// Copyright 2012 the V8 project authors. All rights reserved.
|
// Use of this source code is governed by a BSD-style license that can be
|
// found in the LICENSE file.
|
//
|
// Review notes:
|
//
|
// - The use of macros in these inline functions may seem superfluous
|
// but it is absolutely needed to make sure gcc generates optimal
|
// code. gcc is not happy when attempting to inline too deep.
|
//
|
|
#ifndef V8_OBJECTS_INL_H_
|
#define V8_OBJECTS_INL_H_
|
|
#include "src/objects.h"
|
|
#include "src/base/atomicops.h"
|
#include "src/base/bits.h"
|
#include "src/base/tsan.h"
|
#include "src/builtins/builtins.h"
|
#include "src/contexts-inl.h"
|
#include "src/conversions-inl.h"
|
#include "src/feedback-vector-inl.h"
|
#include "src/field-index-inl.h"
|
#include "src/handles-inl.h"
|
#include "src/heap/factory.h"
|
#include "src/heap/heap-inl.h"
|
#include "src/isolate-inl.h"
|
#include "src/keys.h"
|
#include "src/layout-descriptor-inl.h"
|
#include "src/lookup-cache-inl.h"
|
#include "src/lookup-inl.h"
|
#include "src/maybe-handles-inl.h"
|
#include "src/objects/bigint.h"
|
#include "src/objects/descriptor-array.h"
|
#include "src/objects/js-proxy-inl.h"
|
#include "src/objects/literal-objects.h"
|
#include "src/objects/maybe-object-inl.h"
|
#include "src/objects/regexp-match-info.h"
|
#include "src/objects/scope-info.h"
|
#include "src/objects/template-objects.h"
|
#include "src/objects/templates.h"
|
#include "src/property-details.h"
|
#include "src/property.h"
|
#include "src/prototype-inl.h"
|
#include "src/roots-inl.h"
|
#include "src/transitions-inl.h"
|
#include "src/v8memory.h"
|
|
// Has to be the last include (doesn't have include guards):
|
#include "src/objects/object-macros.h"
|
|
namespace v8 {
|
namespace internal {
|
|
PropertyDetails::PropertyDetails(Smi* smi) {
|
value_ = smi->value();
|
}
|
|
|
Smi* PropertyDetails::AsSmi() const {
|
// Ensure the upper 2 bits have the same value by sign extending it. This is
|
// necessary to be able to use the 31st bit of the property details.
|
int value = value_ << 1;
|
return Smi::FromInt(value >> 1);
|
}
|
|
|
int PropertyDetails::field_width_in_words() const {
|
DCHECK_EQ(location(), kField);
|
if (!FLAG_unbox_double_fields) return 1;
|
if (kDoubleSize == kPointerSize) return 1;
|
return representation().IsDouble() ? kDoubleSize / kPointerSize : 1;
|
}
|
|
namespace InstanceTypeChecker {
|
|
// Define type checkers for classes with single instance type.
|
INSTANCE_TYPE_CHECKERS_SINGLE(INSTANCE_TYPE_CHECKER);
|
|
#define TYPED_ARRAY_INSTANCE_TYPE_CHECKER(Type, type, TYPE, ctype) \
|
INSTANCE_TYPE_CHECKER(Fixed##Type##Array, FIXED_##TYPE##_ARRAY_TYPE)
|
TYPED_ARRAYS(TYPED_ARRAY_INSTANCE_TYPE_CHECKER)
|
#undef TYPED_ARRAY_INSTANCE_TYPE_CHECKER
|
|
#define STRUCT_INSTANCE_TYPE_CHECKER(NAME, Name, name) \
|
INSTANCE_TYPE_CHECKER(Name, NAME##_TYPE)
|
STRUCT_LIST(STRUCT_INSTANCE_TYPE_CHECKER)
|
#undef STRUCT_INSTANCE_TYPE_CHECKER
|
|
// Define type checkers for classes with ranges of instance types.
