// Copyright (c) 1994-2006 Sun Microsystems Inc.
|
// All Rights Reserved.
|
//
|
// Redistribution and use in source and binary forms, with or without
|
// modification, are permitted provided that the following conditions
|
// are met:
|
//
|
// - Redistributions of source code must retain the above copyright notice,
|
// this list of conditions and the following disclaimer.
|
//
|
// - Redistribution in binary form must reproduce the above copyright
|
// notice, this list of conditions and the following disclaimer in the
|
// documentation and/or other materials provided with the
|
// distribution.
|
//
|
// - Neither the name of Sun Microsystems or the names of contributors may
|
// be used to endorse or promote products derived from this software without
|
// specific prior written permission.
|
//
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
// OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
// The original source code covered by the above license above has been modified
|
// significantly by Google Inc.
|
// Copyright 2014 the V8 project authors. All rights reserved.
|
|
#ifndef V8_PPC_ASSEMBLER_PPC_INL_H_
|
#define V8_PPC_ASSEMBLER_PPC_INL_H_
|
|
#include "src/ppc/assembler-ppc.h"
|
|
#include "src/assembler.h"
|
#include "src/debug/debug.h"
|
#include "src/objects-inl.h"
|
|
namespace v8 {
|
namespace internal {
|
|
bool CpuFeatures::SupportsOptimizer() { return true; }
|
|
bool CpuFeatures::SupportsWasmSimd128() { return false; }
|
|
void RelocInfo::apply(intptr_t delta) {
|
// absolute code pointer inside code object moves with the code object.
|
if (IsInternalReference(rmode_)) {
|
// Jump table entry
|
Address target = Memory<Address>(pc_);
|
Memory<Address>(pc_) = target + delta;
|
} else {
|
// mov sequence
|
DCHECK(IsInternalReferenceEncoded(rmode_));
|
Address target = Assembler::target_address_at(pc_, constant_pool_);
|
Assembler::set_target_address_at(pc_, constant_pool_, target + delta,
|
SKIP_ICACHE_FLUSH);
|
}
|
}
|
|
|
Address RelocInfo::target_internal_reference() {
|
if (IsInternalReference(rmode_)) {
|
// Jump table entry
|
return Memory<Address>(pc_);
|
} else {
|
// mov sequence
|
DCHECK(IsInternalReferenceEncoded(rmode_));
|
return Assembler::target_address_at(pc_, constant_pool_);
|
}
|
}
|
|
|
Address RelocInfo::target_internal_reference_address() {
|
DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
|
return pc_;
|
}
|
|
|
Address RelocInfo::target_address() {
|
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_));
|
return Assembler::target_address_at(pc_, constant_pool_);
|
}
|
|
Address RelocInfo::target_address_address() {
|
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_) ||
|
IsEmbeddedObject(rmode_) || IsExternalReference(rmode_) ||
|
IsOffHeapTarget(rmode_));
|
|
if (FLAG_enable_embedded_constant_pool &&
|
Assembler::IsConstantPoolLoadStart(pc_)) {
|
// We return the PC for embedded constant pool since this function is used
|
// by the serializer and expects the address to reside within the code
|
// object.
|
return pc_;
|
}
|
|
// Read the address of the word containing the target_address in an
|
// instruction stream.
|
// The only architecture-independent user of this function is the serializer.
|
// The serializer uses it to find out how many raw bytes of instruction to
|
// output before the next target.
|
// For an instruction like LIS/ORI where the target bits are mixed into the
|
// instruction bits, the size of the target will be zero, indicating that the
|
// serializer should not step forward in memory after a target is resolved
|
// and written.
|
return pc_;
|
}
|
|
|
Address RelocInfo::constant_pool_entry_address() {
|
if (FLAG_enable_embedded_constant_pool) {
|
DCHECK(constant_pool_);
|
ConstantPoolEntry::Access access;
|
if (Assembler::IsConstantPoolLoadStart(pc_, &access))
|
return Assembler::target_constant_pool_address_at(
|
pc_, constant_pool_, access, ConstantPoolEntry::INTPTR);
|
}
|
UNREACHABLE();
|
}
|
|
|
int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; }
|
|
Address Assembler::target_address_from_return_address(Address pc) {
|
// Returns the address of the call target from the return address that will
|
// be returned to after a call.
