_advance, to_advance, by);
|
break;
|
}
|
case CACHED_MSW: {
|
Register to_advance = GetCachedRegister(reg);
|
__ Add(to_advance, to_advance,
|
static_cast<int64_t>(by) << kWRegSizeInBits);
|
break;
|
}
|
default:
|
UNREACHABLE();
|
break;
|
}
|
}
|
}
|
|
|
void RegExpMacroAssemblerARM64::Backtrack() {
|
CheckPreemption();
|
Pop(w10);
|
__ Add(x10, code_pointer(), Operand(w10, UXTW));
|
__ Br(x10);
|
}
|
|
|
void RegExpMacroAssemblerARM64::Bind(Label* label) {
|
__ Bind(label);
|
}
|
|
|
void RegExpMacroAssemblerARM64::CheckCharacter(uint32_t c, Label* on_equal) {
|
CompareAndBranchOrBacktrack(current_character(), c, eq, on_equal);
|
}
|
|
|
void RegExpMacroAssemblerARM64::CheckCharacterGT(uc16 limit,
|
Label* on_greater) {
|
CompareAndBranchOrBacktrack(current_character(), limit, hi, on_greater);
|
}
|
|
|
void RegExpMacroAssemblerARM64::CheckAtStart(Label* on_at_start) {
|
__ Add(w10, current_input_offset(), Operand(-char_size()));
|
__ Cmp(w10, string_start_minus_one());
|
BranchOrBacktrack(eq, on_at_start);
|
}
|
|
|
void RegExpMacroAssemblerARM64::CheckNotAtStart(int cp_offset,
|
Label* on_not_at_start) {
|
__ Add(w10, current_input_offset(),
|
Operand(-char_size() + cp_offset * char_size()));
|
__ Cmp(w10, string_start_minus_one());
|
BranchOrBacktrack(ne, on_not_at_start);
|
}
|
|
|
void RegExpMacroAssemblerARM64::CheckCharacterLT(uc16 limit, Label* on_less) {
|
CompareAndBranchOrBacktrack(current_character(), limit, lo, on_less);
|
}
|
|
|
void RegExpMacroAssemblerARM64::CheckCharacters(Vector<const uc16> str,
|
int cp_offset,
|
Label* on_failure,
|
bool check_end_of_string) {
|
// This method is only ever called from the cctests.
|
|
if (check_end_of_string) {
|
// Is last character of required match inside string.
|
CheckPosition(cp_offset + str.length() - 1, on_failure);
|
}
|
|
Register characters_address = x11;
|
|
__ Add(characters_address,
|
input_end(),
|
Operand(current_input_offset(), SXTW));
|
if (cp_offset != 0) {
|
__ Add(characters_address, characters_address, cp_offset * char_size());
|
}
|
|
for (int i = 0; i < str.length(); i++) {
|
if (mode_ == LATIN1) {
|
__ Ldrb(w10, MemOperand(characters_address, 1, PostIndex));
|
DCHECK_GE(String::kMaxOneByteCharCode, str[i]);
|
} else {
|
__ Ldrh(w10, MemOperand(characters_address, 2, PostIndex));
|
}
|
CompareAndBranchOrBacktrack(w10, str[i], ne, on_failure);
|
}
|
}
|
|
|
void RegExpMacroAssemblerARM64::CheckGreedyLoop(Label* on_equal) {
|
__ Ldr(w10, MemOperand(backtrack_stackpointer()));
|
__ Cmp(current_input_offset(), w10);
|
__ Cset(x11, eq);
|
__ Add(backtrack_stackpointer(),
|
backtrack_stackpointer(), Operand(x11, LSL, kWRegSizeLog2));
|
BranchOrBacktrack(eq, on_equal);
|
}
|
|
|
void RegExpMacroAssemblerARM64::CheckNotBackReferenceIgnoreCase(
|
int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
|
Label fallthrough;
|
|
Register capture_start_offset = w10;
|
// Save the capture length in a callee-saved register so it will
|
// be preserved if we call a C helper.
|
Register capture_length = w19;
|
DCHECK(kCalleeSaved.IncludesAliasOf(capture_length));
|
|
// Find length of back-referenced capture.
|
DCHECK_EQ(0, start_reg % 2);
|
if (start_reg < kNumCachedRegisters) {
|
__ Mov(capture_start_offset.X(), GetCachedRegister(start_reg));
|
__ Lsr(x11, GetCachedRegister(start_reg), kWRegSizeInBits);
|
} else {
|
__ Ldp(w11, capture_start_offset, capture_location(start_reg, x10));
|
}
|
__ Sub(capture_length, w11, capture_start_offset); // Length to check.
|
|
// At this point, the capture registers are either both set or both cleared.
|
// If the capture length is zero, then the capture is either empty or cleared.
|
// Fall through in both cases.
|
__ CompareAndBranch(capture_length, Operand(0), eq, &fallthrough);
|
|
// Check that there are enough characters left in the input.
|
if (read_backward) {
|
__ Add(w12, string_start_minus_one(), capture_length);
|
__ Cmp(current_input_offset(), w12);
|
BranchOrBacktrack(le, on_no_match);
|
} else {
|
__ Cmn(capture_length, current_input_offset());
|
BranchOrBacktrack(gt, on_no_match);
|
}
|
|
if (mode_ == LATIN1) {
|
Label success;
|
Label fail;
|
Label loop_check;
|
|
Register capture_start_address = x12;
|
Register capture_end_addresss = x13;
|
Register current_position_address = x14;
|
|
__ Add(capture_start_address,
|
input_end(),
|
Operand(capture_start_offset, SXTW));
|
__ Add(capture_end_addresss,
|
capture_start_address,
|
Operand(capture_length, SXTW));
|
__ Add(current_position_address,
|
input_end(),
|
Operand(current_input_offset(), SXTW));
|
if (read_backward) {
|
// Offset by length when matching backwards.
|
__ Sub(current_position_address, current_position_address,
|
Operand(capture_length, SXTW));
|
}
|
|
Label loop;
|
__ Bind(&loop);
|
__ Ldrb(w10, MemOperand(capture_start_address, 1, PostIndex));
|
__ Ldrb(w11, MemOperand(current_position_address, 1, PostIndex));
|
__ Cmp(w10, w11);
|
__ B(eq, &loop_check);
|
|
// Mismatch, try case-insensitive match (converting letters to lower-case).
|
__ Orr(w10, w10, 0x20); // Convert capture character to lower-case.
|
__ Orr(w11, w11, 0x20); // Also convert input character.
|
__ Cmp(w11, w10);
|
__ B(ne, &fail);
|
__ Sub(w10, w10, 'a');
|
__ Cmp(w10, 'z' - 'a'); // Is w10 a lowercase letter?
|
__ B(ls, &loop_check); // In range 'a'-'z'.
|
// Latin-1: Check for values in range [224,254] but not 247.
|
__ Sub(w10, w10, 224 - 'a');
|
__ Cmp(w10, 254 - 224);
|
__ Ccmp(w10, 247 - 224, ZFlag, ls); // Check for 247.
|
__ B(eq, &fail); // Weren't Latin-1 letters.
|
|
__ Bind(&loop_check);
|
__ Cmp(capture_start_address, capture_end_addresss);
|
__ B(lt, &loop);
|
__ B(&success);
|
|
__ Bind(&fail);
|
BranchOrBacktrack(al, on_no_match);
|
|
__ Bind(&success);
|
// Compute new value of character position after the matched part.