|
#define INSTANCE_TYPE_CHECKER_RANGE(type, first_instance_type, \
|
last_instance_type) \
|
V8_INLINE bool Is##type(InstanceType instance_type) { \
|
return instance_type >= first_instance_type && \
|
instance_type <= last_instance_type; \
|
}
|
INSTANCE_TYPE_CHECKERS_RANGE(INSTANCE_TYPE_CHECKER_RANGE);
|
#undef INSTANCE_TYPE_CHECKER_RANGE
|
|
V8_INLINE bool IsFixedArrayBase(InstanceType instance_type) {
|
return IsFixedArray(instance_type) || IsFixedDoubleArray(instance_type) ||
|
IsFixedTypedArrayBase(instance_type);
|
}
|
|
V8_INLINE bool IsHeapObject(InstanceType instance_type) { return true; }
|
|
V8_INLINE bool IsInternalizedString(InstanceType instance_type) {
|
STATIC_ASSERT(kNotInternalizedTag != 0);
|
return (instance_type & (kIsNotStringMask | kIsNotInternalizedMask)) ==
|
(kStringTag | kInternalizedTag);
|
}
|
|
V8_INLINE bool IsJSObject(InstanceType instance_type) {
|
STATIC_ASSERT(LAST_TYPE == LAST_JS_OBJECT_TYPE);
|
return instance_type >= FIRST_JS_OBJECT_TYPE;
|
}
|
|
} // namespace InstanceTypeChecker
|
|
// TODO(v8:7786): For instance types that have a single map instance on the
|
// roots, and when that map is a embedded in the binary, compare against the map
|
// pointer rather than looking up the instance type.
|
INSTANCE_TYPE_CHECKERS(TYPE_CHECKER);
|
|
#define TYPED_ARRAY_TYPE_CHECKER(Type, type, TYPE, ctype) \
|
TYPE_CHECKER(Fixed##Type##Array)
|
TYPED_ARRAYS(TYPED_ARRAY_TYPE_CHECKER)
|
#undef TYPED_ARRAY_TYPE_CHECKER
|
|
bool HeapObject::IsUncompiledData() const {
|
return IsUncompiledDataWithoutPreParsedScope() ||
|
IsUncompiledDataWithPreParsedScope();
|
}
|
|
bool HeapObject::IsSloppyArgumentsElements() const {
|
return IsFixedArrayExact();
|
}
|
|
bool HeapObject::IsJSSloppyArgumentsObject() const {
|
return IsJSArgumentsObject();
|
}
|
|
bool HeapObject::IsJSGeneratorObject() const {
|
return map()->instance_type() == JS_GENERATOR_OBJECT_TYPE ||
|
IsJSAsyncGeneratorObject();
|
}
|
|
bool HeapObject::IsDataHandler() const {
|
return IsLoadHandler() || IsStoreHandler();
|
}
|
|
bool HeapObject::IsClassBoilerplate() const { return IsFixedArrayExact(); }
|
|
bool HeapObject::IsExternal(Isolate* isolate) const {
|
return map()->FindRootMap(isolate) == isolate->heap()->external_map();
|
}
|
|
#define IS_TYPE_FUNCTION_DEF(type_) \
|
bool Object::Is##type_() const { \
|
return IsHeapObject() && HeapObject::cast(this)->Is##type_(); \
|
}
|
HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DEF)
|
#undef IS_TYPE_FUNCTION_DEF
|
|
#define IS_TYPE_FUNCTION_DEF(Type, Value) \
|
bool Object::Is##Type(Isolate* isolate) const { \
|
return Is##Type(ReadOnlyRoots(isolate->heap())); \
|
} \
|
bool Object::Is##Type(ReadOnlyRoots roots) const { \
|
return this == roots.Value(); \
|
} \
|
bool Object::Is##Type() const { \
|
return IsHeapObject() && HeapObject::cast(this)->Is##Type(); \
|