|
// Call sequence is :
|
// mov ip, @ call address
|
// mtlr ip
|
// blrl
|
// @ return address
|
int len;
|
ConstantPoolEntry::Access access;
|
if (FLAG_enable_embedded_constant_pool &&
|
IsConstantPoolLoadEnd(pc - 3 * kInstrSize, &access)) {
|
len = (access == ConstantPoolEntry::OVERFLOWED) ? 2 : 1;
|
} else {
|
len = kMovInstructionsNoConstantPool;
|
}
|
return pc - (len + 2) * kInstrSize;
|
}
|
|
|
Address Assembler::return_address_from_call_start(Address pc) {
|
int len;
|
ConstantPoolEntry::Access access;
|
if (FLAG_enable_embedded_constant_pool &&
|
IsConstantPoolLoadStart(pc, &access)) {
|
len = (access == ConstantPoolEntry::OVERFLOWED) ? 2 : 1;
|
} else {
|
len = kMovInstructionsNoConstantPool;
|
}
|
return pc + (len + 2) * kInstrSize;
|
}
|
|
HeapObject* RelocInfo::target_object() {
|
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
return HeapObject::cast(reinterpret_cast<Object*>(
|
Assembler::target_address_at(pc_, constant_pool_)));
|
}
|
|
Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
|
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
return Handle<HeapObject>(reinterpret_cast<HeapObject**>(
|
Assembler::target_address_at(pc_, constant_pool_)));
|
}
|
|
void RelocInfo::set_target_object(Heap* heap, HeapObject* target,
|
WriteBarrierMode write_barrier_mode,
|
ICacheFlushMode icache_flush_mode) {
|
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
Assembler::set_target_address_at(pc_, constant_pool_,
|
reinterpret_cast<Address>(target),
|
icache_flush_mode);
|
if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != nullptr) {
|
WriteBarrierForCode(host(), this, target);
|
}
|
}
|
|
|
Address RelocInfo::target_external_reference() {
|
DCHECK(rmode_ == EXTERNAL_REFERENCE);
|
return Assembler::target_address_at(pc_, constant_pool_);
|
}
|
|
void RelocInfo::set_target_external_reference(
|
Address target, ICacheFlushMode icache_flush_mode) {
|
DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
|
Assembler::set_target_address_at(pc_, constant_pool_, target,
|
icache_flush_mode);
|
}
|
|
Address RelocInfo::target_runtime_entry(Assembler* origin) {
|
DCHECK(IsRuntimeEntry(rmode_));
|
return target_address();
|
}
|
|
void RelocInfo::set_target_runtime_entry(Address target,
|
WriteBarrierMode write_barrier_mode,
|
ICacheFlushMode icache_flush_mode) {
|
DCHECK(IsRuntimeEntry(rmode_));
|
if (target_address() != target)
|
set_target_address(target, write_barrier_mode, icache_flush_mode);
|
}
|
|
Address RelocInfo::target_off_heap_target() {
|
DCHECK(IsOffHeapTarget(rmode_));
|
return Assembler::target_address_at(pc_, constant_pool_);
|
}
|
|
void RelocInfo::WipeOut() {
|
DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
|
IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
|
IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_) ||
|
IsOffHeapTarget(rmode_));
|
if (IsInternalReference(rmode_)) {
|
// Jump table entry
|
Memory<Address>(pc_) = kNullAddress;
|
} else if (IsInternalReferenceEncoded(rmode_) || IsOffHeapTarget(rmode_)) {
|
// mov sequence
|
// Currently used only by deserializer, no need to flush.