|
__ Sub(current_input_offset().X(), current_position_address, input_end());
|
if (read_backward) {
|
__ Sub(current_input_offset().X(), current_input_offset().X(),
|
Operand(capture_length, SXTW));
|
}
|
if (masm_->emit_debug_code()) {
|
__ Cmp(current_input_offset().X(), Operand(current_input_offset(), SXTW));
|
__ Ccmp(current_input_offset(), 0, NoFlag, eq);
|
// The current input offset should be <= 0, and fit in a W register.
|
__ Check(le, AbortReason::kOffsetOutOfRange);
|
}
|
} else {
|
DCHECK(mode_ == UC16);
|
int argument_count = 4;
|
|
// The cached registers need to be retained.
|
CPURegList cached_registers(CPURegister::kRegister, kXRegSizeInBits, 0, 7);
|
DCHECK_EQ(kNumCachedRegisters, cached_registers.Count() * 2);
|
__ PushCPURegList(cached_registers);
|
|
// Put arguments into arguments registers.
|
// Parameters are
|
// x0: Address byte_offset1 - Address captured substring's start.
|
// x1: Address byte_offset2 - Address of current character position.
|
// w2: size_t byte_length - length of capture in bytes(!)
|
// x3: Isolate* isolate or 0 if unicode flag
|
|
// Address of start of capture.
|
__ Add(x0, input_end(), Operand(capture_start_offset, SXTW));
|
// Length of capture.
|
__ Mov(w2, capture_length);
|
// Address of current input position.
|
__ Add(x1, input_end(), Operand(current_input_offset(), SXTW));
|
if (read_backward) {
|
__ Sub(x1, x1, Operand(capture_length, SXTW));
|
}
|
// Isolate.
|
#ifdef V8_INTL_SUPPORT
|
if (unicode) {
|
__ Mov(x3, Operand(0));
|
} else // NOLINT
|
#endif // V8_INTL_SUPPORT
|
{
|
__ Mov(x3, ExternalReference::isolate_address(isolate()));
|
}
|
|
{
|
AllowExternalCallThatCantCauseGC scope(masm_);
|
ExternalReference function =
|
ExternalReference::re_case_insensitive_compare_uc16(isolate());
|
__ CallCFunction(function, argument_count);
|
}
|
|
// Check if function returned non-zero for success or zero for failure.
|
// x0 is one of the registers used as a cache so it must be tested before
|
// the cache is restored.
|
__ Cmp(x0, 0);
|
__ PopCPURegList(cached_registers);
|
BranchOrBacktrack(eq, on_no_match);
|
|
// On success, advance position by length of capture.
|
if (read_backward) {
|
__ Sub(current_input_offset(), current_input_offset(), capture_length);
|
} else {
|
__ Add(current_input_offset(), current_input_offset(), capture_length);
|
}
|
}
|
|
__ Bind(&fallthrough);
|
}
|
|
void RegExpMacroAssemblerARM64::CheckNotBackReference(int start_reg,
|
bool read_backward,
|
Label* on_no_match) {
|
Label fallthrough;
|
|
Register capture_start_address = x12;
|
Register capture_end_address = x13;
|
Register current_position_address = x14;
|
Register capture_length = w15;
|
|
// Find length of back-referenced capture.
|
DCHECK_EQ(0, start_reg % 2);
|
if (start_reg < kNumCachedRegisters) {
|
__ Mov(x10, GetCachedRegister(start_reg));
|
__ Lsr(x11, GetCachedRegister(start_reg), kWRegSizeInBits);
|
} else {
|
__ Ldp(w11, w10, capture_location(start_reg, x10));
|
}
|
__ Sub(capture_length, w11, w10); // Length to check.
|
|
// At this point, the capture registers are either both set or both cleared.
|
// If the capture length is zero, then the capture is either empty or cleared.
|
// Fall through in both cases.
|
__ CompareAndBranch(capture_length, Operand(0), eq, &fallthrough);
|
|
// Check that there are enough characters left in the input.
|
if (read_backward) {
|
__ Add(w12, string_start_minus_one(), capture_length);
|
__ Cmp(current_input_offset(), w12);
|
BranchOrBacktrack(le, on_no_match);
|
} else {
|
__ Cmn(capture_length, current_input_offset());
|
BranchOrBacktrack(gt, on_no_match);
|
}
|
|
// Compute pointers to match string and capture string
|
__ Add(capture_start_address, input_end(), Operand(w10, SXTW));
|
__ Add(capture_end_address,
|
capture_start_address,
|
Operand(capture_length, SXTW));
|
__ Add(current_position_address,
|
input_end(),
|
Operand(current_input_offset(), SXTW));
|
if (read_backward) {
|
// Offset by length when matching backwards.
|
__ Sub(current_position_address, current_position_address,
|
Operand(capture_length, SXTW));
|
}
|
|
Label loop;
|
__ Bind(&loop);
|
if (mode_ == LATIN1) {
|
__ Ldrb(w10, MemOperand(capture_start_address, 1, PostIndex));
|
__ Ldrb(w11, MemOperand(current_position_address, 1, PostIndex));
|
} else {
|
DCHECK(mode_ == UC16);
|
__ Ldrh(w10, MemOperand(capture_start_address, 2, PostIndex));
|
__ Ldrh(w11, MemOperand(current_position_address, 2, PostIndex));
|
}
|
__ Cmp(w10, w11);
|
BranchOrBacktrack(ne, on_no_match);
|
__ Cmp(capture_start_address, capture_end_address);
|
__ B(lt, &loop);
|
|
// Move current character position to position after match.
|
__ Sub(current_input_offset().X(), current_position_address, input_end());
|
if (read_backward) {
|
__ Sub(current_input_offset().X(), current_input_offset().X(),
|
Operand(capture_length, SXTW));
|
}
|
|
if (masm_->emit_debug_code()) {
|
__ Cmp(current_input_offset().X(), Operand(current_input_offset(), SXTW));
|
__ Ccmp(current_input_offset(), 0, NoFlag, eq);
|
// The current input offset should be <= 0, and fit in a W register.