} \
|
bool HeapObject::Is##Type(Isolate* isolate) const { \
|
return Object::Is##Type(isolate); \
|
} \
|
bool HeapObject::Is##Type(ReadOnlyRoots roots) const { \
|
return Object::Is##Type(roots); \
|
} \
|
bool HeapObject::Is##Type() const { return Is##Type(GetReadOnlyRoots()); }
|
ODDBALL_LIST(IS_TYPE_FUNCTION_DEF)
|
#undef IS_TYPE_FUNCTION_DEF
|
|
bool Object::IsNullOrUndefined(Isolate* isolate) const {
|
return IsNullOrUndefined(ReadOnlyRoots(isolate));
|
}
|
|
bool Object::IsNullOrUndefined(ReadOnlyRoots roots) const {
|
return IsNull(roots) || IsUndefined(roots);
|
}
|
|
bool Object::IsNullOrUndefined() const {
|
return IsHeapObject() && HeapObject::cast(this)->IsNullOrUndefined();
|
}
|
|
bool HeapObject::IsNullOrUndefined(Isolate* isolate) const {
|
return Object::IsNullOrUndefined(isolate);
|
}
|
|
bool HeapObject::IsNullOrUndefined(ReadOnlyRoots roots) const {
|
return Object::IsNullOrUndefined(roots);
|
}
|
|
bool HeapObject::IsNullOrUndefined() const {
|
return IsNullOrUndefined(GetReadOnlyRoots());
|
}
|
|
bool HeapObject::IsUniqueName() const {
|
return IsInternalizedString() || IsSymbol();
|
}
|
|
bool HeapObject::IsFunction() const {
|
STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
|
return map()->instance_type() >= FIRST_FUNCTION_TYPE;
|
}
|
|
bool HeapObject::IsCallable() const { return map()->is_callable(); }
|
|
bool HeapObject::IsConstructor() const { return map()->is_constructor(); }
|
|
bool HeapObject::IsModuleInfo() const {
|
return map() == GetReadOnlyRoots().module_info_map();
|
}
|
|
bool HeapObject::IsTemplateInfo() const {
|
return IsObjectTemplateInfo() || IsFunctionTemplateInfo();
|
}
|
|
bool HeapObject::IsConsString() const {
|
if (!IsString()) return false;
|
return StringShape(String::cast(this)).IsCons();
|
}
|
|
bool HeapObject::IsThinString() const {
|
if (!IsString()) return false;
|
return StringShape(String::cast(this)).IsThin();
|
}
|
|
bool HeapObject::IsSlicedString() const {
|
if (!IsString()) return false;
|
return StringShape(String::cast(this)).IsSliced();
|
}
|
|
bool HeapObject::IsSeqString() const {
|
if (!IsString()) return false;
|
return StringShape(String::cast(this)).IsSequential();
|
}
|
|
bool HeapObject::IsSeqOneByteString() const {
|
if (!IsString()) return false;
|
return StringShape(String::cast(this)).IsSequential() &&
|
String::cast(this)->IsOneByteRepresentation();
|
}
|
|
bool HeapObject::IsSeqTwoByteString() const {
|
if (!IsString()) return false;
|
return StringShape(String::cast(this)).IsSequential() &&
|
String::cast(this)->IsTwoByteRepresentation();
|
}
|
|
bool HeapObject::IsExternalString() const {
|
if (!IsString()) return false;
|
return StringShape(String::cast(this)).IsExternal();
|
}
|
|
bool HeapObject::IsExternalOneByteString() const {
|
if (!IsString()) return false;
|
return StringShape(String::cast(this)).IsExternal() &&