|
Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress,
|
SKIP_ICACHE_FLUSH);
|
} else {
|
Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress);
|
}
|
}
|
|
template <typename ObjectVisitor>
|
void RelocInfo::Visit(ObjectVisitor* visitor) {
|
RelocInfo::Mode mode = rmode();
|
if (mode == RelocInfo::EMBEDDED_OBJECT) {
|
visitor->VisitEmbeddedPointer(host(), this);
|
} else if (RelocInfo::IsCodeTargetMode(mode)) {
|
visitor->VisitCodeTarget(host(), this);
|
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
|
visitor->VisitExternalReference(host(), this);
|
} else if (mode == RelocInfo::INTERNAL_REFERENCE ||
|
mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
|
visitor->VisitInternalReference(host(), this);
|
} else if (IsRuntimeEntry(mode)) {
|
visitor->VisitRuntimeEntry(host(), this);
|
} else if (RelocInfo::IsOffHeapTarget(mode)) {
|
visitor->VisitOffHeapTarget(host(), this);
|
}
|
}
|
|
Operand::Operand(Register rm) : rm_(rm), rmode_(RelocInfo::NONE) {}
|
|
void Assembler::UntrackBranch() {
|
DCHECK(!trampoline_emitted_);
|
DCHECK_GT(tracked_branch_count_, 0);
|
int count = --tracked_branch_count_;
|
if (count == 0) {
|
// Reset
|
next_trampoline_check_ = kMaxInt;
|
} else {
|
next_trampoline_check_ += kTrampolineSlotsSize;
|
}
|
}
|
|
// Fetch the 32bit value from the FIXED_SEQUENCE lis/ori
|
Address Assembler::target_address_at(Address pc, Address constant_pool) {
|
if (FLAG_enable_embedded_constant_pool && constant_pool) {
|
ConstantPoolEntry::Access access;
|
if (IsConstantPoolLoadStart(pc, &access))
|
return Memory<Address>(target_constant_pool_address_at(
|
pc, constant_pool, access, ConstantPoolEntry::INTPTR));
|
}
|
|
Instr instr1 = instr_at(pc);
|
Instr instr2 = instr_at(pc + kInstrSize);
|
// Interpret 2 instructions generated by lis/ori
|
if (IsLis(instr1) && IsOri(instr2)) {
|
#if V8_TARGET_ARCH_PPC64
|
Instr instr4 = instr_at(pc + (3 * kInstrSize));
|
Instr instr5 = instr_at(pc + (4 * kInstrSize));
|
// Assemble the 64 bit value.
|
uint64_t hi = (static_cast<uint32_t>((instr1 & kImm16Mask) << 16) |
|
static_cast<uint32_t>(instr2 & kImm16Mask));
|
uint64_t lo = (static_cast<uint32_t>((instr4 & kImm16Mask) << 16) |
|
static_cast<uint32_t>(instr5 & kImm16Mask));
|
return static_cast<Address>((hi << 32) | lo);
|
#else
|
// Assemble the 32 bit value.