|
__ Check(le, AbortReason::kOffsetOutOfRange);
|
}
|
__ Bind(&fallthrough);
|
}
|
|
|
void RegExpMacroAssemblerARM64::CheckNotCharacter(unsigned c,
|
Label* on_not_equal) {
|
CompareAndBranchOrBacktrack(current_character(), c, ne, on_not_equal);
|
}
|
|
|
void RegExpMacroAssemblerARM64::CheckCharacterAfterAnd(uint32_t c,
|
uint32_t mask,
|
Label* on_equal) {
|
__ And(w10, current_character(), mask);
|
CompareAndBranchOrBacktrack(w10, c, eq, on_equal);
|
}
|
|
|
void RegExpMacroAssemblerARM64::CheckNotCharacterAfterAnd(unsigned c,
|
unsigned mask,
|
Label* on_not_equal) {
|
__ And(w10, current_character(), mask);
|
CompareAndBranchOrBacktrack(w10, c, ne, on_not_equal);
|
}
|
|
|
void RegExpMacroAssemblerARM64::CheckNotCharacterAfterMinusAnd(
|
uc16 c,
|
uc16 minus,
|
uc16 mask,
|
Label* on_not_equal) {
|
DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
|
__ Sub(w10, current_character(), minus);
|
__ And(w10, w10, mask);
|
CompareAndBranchOrBacktrack(w10, c, ne, on_not_equal);
|
}
|
|
|
void RegExpMacroAssemblerARM64::CheckCharacterInRange(
|
uc16 from,
|
uc16 to,
|
Label* on_in_range) {
|
__ Sub(w10, current_character(), from);
|
// Unsigned lower-or-same condition.
|
CompareAndBranchOrBacktrack(w10, to - from, ls, on_in_range);
|
}
|
|
|
void RegExpMacroAssemblerARM64::CheckCharacterNotInRange(
|
uc16 from,
|
uc16 to,
|
Label* on_not_in_range) {
|
__ Sub(w10, current_character(), from);
|
// Unsigned higher condition.
|
CompareAndBranchOrBacktrack(w10, to - from, hi, on_not_in_range);
|
}
|
|
|
void RegExpMacroAssemblerARM64::CheckBitInTable(
|
Handle<ByteArray> table,
|
Label* on_bit_set) {
|
__ Mov(x11, Operand(table));
|
if ((mode_ != LATIN1) || (kTableMask != String::kMaxOneByteCharCode)) {
|
__ And(w10, current_character(), kTableMask);
|
__ Add(w10, w10, ByteArray::kHeaderSize - kHeapObjectTag);
|
} else {
|
__ Add(w10, current_character(), ByteArray::kHeaderSize - kHeapObjectTag);
|
}
|
__ Ldrb(w11, MemOperand(x11, w10, UXTW));
|
CompareAndBranchOrBacktrack(w11, 0, ne, on_bit_set);
|
}
|
|
|
bool RegExpMacroAssemblerARM64::CheckSpecialCharacterClass(uc16 type,
|
Label* on_no_match) {
|
// Range checks (c in min..max) are generally implemented by an unsigned
|
// (c - min) <= (max - min) check
|
switch (type) {
|
case 's':
|
// Match space-characters
|
if (mode_ == LATIN1) {
|
// One byte space characters are '\t'..'\r', ' ' and \u00a0.
|
Label success;
|
// Check for ' ' or 0x00A0.
|
__ Cmp(current_character(), ' ');
|
__ Ccmp(current_character(), 0x00A0, ZFlag, ne);
|
__ B(eq, &success);
|
// Check range 0x09..0x0D.
|
__ Sub(w10, current_character(), '\t');
|
CompareAndBranchOrBacktrack(w10, '\r' - '\t', hi, on_no_match);
|
__ Bind(&success);
|
return true;
|
}
|
return false;
|
case 'S':
|
// The emitted code for generic character classes is good enough.
|
return false;
|
case 'd':
|
// Match ASCII digits ('0'..'9').
|
__ Sub(w10, current_character(), '0');
|
CompareAndBranchOrBacktrack(w10, '9' - '0', hi, on_no_match);
|
return true;
|
case 'D':
|
// Match ASCII non-digits.
|
__ Sub(w10, current_character(), '0');
|
CompareAndBranchOrBacktrack(w10, '9' - '0', ls, on_no_match);
|
return true;
|
case '.': {
|
// Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029)
|
// Here we emit the conditional branch only once at the end to make branch
|
// prediction more efficient, even though we could branch out of here
|
// as soon as a character matches.
|
__ Cmp(current_character(), 0x0A);
|
__ Ccmp(current_character(), 0x0D, ZFlag, ne);
|
if (mode_ == UC16) {
|
__ Sub(w10, current_character(), 0x2028);
|
// If the Z flag was set we clear the flags to force a branch.
|
__ Ccmp(w10, 0x2029 - 0x2028, NoFlag, ne);
|
// ls -> !((C==1) && (Z==0))
|
BranchOrBacktrack(ls, on_no_match);
|
} else {
|
BranchOrBacktrack(eq, on_no_match);
|
}
|
return true;
|
}
|
case 'n': {
|
// Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029)
|
// We have to check all 4 newline characters before emitting
|
// the conditional branch.
|
__ Cmp(current_character(), 0x0A);
|
__ Ccmp(current_character(), 0x0D, ZFlag, ne);
|
if (mode_ == UC16) {
|
__ Sub(w10, current_character(), 0x2028);
|
// If the Z flag was set we clear the flags to force a fall-through.
|
__ Ccmp(w10, 0x2029 - 0x2028, NoFlag, ne);
|
// hi -> (C==1) && (Z==0)
|
BranchOrBacktrack(hi, on_no_match);
|
} else {
|
BranchOrBacktrack(ne, on_no_match);
|
}
|
return true;
|
}
|
case 'w': {
|
if (mode_ != LATIN1) {
|
// Table is 256 entries, so all Latin1 characters can be tested.
|
CompareAndBranchOrBacktrack(current_character(), 'z', hi, on_no_match);
|
}
|
ExternalReference map = ExternalReference::re_word_character_map(isolate());
|
__ Mov(x10, map);
|
__ Ldrb(w10, MemOperand(x10, current_character(), UXTW));
|
CompareAndBranchOrBacktrack(w10, 0, eq, on_no_match);
|
return true;
|
}
|
case 'W': {
|
Label done;
|
if (mode_ != LATIN1) {
|
// Table is 256 entries, so all Latin1 characters can be tested.
|
__ Cmp(current_character(), 'z');
|
__ B(hi, &done);
|
}
|
ExternalReference map = ExternalReference::re_word_character_map(isolate());
|
__ Mov(x10, map);
|
__ Ldrb(w10, MemOperand(x10, current_character(), UXTW));
|
CompareAndBranchOrBacktrack(w10, 0, ne, on_no_match);
|
__ Bind(&done);
|
return true;
|
}
|
case '*':
|
// Match any character.
|
return true;
|
// No custom implementation (yet): s(UC16), S(UC16).
|
default:
|
return false;
|
}
|
}
|
|
|
void RegExpMacroAssemblerARM64::Fail() {
|
__ Mov(w0, FAILURE);
|
__ B(&exit_label_);
|
}
|
|
|
Handle<HeapObject> RegExpMacroAssemblerARM64::GetCode(Handle<String> source) {
|
Label return_w0;
|
// Finalize code - write the entry point code now we know how many
|
// registers we need.
|
|
// Entry code:
|
__ Bind(&entry_label_);
|
|
// Arguments on entry:
|
// x0: String* input
|
// x1: int start_offset
|
// x2: byte* input_start
|
// x3: byte* input_end
|
// x4: int* output array
|
// x5: int output array size
|
// x6: Address stack_base
|
// x7: int direct_call
|
|
// sp[8]: address of the current isolate
|
// sp[0]: secondary link/return address used by native call
|
|
// Tell the system that we have a stack frame. Because the type is MANUAL, no
|
// code is generated.