|
String::cast(this)->IsOneByteRepresentation();
|
}
|
|
bool HeapObject::IsExternalTwoByteString() const {
|
if (!IsString()) return false;
|
return StringShape(String::cast(this)).IsExternal() &&
|
String::cast(this)->IsTwoByteRepresentation();
|
}
|
|
bool Object::IsNumber() const { return IsSmi() || IsHeapNumber(); }
|
|
bool Object::IsNumeric() const { return IsNumber() || IsBigInt(); }
|
|
bool HeapObject::IsFiller() const {
|
InstanceType instance_type = map()->instance_type();
|
return instance_type == FREE_SPACE_TYPE || instance_type == FILLER_TYPE;
|
}
|
|
bool HeapObject::IsJSReceiver() const {
|
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
|
return map()->instance_type() >= FIRST_JS_RECEIVER_TYPE;
|
}
|
|
bool HeapObject::IsJSProxy() const { return map()->IsJSProxyMap(); }
|
|
bool HeapObject::IsJSWeakCollection() const {
|
return IsJSWeakMap() || IsJSWeakSet();
|
}
|
|
bool HeapObject::IsJSCollection() const { return IsJSMap() || IsJSSet(); }
|
|
bool HeapObject::IsPromiseReactionJobTask() const {
|
return IsPromiseFulfillReactionJobTask() || IsPromiseRejectReactionJobTask();
|
}
|
|
bool HeapObject::IsEnumCache() const { return IsTuple2(); }
|
|
bool HeapObject::IsFrameArray() const { return IsFixedArrayExact(); }
|
|
bool HeapObject::IsArrayList() const {
|
return map() == GetReadOnlyRoots().array_list_map() ||
|
this == GetReadOnlyRoots().empty_fixed_array();
|
}
|
|
bool HeapObject::IsRegExpMatchInfo() const { return IsFixedArrayExact(); }
|
|
bool Object::IsLayoutDescriptor() const { return IsSmi() || IsByteArray(); }
|
|
bool HeapObject::IsDeoptimizationData() const {
|
// Must be a fixed array.
|
if (!IsFixedArrayExact()) return false;
|
|
// There's no sure way to detect the difference between a fixed array and
|
// a deoptimization data array. Since this is used for asserts we can
|
// check that the length is zero or else the fixed size plus a multiple of
|
// the entry size.
|
int length = FixedArray::cast(this)->length();
|
if (length == 0) return true;
|
|
length -= DeoptimizationData::kFirstDeoptEntryIndex;
|
return length >= 0 && length % DeoptimizationData::kDeoptEntrySize == 0;
|
}
|
|
bool HeapObject::IsHandlerTable() const {
|
if (!IsFixedArrayExact()) return false;
|
// There's actually no way to see the difference between a fixed array and
|
// a handler table array.
|
return true;
|
}
|
|
bool HeapObject::IsTemplateList() const {
|
if (!IsFixedArrayExact()) return false;
|
// There's actually no way to see the difference between a fixed array and
|
// a template list.
|
if (FixedArray::cast(this)->length() < 1) return false;
|
return true;
|
}
|
|
bool HeapObject::IsDependentCode() const {
|
if (!IsWeakFixedArray()) return false;
|
// There's actually no way to see the difference between a weak fixed array
|
// and a dependent codes array.