|
return static_cast<Address>(((instr1 & kImm16Mask) << 16) |
|
(instr2 & kImm16Mask));
|
#endif
|
}
|
|
UNREACHABLE();
|
}
|
|
|
#if V8_TARGET_ARCH_PPC64
|
const uint32_t kLoadIntptrOpcode = LD;
|
#else
|
const uint32_t kLoadIntptrOpcode = LWZ;
|
#endif
|
|
// Constant pool load sequence detection:
|
// 1) REGULAR access:
|
// load <dst>, kConstantPoolRegister + <offset>
|
//
|
// 2) OVERFLOWED access:
|
// addis <scratch>, kConstantPoolRegister, <offset_high>
|
// load <dst>, <scratch> + <offset_low>
|
bool Assembler::IsConstantPoolLoadStart(Address pc,
|
ConstantPoolEntry::Access* access) {
|
Instr instr = instr_at(pc);
|
uint32_t opcode = instr & kOpcodeMask;
|
if (GetRA(instr) != kConstantPoolRegister) return false;
|
bool overflowed = (opcode == ADDIS);
|
#ifdef DEBUG
|
if (overflowed) {
|
opcode = instr_at(pc + kInstrSize) & kOpcodeMask;
|
}
|
DCHECK(opcode == kLoadIntptrOpcode || opcode == LFD);
|
#endif
|
if (access) {
|
*access = (overflowed ? ConstantPoolEntry::OVERFLOWED
|
: ConstantPoolEntry::REGULAR);
|
}
|
return true;
|
}
|
|
|
bool Assembler::IsConstantPoolLoadEnd(Address pc,
|
ConstantPoolEntry::Access* access) {
|
Instr instr = instr_at(pc);
|
uint32_t opcode = instr & kOpcodeMask;
|
bool overflowed = false;
|
if (!(opcode == kLoadIntptrOpcode || opcode == LFD)) return false;
|
if (GetRA(instr) != kConstantPoolRegister) {
|
instr = instr_at(pc - kInstrSize);
|
opcode = instr & kOpcodeMask;
|
if ((opcode != ADDIS) || GetRA(instr) != kConstantPoolRegister) {
|
return false;
|
}
|
overflowed = true;
|
}
|
if (access) {
|
*access = (overflowed ? ConstantPoolEntry::OVERFLOWED
|
: ConstantPoolEntry::REGULAR);
|
}
|
return true;
|
}
|
|
|
int Assembler::GetConstantPoolOffset(Address pc,
|
ConstantPoolEntry::Access access,
|
ConstantPoolEntry::Type type) {
|
bool overflowed = (access == ConstantPoolEntry::OVERFLOWED);
|
#ifdef DEBUG
|
ConstantPoolEntry::Access access_check =
|
static_cast<ConstantPoolEntry::Access>(-1);
|
DCHECK(IsConstantPoolLoadStart(pc, &access_check));
|
DCHECK(access_check == access);
|
#endif
|
int offset;
|
if (overflowed) {
|
offset = (instr_at(pc) & kImm16Mask) << 16;
|
offset += SIGN_EXT_IMM16(instr_at(pc + kInstrSize) & kImm16Mask);
|
DCHECK(!is_int16(offset));
|
} else {
|
offset = SIGN_EXT_IMM16((instr_at(pc) & kImm16Mask));
|
}
|
return offset;
|
}
|
|
|
void Assembler::PatchConstantPoolAccessInstruction(
|
int pc_offset, int offset, ConstantPoolEntry::Access access,
|
ConstantPoolEntry::Type type) {
|
Address pc = reinterpret_cast<Address>(buffer_) + pc_offset;
|
bool overflowed = (access == ConstantPoolEntry::OVERFLOWED);
|
CHECK(overflowed != is_int16(offset));
|
#ifdef DEBUG
|
ConstantPoolEntry::Access access_check =
|
static_cast<ConstantPoolEntry::Access>(-1);
|
DCHECK(IsConstantPoolLoadStart(pc, &access_check));
|
DCHECK(access_check == access);
|
#endif
|
if (overflowed) {
|
int hi_word = static_cast<int>(offset >> 16);
|
int lo_word = static_cast<int>(offset & 0xffff);
|
if (lo_word & 0x8000) hi_word++;
|
|
Instr instr1 = instr_at(pc);
|
Instr instr2 = instr_at(pc + kInstrSize);
|
instr1 &= ~kImm16Mask;
|
instr1 |= (hi_word & kImm16Mask);
|
instr2 &= ~kImm16Mask;
|
instr2 |= (lo_word & kImm16Mask);
|
instr_at_put(pc, instr1);
|
instr_at_put(pc + kInstrSize, instr2);
|
} else {
|
Instr instr = instr_at(pc);
|
instr &= ~kImm16Mask;
|
instr |= (offset & kImm16Mask);
|
instr_at_put(pc, instr);
|
}
|
}
|
|
|
Address Assembler::target_constant_pool_address_at(
|
Address pc, Address constant_pool, ConstantPoolEntry::Access access,
|
ConstantPoolEntry::Type type) {
|
Address addr = constant_pool;
|
DCHECK(addr);
|
addr += GetConstantPoolOffset(pc, access, type);
|
return addr;
|
}
|
|
|
// This sets the branch destination (which gets loaded at the call address).