|
FrameScope scope(masm_, StackFrame::MANUAL);
|
|
// Push registers on the stack, only push the argument registers that we need.
|
CPURegList argument_registers(x0, x5, x6, x7);
|
|
CPURegList registers_to_retain = kCalleeSaved;
|
DCHECK_EQ(11, kCalleeSaved.Count());
|
registers_to_retain.Combine(lr);
|
|
__ PushCPURegList(registers_to_retain);
|
__ PushCPURegList(argument_registers);
|
|
// Set frame pointer in place.
|
__ Add(frame_pointer(), sp, argument_registers.Count() * kPointerSize);
|
|
// Initialize callee-saved registers.
|
__ Mov(start_offset(), w1);
|
__ Mov(input_start(), x2);
|
__ Mov(input_end(), x3);
|
__ Mov(output_array(), x4);
|
|
// Set the number of registers we will need to allocate, that is:
|
// - success_counter (X register)
|
// - (num_registers_ - kNumCachedRegisters) (W registers)
|
int num_wreg_to_allocate = num_registers_ - kNumCachedRegisters;
|
// Do not allocate registers on the stack if they can all be cached.
|
if (num_wreg_to_allocate < 0) { num_wreg_to_allocate = 0; }
|
// Make room for the success_counter.
|
num_wreg_to_allocate += 2;
|
|
// Make sure the stack alignment will be respected.
|
int alignment = masm_->ActivationFrameAlignment();
|
DCHECK_EQ(alignment % 16, 0);
|
int align_mask = (alignment / kWRegSize) - 1;
|
num_wreg_to_allocate = (num_wreg_to_allocate + align_mask) & ~align_mask;
|
|
// Check if we have space on the stack.
|
Label stack_limit_hit;
|
Label stack_ok;
|
|
ExternalReference stack_limit =
|
ExternalReference::address_of_stack_limit(isolate());
|
__ Mov(x10, stack_limit);
|
__ Ldr(x10, MemOperand(x10));
|
__ Subs(x10, sp, x10);
|
|
// Handle it if the stack pointer is already below the stack limit.
|
__ B(ls, &stack_limit_hit);
|
|
// Check if there is room for the variable number of registers above
|
// the stack limit.
|
__ Cmp(x10, num_wreg_to_allocate * kWRegSize);
|
__ B(hs, &stack_ok);
|
|
// Exit with OutOfMemory exception. There is not enough space on the stack
|
// for our working registers.
|
__ Mov(w0, EXCEPTION);
|
__ B(&return_w0);
|
|
__ Bind(&stack_limit_hit);
|
CallCheckStackGuardState(x10);
|
// If returned value is non-zero, we exit with the returned value as result.
|
__ Cbnz(w0, &return_w0);
|
|
__ Bind(&stack_ok);
|
|
// Allocate space on stack.
|
__ Claim(num_wreg_to_allocate, kWRegSize);
|
|
// Initialize success_counter with 0.
|
__ Str(wzr, MemOperand(frame_pointer(), kSuccessCounter));
|
|
// Find negative length (offset of start relative to end).
|
__ Sub(x10, input_start(), input_end());
|
if (masm_->emit_debug_code()) {
|
// Check that the size of the input string chars is in range.
|
__ Neg(x11, x10);
|
__ Cmp(x11, SeqTwoByteString::kMaxCharsSize);
|
__ Check(ls, AbortReason::kInputStringTooLong);
|
}
|
__ Mov(current_input_offset(), w10);
|
|
// The non-position value is used as a clearing value for the
|
// capture registers, it corresponds to the position of the first character
|
// minus one.
|
__ Sub(string_start_minus_one(), current_input_offset(), char_size());
|
__ Sub(string_start_minus_one(), string_start_minus_one(),
|
Operand(start_offset(), LSL, (mode_ == UC16) ? 1 : 0));
|
// We can store this value twice in an X register for initializing
|
// on-stack registers later.
|
__ Orr(twice_non_position_value(), string_start_minus_one().X(),
|
Operand(string_start_minus_one().X(), LSL, kWRegSizeInBits));
|
|
// Initialize code pointer register.
|
__ Mov(code_pointer(), Operand(masm_->CodeObject()));
|
|
Label load_char_start_regexp, start_regexp;
|
// Load newline if index is at start, previous character otherwise.
|
__ Cbnz(start_offset(), &load_char_start_regexp);
|
__ Mov(current_character(), '\n');
|
__ B(&start_regexp);
|
|
// Global regexp restarts matching here.
|
__ Bind(&load_char_start_regexp);
|
// Load previous char as initial value of current character register.
|
LoadCurrentCharacterUnchecked(-1, 1);
|
__ Bind(&start_regexp);
|
// Initialize on-stack registers.
|
if (num_saved_registers_ > 0) {
|
ClearRegisters(0, num_saved_registers_ - 1);
|
}
|
|
// Initialize backtrack stack pointer.
|
__ Ldr(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackBase));
|
|
// Execute
|
__ B(&start_label_);
|
|
if (backtrack_label_.is_linked()) {
|
__ Bind(&backtrack_label_);
|
Backtrack();
|
}
|
|
if (success_label_.is_linked()) {
|
Register first_capture_start = w15;
|
|
// Save captures when successful.
|
__ Bind(&success_label_);
|
|
if (num_saved_registers_ > 0) {
|
// V8 expects the output to be an int32_t array.
|
Register capture_start = w12;
|
Register capture_end = w13;
|
Register input_length = w14;
|
|
// Copy captures to output.
|
|
// Get string length.
|
__ Sub(x10, input_end(), input_start());
|
if (masm_->emit_debug_code()) {
|
// Check that the size of the input string chars is in range.
|
__ Cmp(x10, SeqTwoByteString::kMaxCharsSize);
|
__ Check(ls, AbortReason::kInputStringTooLong);
|
}
|
// input_start has a start_offset offset on entry. We need to include
|
// it when computing the length of the whole string.
|
if (mode_ == UC16) {
|
__ Add(input_length, start_offset(), Operand(w10, LSR, 1));
|
} else {
|
__ Add(input_length, start_offset(), w10);
|
}
|
|
// Copy the results to the output array from the cached registers first.
|
for (int i = 0;
|
(i < num_saved_registers_) && (i < kNumCachedRegisters);
|
i += 2) {
|
__ Mov(capture_start.X(), GetCachedRegister(i));
|
__ Lsr(capture_end.X(), capture_start.X(), kWRegSizeInBits);
|
if ((i == 0) && global_with_zero_length_check()) {
|
// Keep capture start for the zero-length check later.
|
__ Mov(first_capture_start, capture_start);
|
}
|
// Offsets need to be relative to the start of the string.
|
if (mode_ == UC16) {
|
__ Add(capture_start, input_length, Operand(capture_start, ASR, 1));
|
__ Add(capture_end, input_length, Operand(capture_end, ASR, 1));
|
} else {
|
__ Add(capture_start, input_length, capture_start);
|
__ Add(capture_end, input_length, capture_end);
|
}
|
// The output pointer advances for a possible global match.
|
__ Stp(capture_start,
|
capture_end,
|
MemOperand(output_array(), kPointerSize, PostIndex));
|
}
|
|
// Only carry on if there are more than kNumCachedRegisters capture
|
// registers.
|
int num_registers_left_on_stack =
|
num_saved_registers_ - kNumCachedRegisters;
|
if (num_registers_left_on_stack > 0) {
|
Register base = x10;
|
// There are always an even number of capture registers. A couple of
|
// registers determine one match with two offsets.
|
DCHECK_EQ(0, num_registers_left_on_stack % 2);
|
__ Add(base, frame_pointer(), kFirstCaptureOnStack);
|
|
// We can unroll the loop here, we should not unroll for less than 2
|
// registers.
|
STATIC_ASSERT(kNumRegistersToUnroll > 2);
|
if (num_registers_left_on_stack <= kNumRegistersToUnroll) {
|
for (int i = 0; i < num_registers_left_on_stack / 2; i++) {
|
__ Ldp(capture_end,
|
capture_start,
|
MemOperand(base, -kPointerSize, PostIndex));
|
if ((i == 0) && global_with_zero_length_check()) {
|
// Keep capture start for the zero-length check later.
|
__ Mov(first_capture_start, capture_start);
|
}
|
// Offsets need to be relative to the start of the string.
|
if (mode_ == UC16) {
|
__ Add(capture_start,
|
input_length,
|
Operand(capture_start, ASR, 1));
|
__ Add(capture_end, input_length, Operand(capture_end, ASR, 1));
|
} else {
|
__ Add(capture_start, input_length, capture_start);
|
__ Add(capture_end, input_length, capture_end);
|
}
|
// The output pointer advances for a possible global match.
|
__ Stp(capture_start,
|
capture_end,
|
MemOperand(output_array(), kPointerSize, PostIndex));
|
}
|
} else {
|
Label loop, start;
|
__ Mov(x11, num_registers_left_on_stack);
|
|
__ Ldp(capture_end,
|
capture_start,
|
MemOperand(base, -kPointerSize, PostIndex));
|
if (global_with_zero_length_check()) {
|
__ Mov(first_capture_start, capture_start);
|
}
|
__ B(&start);
|
|
__ Bind(&loop);
|
__ Ldp(capture_end,
|
capture_start,
|
MemOperand(base, -kPointerSize, PostIndex));
|
__ Bind(&start);
|
if (mode_ == UC16) {
|
__ Add(capture_start, input_length, Operand(capture_start, ASR, 1));
|
__ Add(capture_end, input_length, Operand(capture_end, ASR, 1));
|
} else {
|
__ Add(capture_start, input_length, capture_start);
|
__ Add(capture_end, input_length, capture_end);
|
}
|
// The output pointer advances for a possible global match.
|
__ Stp(capture_start,
|
capture_end,
|
MemOperand(output_array(), kPointerSize, PostIndex));
|
__ Sub(x11, x11, 2);
|
__ Cbnz(x11, &loop);
|
}
|
}
|
}
|
|
if (global()) {
|
Register success_counter = w0;
|
Register output_size = x10;
|
// Restart matching if the regular expression is flagged as global.
|
|
// Increment success counter.
|
__ Ldr(success_counter, MemOperand(frame_pointer(), kSuccessCounter));
|
__ Add(success_counter, success_counter, 1);
|
__ Str(success_counter, MemOperand(frame_pointer(), kSuccessCounter));
|
|
// Capture results have been stored, so the number of remaining global
|
// output registers is reduced by the number of stored captures.
|
__ Ldr(output_size, MemOperand(frame_pointer(), kOutputSize));
|
__ Sub(output_size, output_size, num_saved_registers_);
|
// Check whether we have enough room for another set of capture results.
|
__ Cmp(output_size, num_saved_registers_);
|
__ B(lt, &return_w0);
|
|
// The output pointer is already set to the next field in the output
|
// array.
|
// Update output size on the frame before we restart matching.
|
__ Str(output_size, MemOperand(frame_pointer(), kOutputSize));
|
|
if (global_with_zero_length_check()) {
|
// Special case for zero-length matches.
|
__ Cmp(current_input_offset(), first_capture_start);
|
// Not a zero-length match, restart.
|
__ B(ne, &load_char_start_regexp);
|
// Offset from the end is zero if we already reached the end.
|
__ Cbz(current_input_offset(), &return_w0);
|
// Advance current position after a zero-length match.
|
Label advance;
|
__ bind(&advance);
|
__ Add(current_input_offset(),
|
current_input_offset(),
|
Operand((mode_ == UC16) ? 2 : 1));
|
if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
|
}
|
|
__ B(&load_char_start_regexp);
|
} else {
|
__ Mov(w0, SUCCESS);
|
}
|
}
|
|
if (exit_label_.is_linked()) {
|
// Exit and return w0
|
__ Bind(&exit_label_);
|
if (global()) {
|
__ Ldr(w0, MemOperand(frame_pointer(), kSuccessCounter));
|
}
|
}
|
|
__ Bind(&return_w0);
|
|
// Set stack pointer back to first register to retain
|
__ Mov(sp, fp);
|
|
// Restore registers.
|
__ PopCPURegList(registers_to_retain);
|
|
__ Ret();
|
|
Label exit_with_exception;
|
// Registers x0 to x7 are used to store the first captures, they need to be
|
// retained over calls to C++ code.
|
CPURegList cached_registers(CPURegister::kRegister, kXRegSizeInBits, 0, 7);
|
DCHECK_EQ(kNumCachedRegisters, cached_registers.Count() * 2);
|
|
if (check_preempt_label_.is_linked()) {
|
__ Bind(&check_preempt_label_);
|
SaveLinkRegister();
|
// The cached registers need to be retained.
|
__ PushCPURegList(cached_registers);
|
CallCheckStackGuardState(x10);
|
// Returning from the regexp code restores the stack (sp <- fp)
|
// so we don't need to drop the link register from it before exiting.
|
__ Cbnz(w0, &return_w0);
|
// Reset the cached registers.
|
__ PopCPURegList(cached_registers);
|
RestoreLinkRegister();
|
__ Ret();
|
}
|
|
if (stack_overflow_label_.is_linked()) {
|
__ Bind(&stack_overflow_label_);
|
SaveLinkRegister();
|
// The cached registers need to be retained.
|
__ PushCPURegList(cached_registers);
|
// Call GrowStack(backtrack_stackpointer(), &stack_base)
|
__ Mov(x2, ExternalReference::isolate_address(isolate()));
|
__ Add(x1, frame_pointer(), kStackBase);
|
__ Mov(x0, backtrack_stackpointer());
|
ExternalReference grow_stack =
|
ExternalReference::re_grow_stack(isolate());
|
__ CallCFunction(grow_stack, 3);
|
// If return nullptr, we have failed to grow the stack, and
|
// must exit with a stack-overflow exception.
|
// Returning from the regexp code restores the stack (sp <- fp)
|
// so we don't need to drop the link register from it before exiting.
|
__ Cbz(w0, &exit_with_exception);
|
// Otherwise use return value as new stack pointer.
|
__ Mov(backtrack_stackpointer(), x0);
|
// Reset the cached registers.