|
// This is for calls and branches within generated code. The serializer
|
// has already deserialized the mov instructions etc.
|
// There is a FIXED_SEQUENCE assumption here
|
void Assembler::deserialization_set_special_target_at(
|
Address instruction_payload, Code* code, Address target) {
|
set_target_address_at(instruction_payload,
|
code ? code->constant_pool() : kNullAddress, target);
|
}
|
|
int Assembler::deserialization_special_target_size(
|
Address instruction_payload) {
|
return kSpecialTargetSize;
|
}
|
|
void Assembler::deserialization_set_target_internal_reference_at(
|
Address pc, Address target, RelocInfo::Mode mode) {
|
if (RelocInfo::IsInternalReferenceEncoded(mode)) {
|
set_target_address_at(pc, kNullAddress, target, SKIP_ICACHE_FLUSH);
|
} else {
|
Memory<Address>(pc) = target;
|
}
|
}
|
|
|
// This code assumes the FIXED_SEQUENCE of lis/ori
|
void Assembler::set_target_address_at(Address pc, Address constant_pool,
|
Address target,
|
ICacheFlushMode icache_flush_mode) {
|
if (FLAG_enable_embedded_constant_pool && constant_pool) {
|
ConstantPoolEntry::Access access;
|
if (IsConstantPoolLoadStart(pc, &access)) {
|
Memory<Address>(target_constant_pool_address_at(
|
pc, constant_pool, access, ConstantPoolEntry::INTPTR)) = target;
|
return;
|
}
|
}
|
|
Instr instr1 = instr_at(pc);
|
Instr instr2 = instr_at(pc + kInstrSize);
|
// Interpret 2 instructions generated by lis/ori
|
if (IsLis(instr1) && IsOri(instr2)) {
|
#if V8_TARGET_ARCH_PPC64
|
Instr instr4 = instr_at(pc + (3 * kInstrSize));
|
Instr instr5 = instr_at(pc + (4 * kInstrSize));
|
// Needs to be fixed up when mov changes to handle 64-bit values.
|
uint32_t* p = reinterpret_cast<uint32_t*>(pc);
|
uintptr_t itarget = static_cast<uintptr_t>(target);
|
|
instr5 &= ~kImm16Mask;
|
instr5 |= itarget & kImm16Mask;
|
itarget = itarget >> 16;
|
|
instr4 &= ~kImm16Mask;
|
instr4 |= itarget & kImm16Mask;
|
itarget = itarget >> 16;
|
|
instr2 &= ~kImm16Mask;
|
instr2 |= itarget & kImm16Mask;
|
itarget = itarget >> 16;
|
|
instr1 &= ~kImm16Mask;
|
instr1 |= itarget & kImm16Mask;
|
itarget = itarget >> 16;
|
|
*p = instr1;
|
*(p + 1) = instr2;
|
*(p + 3) = instr4;
|
*(p + 4) = instr5;
|
if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
|
Assembler::FlushICache(p, 5 * kInstrSize);
|
}
|
#else
|
uint32_t* p = reinterpret_cast<uint32_t*>(pc);
|
uint32_t itarget = static_cast<uint32_t>(target);
|
int lo_word = itarget & kImm16Mask;
|
int hi_word = itarget >> 16;
|
instr1 &= ~kImm16Mask;
|
instr1 |= hi_word;
|
instr2 &= ~kImm16Mask;
|
instr2 |= lo_word;
|
|
*p = instr1;
|
*(p + 1) = instr2;
|
if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
|
Assembler::FlushICache(p, 2 * kInstrSize);
|
}
|
#endif
|
return;
|
}
|
UNREACHABLE();
|
}
|
} // namespace internal
|
} // namespace v8
|
|
#endif // V8_PPC_ASSEMBLER_PPC_INL_H_
|