|
__ PopCPURegList(cached_registers);
|
RestoreLinkRegister();
|
__ Ret();
|
}
|
|
if (exit_with_exception.is_linked()) {
|
__ Bind(&exit_with_exception);
|
__ Mov(w0, EXCEPTION);
|
__ B(&return_w0);
|
}
|
|
CodeDesc code_desc;
|
masm_->GetCode(isolate(), &code_desc);
|
Handle<Code> code = isolate()->factory()->NewCode(code_desc, Code::REGEXP,
|
masm_->CodeObject());
|
PROFILE(masm_->isolate(),
|
RegExpCodeCreateEvent(AbstractCode::cast(*code), *source));
|
return Handle<HeapObject>::cast(code);
|
}
|
|
|
void RegExpMacroAssemblerARM64::GoTo(Label* to) {
|
BranchOrBacktrack(al, to);
|
}
|
|
void RegExpMacroAssemblerARM64::IfRegisterGE(int reg, int comparand,
|
Label* if_ge) {
|
Register to_compare = GetRegister(reg, w10);
|
CompareAndBranchOrBacktrack(to_compare, comparand, ge, if_ge);
|
}
|
|
|
void RegExpMacroAssemblerARM64::IfRegisterLT(int reg, int comparand,
|
Label* if_lt) {
|
Register to_compare = GetRegister(reg, w10);
|
CompareAndBranchOrBacktrack(to_compare, comparand, lt, if_lt);
|
}
|
|
|
void RegExpMacroAssemblerARM64::IfRegisterEqPos(int reg, Label* if_eq) {
|
Register to_compare = GetRegister(reg, w10);
|
__ Cmp(to_compare, current_input_offset());
|
BranchOrBacktrack(eq, if_eq);
|
}
|
|
RegExpMacroAssembler::IrregexpImplementation
|
RegExpMacroAssemblerARM64::Implementation() {
|
return kARM64Implementation;
|
}
|
|
|
void RegExpMacroAssemblerARM64::LoadCurrentCharacter(int cp_offset,
|
Label* on_end_of_input,
|
bool check_bounds,
|
int characters) {
|
// TODO(pielan): Make sure long strings are caught before this, and not
|
// just asserted in debug mode.
|
// Be sane! (And ensure that an int32_t can be used to index the string)
|
DCHECK(cp_offset < (1<<30));
|
if (check_bounds) {
|
if (cp_offset >= 0) {
|
CheckPosition(cp_offset + characters - 1, on_end_of_input);
|
} else {
|
CheckPosition(cp_offset, on_end_of_input);
|
}
|
}
|
LoadCurrentCharacterUnchecked(cp_offset, characters);
|
}
|
|
|
void RegExpMacroAssemblerARM64::PopCurrentPosition() {
|
Pop(current_input_offset());
|
}
|
|
|
void RegExpMacroAssemblerARM64::PopRegister(int register_index) {
|
Pop(w10);
|
StoreRegister(register_index, w10);
|
}
|
|
|
void RegExpMacroAssemblerARM64::PushBacktrack(Label* label) {
|
if (label->is_bound()) {
|
int target = label->pos();
|
__ Mov(w10, target + Code::kHeaderSize - kHeapObjectTag);
|
} else {
|
__ Adr(x10, label, MacroAssembler::kAdrFar);
|
__ Sub(x10, x10, code_pointer());
|
if (masm_->emit_debug_code()) {
|
__ Cmp(x10, kWRegMask);
|
// The code offset has to fit in a W register.
|
__ Check(ls, AbortReason::kOffsetOutOfRange);
|
}
|
}
|
Push(w10);
|
CheckStackLimit();
|
}
|
|
|
void RegExpMacroAssemblerARM64::PushCurrentPosition() {
|
Push(current_input_offset());
|
}
|
|
|
void RegExpMacroAssemblerARM64::PushRegister(int register_index,
|
StackCheckFlag check_stack_limit) {
|
Register to_push = GetRegister(register_index, w10);
|
Push(to_push);
|
if (check_stack_limit) CheckStackLimit();
|
}
|
|
|
void RegExpMacroAssemblerARM64::ReadCurrentPositionFromRegister(int reg) {
|
RegisterState register_state = GetRegisterState(reg);
|
switch (register_state) {
|
case STACKED:
|
__ Ldr(current_input_offset(), register_location(reg));
|
break;
|
case CACHED_LSW:
|
__ Mov(current_input_offset(), GetCachedRegister(reg).W());
|
break;
|
case CACHED_MSW:
|
__ Lsr(current_input_offset().X(), GetCachedRegister(reg),
|
kWRegSizeInBits);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
}
|
|
|
void RegExpMacroAssemblerARM64::ReadStackPointerFromRegister(int reg) {
|
Register read_from = GetRegister(reg, w10);
|
__ Ldr(x11, MemOperand(frame_pointer(), kStackBase));
|
__ Add(backtrack_stackpointer(), x11, Operand(read_from, SXTW));
|
}
|
|
|
void RegExpMacroAssemblerARM64::SetCurrentPositionFromEnd(int by) {
|
Label after_position;
|
__ Cmp(current_input_offset(), -by * char_size());
|
__ B(ge, &after_position);
|
__ Mov(current_input_offset(), -by * char_size());
|
// On RegExp code entry (where this operation is used), the character before
|
// the current position is expected to be already loaded.
|
// We have advanced the position, so it's safe to read backwards.
|
LoadCurrentCharacterUnchecked(-1, 1);
|
__ Bind(&after_position);
|
}
|
|
|
void RegExpMacroAssemblerARM64::SetRegister(int register_index, int to) {
|
DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
|
Register set_to = wzr;
|
if (to != 0) {
|
set_to = w10;
|
__ Mov(set_to, to);
|
}
|
StoreRegister(register_index, set_to);
|
}
|
|
|
bool RegExpMacroAssemblerARM64::Succeed() {
|
__ B(&success_label_);
|
return global();
|
}
|
|
|
void RegExpMacroAssemblerARM64::WriteCurrentPositionToRegister(int reg,
|
int cp_offset) {
|
Register position = current_input_offset();
|
if (cp_offset != 0) {
|
position = w10;
|
__ Add(position, current_input_offset(), cp_offset * char_size());
|
}
|
StoreRegister(reg, position);
|
}
|
|
|
void RegExpMacroAssemblerARM64::ClearRegisters(int reg_from, int reg_to) {
|
DCHECK(reg_from <= reg_to);
|
int num_registers = reg_to - reg_from + 1;
|
|
// If the first capture register is cached in a hardware register but not
|
// aligned on a 64-bit one, we need to clear the first one specifically.
|
if ((reg_from < kNumCachedRegisters) && ((reg_from % 2) != 0)) {
|
StoreRegister(reg_from, string_start_minus_one());
|
num_registers--;
|
reg_from++;
|
}
|
|
// Clear cached registers in pairs as far as possible.
|
while ((num_registers >= 2) && (reg_from < kNumCachedRegisters)) {
|
DCHECK(GetRegisterState(reg_from) == CACHED_LSW);
|
__ Mov(GetCachedRegister(reg_from), twice_non_position_value());
|
reg_from += 2;
|
num_registers -= 2;
|
}
|
|
if ((num_registers % 2) == 1) {
|
StoreRegister(reg_from, string_start_minus_one());
|
num_registers--;
|
reg_from++;
|
}
|
|
if (num_registers > 0) {
|
// If there are some remaining registers, they are stored on the stack.
|
DCHECK_LE(kNumCachedRegisters, reg_from);
|
|
// Move down the indexes of the registers on stack to get the correct offset
|
// in memory.
|
reg_from -= kNumCachedRegisters;
|
reg_to -= kNumCachedRegisters;
|
// We should not unroll the loop for less than 2 registers.
|
STATIC_ASSERT(kNumRegistersToUnroll > 2);
|
// We position the base pointer to (reg_from + 1).
|
int base_offset = kFirstRegisterOnStack -
|
kWRegSize - (kWRegSize * reg_from);
|
if (num_registers > kNumRegistersToUnroll) {
|
Register base = x10;
|
__ Add(base, frame_pointer(), base_offset);
|
|
Label loop;
|
__ Mov(x11, num_registers);
|
__ Bind(&loop);
|
__ Str(twice_non_position_value(),
|
MemOperand(base, -kPointerSize, PostIndex));
|
__ Sub(x11, x11, 2);
|
__ Cbnz(x11, &loop);
|
} else {
|
for (int i = reg_from; i <= reg_to; i += 2) {
|
__ Str(twice_non_position_value(),
|
MemOperand(frame_pointer(), base_offset));
|
base_offset -= kWRegSize * 2;
|
}
|
}
|
}
|
}
|
|
|
void RegExpMacroAssemblerARM64::WriteStackPointerToRegister(int reg) {
|
__ Ldr(x10, MemOperand(frame_pointer(), kStackBase));
|
__ Sub(x10, backtrack_stackpointer(), x10);
|
if (masm_->emit_debug_code()) {
|
__ Cmp(x10, Operand(w10, SXTW));
|
// The stack offset needs to fit in a W register.
|
__ Check(eq, AbortReason::kOffsetOutOfRange);
|
}
|
StoreRegister(reg, w10);
|
}
|
|
|
// Helper function for reading a value out of a stack frame.
|
template <typename T>
|
static T& frame_entry(Address re_frame, int frame_offset) {
|
return *reinterpret_cast<T*>(re_frame + frame_offset);
|
}
|
|
|
template <typename T>
|
static T* frame_entry_address(Address re_frame, int frame_offset) {
|
return reinterpret_cast<T*>(re_frame + frame_offset);
|
}
|
|
|
int RegExpMacroAssemblerARM64::CheckStackGuardState(
|
Address* return_address, Code* re_code, Address re_frame, int start_index,
|
const byte** input_start, const byte** input_end) {
|
return NativeRegExpMacroAssembler::CheckStackGuardState(
|
frame_entry<Isolate*>(re_frame, kIsolate), start_index,
|
frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
|
frame_entry_address<String*>(re_frame, kInput), input_start, input_end);
|
}
|
|
|
void RegExpMacroAssemblerARM64::CheckPosition(int cp_offset,
|
Label* on_outside_input) {
|
if (cp_offset >= 0) {
|
CompareAndBranchOrBacktrack(current_input_offset(),
|
-cp_offset * char_size(), ge, on_outside_input);
|
} else {
|
__ Add(w12, current_input_offset(), Operand(cp_offset * char_size()));
|
__ Cmp(w12, string_start_minus_one());
|
BranchOrBacktrack(le, on_outside_input);
|
}
|
}
|
|
|
// Private methods:
|
|
void RegExpMacroAssemblerARM64::CallCheckStackGuardState(Register scratch) {
|
// Allocate space on the stack to store the return address. The
|
// CheckStackGuardState C++ function will override it if the code
|
// moved. Allocate extra space for 2 arguments passed by pointers.
|
// AAPCS64 requires the stack to be 16 byte aligned.
|
int alignment = masm_->ActivationFrameAlignment();
|
DCHECK_EQ(alignment % 16, 0);
|
int align_mask = (alignment / kXRegSize) - 1;
|
int xreg_to_claim = (3 + align_mask) & ~align_mask;
|
|
__ Claim(xreg_to_claim);
|
|
// CheckStackGuardState needs the end and start addresses of the input string.
|
__ Poke(input_end(), 2 * kPointerSize);
|
__ Add(x5, sp, 2 * kPointerSize);
|
__ Poke(input_start(), kPointerSize);
|
__ Add(x4, sp, kPointerSize);
|
|
__ Mov(w3, start_offset());
|
// RegExp code frame pointer.
|
__ Mov(x2, frame_pointer());
|
// Code* of self.
|
__ Mov(x1, Operand(masm_->CodeObject()));
|
|
// We need to pass a pointer to the return address as first argument.
|
// The DirectCEntry stub will place the return address on the stack before
|
// calling so the stack pointer will point to it.
|
__ Mov(x0, sp);
|
|
ExternalReference check_stack_guard_state =
|
ExternalReference::re_check_stack_guard_state(isolate());
|
__ Mov(scratch, check_stack_guard_state);
|
DirectCEntryStub stub(isolate());
|
stub.GenerateCall(masm_, scratch);
|
|
// The input string may have been moved in memory, we need to reload it.
|
__ Peek(input_start(), kPointerSize);
|
__ Peek(input_end(), 2 * kPointerSize);
|
|
__ Drop(xreg_to_claim);
|
|
// Reload the Code pointer.
|
__ Mov(code_pointer(), Operand(masm_->CodeObject()));
|
}
|
|
void RegExpMacroAssemblerARM64::BranchOrBacktrack(Condition condition,
|
Label* to) {
|
if (condition == al) { // Unconditional.
|
if (to == nullptr) {
|
Backtrack();
|
return;
|
}
|
__ B(to);
|
return;
|
}
|
if (to == nullptr) {
|
to = &backtrack_label_;
|
}
|
__ B(condition, to);
|
}
|
|
void RegExpMacroAssemblerARM64::CompareAndBranchOrBacktrack(Register reg,
|
int immediate,
|
Condition condition,
|
Label* to) {
|
if ((immediate == 0) && ((condition == eq) || (condition == ne))) {
|
if (to == nullptr) {
|
to = &backtrack_label_;
|
}
|
if (condition == eq) {
|
__ Cbz(reg, to);
|
} else {
|
__ Cbnz(reg, to);
|
}
|
} else {
|
__ Cmp(reg, immediate);
|
BranchOrBacktrack(condition, to);
|
}
|
}
|
|
|
void RegExpMacroAssemblerARM64::CheckPreemption() {
|
// Check for preemption.
|
ExternalReference stack_limit =
|
ExternalReference::address_of_stack_limit(isolate());
|
__ Mov(x10, stack_limit);
|
__ Ldr(x10, MemOperand(x10));
|
__ Cmp(sp, x10);
|
CallIf(&check_preempt_label_, ls);
|
}
|
|
|
void RegExpMacroAssemblerARM64::CheckStackLimit() {
|
ExternalReference stack_limit =
|
ExternalReference::address_of_regexp_stack_limit(isolate());
|
__ Mov(x10, stack_limit);
|
__ Ldr(x10, MemOperand(x10));
|
__ Cmp(backtrack_stackpointer(), x10);
|
CallIf(&stack_overflow_label_, ls);
|
}
|
|
|
void RegExpMacroAssemblerARM64::Push(Register source) {
|
DCHECK(source.Is32Bits());
|
DCHECK(!source.is(backtrack_stackpointer()));
|
__ Str(source,
|
MemOperand(backtrack_stackpointer(),
|
-static_cast<int>(kWRegSize),
|
PreIndex));
|
}
|
|
|
void RegExpMacroAssemblerARM64::Pop(Register target) {
|
DCHECK(target.Is32Bits());
|
DCHECK(!target.is(backtrack_stackpointer()));
|
__ Ldr(target,
|
MemOperand(backtrack_stackpointer(), kWRegSize, PostIndex));
|
}
|
|
|
Register RegExpMacroAssemblerARM64::GetCachedRegister(int register_index) {
|
DCHECK_GT(kNumCachedRegisters, register_index);
|
return Register::Create(register_index / 2, kXRegSizeInBits);
|
}
|
|
|
Register RegExpMacroAssemblerARM64::GetRegister(int register_index,
|
Register maybe_result) {
|
DCHECK(maybe_result.Is32Bits());
|
DCHECK_LE(0, register_index);
|
if (num_registers_ <= register_index) {
|
num_registers_ = register_index + 1;
|
}
|
Register result = NoReg;
|
RegisterState register_state = GetRegisterState(register_index);
|
switch (register_state) {
|
case STACKED:
|
__ Ldr(maybe_result, register_location(register_index));
|
result = maybe_result;
|
break;
|
case CACHED_LSW:
|
result = GetCachedRegister(register_index).W();
|
break;
|
case CACHED_MSW:
|
__ Lsr(maybe_result.X(), GetCachedRegister(register_index),
|
kWRegSizeInBits);
|
result = maybe_result;
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
DCHECK(result.Is32Bits());
|
return result;
|
}
|
|
|
void RegExpMacroAssemblerARM64::StoreRegister(int register_index,
|
Register source) {
|
DCHECK(source.Is32Bits());
|
DCHECK_LE(0, register_index);
|
if (num_registers_ <= register_index) {
|
num_registers_ = register_index + 1;
|
}
|
|
RegisterState register_state = GetRegisterState(register_index);
|
switch (register_state) {
|
case STACKED:
|
__ Str(source, register_location(register_index));
|
break;
|
case CACHED_LSW: {
|
Register cached_register = GetCachedRegister(register_index);
|
if (!source.Is(cached_register.W())) {
|
__ Bfi(cached_register, source.X(), 0, kWRegSizeInBits);
|
}
|
break;
|
}
|
case CACHED_MSW: {
|
Register cached_register = GetCachedRegister(register_index);
|
__ Bfi(cached_register, source.X(), kWRegSizeInBits, kWRegSizeInBits);
|
break;
|
}
|
default:
|
UNREACHABLE();
|
break;
|
}
|
}
|
|
|
void RegExpMacroAssemblerARM64::CallIf(Label* to, Condition condition) {
|
Label skip_call;
|
if (condition != al) __ B(&skip_call, NegateCondition(condition));
|
__ Bl(to);
|
__ Bind(&skip_call);
|
}
|
|
|
void RegExpMacroAssemblerARM64::RestoreLinkRegister() {
|
__ Pop(lr, xzr);
|
__ Add(lr, lr, Operand(masm_->CodeObject()));
|
}
|
|
|
void RegExpMacroAssemblerARM64::SaveLinkRegister() {
|
__ Sub(lr, lr, Operand(masm_->CodeObject()));
|
__ Push(xzr, lr);
|
}
|
|
|
MemOperand RegExpMacroAssemblerARM64::register_location(int register_index) {
|
DCHECK(register_index < (1<<30));
|
DCHECK_LE(kNumCachedRegisters, register_index);
|
if (num_registers_ <= register_index) {
|
num_registers_ = register_index + 1;
|
}
|
register_index -= kNumCachedRegisters;
|
int offset = kFirstRegisterOnStack - register_index * kWRegSize;
|
return MemOperand(frame_pointer(), offset);
|
}
|
|
MemOperand RegExpMacroAssemblerARM64::capture_location(int register_index,
|
Register scratch) {
|
DCHECK(register_index < (1<<30));
|
DCHECK(register_index < num_saved_registers_);
|
DCHECK_LE(kNumCachedRegisters, register_index);
|
DCHECK_EQ(register_index % 2, 0);
|
register_index -= kNumCachedRegisters;
|
int offset = kFirstCaptureOnStack - register_index * kWRegSize;
|
// capture_location is used with Stp instructions to load/store 2 registers.
|
// The immediate field in the encoding is limited to 7 bits (signed).
|
if (is_int7(offset)) {
|
return MemOperand(frame_pointer(), offset);
|
} else {
|
__ Add(scratch, frame_pointer(), offset);
|
return MemOperand(scratch);
|
}
|
}
|
|
void RegExpMacroAssemblerARM64::LoadCurrentCharacterUnchecked(int cp_offset,
|
int characters) {
|
Register offset = current_input_offset();
|
|
// The ldr, str, ldrh, strh instructions can do unaligned accesses, if the CPU
|
// and the operating system running on the target allow it.
|
// If unaligned load/stores are not supported then this function must only
|
// be used to load a single character at a time.
|
|
// ARMv8 supports unaligned accesses but V8 or the kernel can decide to
|
// disable it.
|
// TODO(pielan): See whether or not we should disable unaligned accesses.
|
if (!CanReadUnaligned()) {
|
DCHECK_EQ(1, characters);
|
}
|
|
if (cp_offset != 0) {
|
if (masm_->emit_debug_code()) {
|
__ Mov(x10, cp_offset * char_size());
|
__ Add(x10, x10, Operand(current_input_offset(), SXTW));
|
__ Cmp(x10, Operand(w10, SXTW));
|
// The offset needs to fit in a W register.
|
__ Check(eq, AbortReason::kOffsetOutOfRange);
|
} else {
|
__ Add(w10, current_input_offset(), cp_offset * char_size());
|
}
|
offset = w10;
|
}
|
|
if (mode_ == LATIN1) {
|
if (characters == 4) {
|
__ Ldr(current_character(), MemOperand(input_end(), offset, SXTW));
|
} else if (characters == 2) {
|
__ Ldrh(current_character(), MemOperand(input_end(), offset, SXTW));
|
} else {
|
DCHECK_EQ(1, characters);
|
__ Ldrb(current_character(), MemOperand(input_end(), offset, SXTW));
|
}
|
} else {
|
DCHECK(mode_ == UC16);
|
if (characters == 2) {
|
__ Ldr(current_character(), MemOperand(input_end(), offset, SXTW));
|
} else {
|
DCHECK_EQ(1, characters);
|
__ Ldrh(current_character(), MemOperand(input_end(), offset, SXTW));
|
}
|
}
|
}
|
|
#endif // V8_INTERPRETED_REGEXP
|
|
} // namespace internal
|
} // namespace v8
|
|
#undef __
|
|
#endif // V8_TARGET_ARCH_ARM64
|