|
return true;
|
}
|
|
bool HeapObject::IsAbstractCode() const {
|
return IsBytecodeArray() || IsCode();
|
}
|
|
bool HeapObject::IsStringWrapper() const {
|
return IsJSValue() && JSValue::cast(this)->value()->IsString();
|
}
|
|
bool HeapObject::IsBooleanWrapper() const {
|
return IsJSValue() && JSValue::cast(this)->value()->IsBoolean();
|
}
|
|
bool HeapObject::IsScriptWrapper() const {
|
return IsJSValue() && JSValue::cast(this)->value()->IsScript();
|
}
|
|
bool HeapObject::IsNumberWrapper() const {
|
return IsJSValue() && JSValue::cast(this)->value()->IsNumber();
|
}
|
|
bool HeapObject::IsBigIntWrapper() const {
|
return IsJSValue() && JSValue::cast(this)->value()->IsBigInt();
|
}
|
|
bool HeapObject::IsSymbolWrapper() const {
|
return IsJSValue() && JSValue::cast(this)->value()->IsSymbol();
|
}
|
|
bool HeapObject::IsBoolean() const {
|
return IsOddball() &&
|
((Oddball::cast(this)->kind() & Oddball::kNotBooleanMask) == 0);
|
}
|
|
bool HeapObject::IsJSArrayBufferView() const {
|
return IsJSDataView() || IsJSTypedArray();
|
}
|
|
bool HeapObject::IsStringSet() const { return IsHashTable(); }
|
|
bool HeapObject::IsObjectHashSet() const { return IsHashTable(); }
|
|
bool HeapObject::IsNormalizedMapCache() const {
|
return NormalizedMapCache::IsNormalizedMapCache(this);
|
}
|
|
bool HeapObject::IsCompilationCacheTable() const { return IsHashTable(); }
|
|
bool HeapObject::IsMapCache() const { return IsHashTable(); }
|
|
bool HeapObject::IsObjectHashTable() const { return IsHashTable(); }
|
|
bool Object::IsSmallOrderedHashTable() const {
|
return IsSmallOrderedHashSet() || IsSmallOrderedHashMap();
|
}
|
|
bool Object::IsPrimitive() const {
|
return IsSmi() || HeapObject::cast(this)->map()->IsPrimitiveMap();
|
}
|
|
// static
|
Maybe<bool> Object::IsArray(Handle<Object> object) {
|
if (object->IsSmi()) return Just(false);
|
Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
|
if (heap_object->IsJSArray()) return Just(true);
|
if (!heap_object->IsJSProxy()) return Just(false);
|
return JSProxy::IsArray(Handle<JSProxy>::cast(object));
|
}
|
|
bool HeapObject::IsUndetectable() const { return map()->is_undetectable(); }
|
|
bool HeapObject::IsAccessCheckNeeded() const {
|
if (IsJSGlobalProxy()) {
|
const JSGlobalProxy* proxy = JSGlobalProxy::cast(this);
|
JSGlobalObject* global = proxy->GetIsolate()->context()->global_object();
|
return proxy->IsDetachedFrom(global);
|
}
|
return map()->is_access_check_needed();
|
}
|
|
bool HeapObject::IsStruct() const {
|
switch (map()->instance_type()) {
|
#define MAKE_STRUCT_CASE(NAME, Name, name) \
|
case NAME##_TYPE: \
|
return true;
|
STRUCT_LIST(MAKE_STRUCT_CASE)
|
#undef MAKE_STRUCT_CASE
|
default:
|
return false;
|
}
|
}
|
|
#define MAKE_STRUCT_PREDICATE(NAME, Name, name) \
|
bool Object::Is##Name() const { \
|
return IsHeapObject() && HeapObject::cast(this)->Is##Name(); \
|
} \
|
TYPE_CHECKER(Name)
|
STRUCT_LIST(MAKE_STRUCT_PREDICATE)
|
#undef MAKE_STRUCT_PREDICATE
|
|
double Object::Number() const {
|
DCHECK(IsNumber());
|
return IsSmi()
|
? static_cast<double>(reinterpret_cast<const Smi*>(this)->value())
|
: reinterpret_cast<const HeapNumber*>(this)->value();
|
}
|
|
bool Object::IsNaN() const {
|
return this->IsHeapNumber() && std::isnan(HeapNumber::cast(this)->value());
|
}
|
|
bool Object::IsMinusZero() const {
|
return this->IsHeapNumber() &&
|
i::IsMinusZero(HeapNumber::cast(this)->value());
|
}
|
|
// ------------------------------------
|
// Cast operations
|
|
CAST_ACCESSOR(AccessorPair)
|
CAST_ACCESSOR(AllocationMemento)
|
CAST_ACCESSOR(AllocationSite)
|
CAST_ACCESSOR(AsyncGeneratorRequest)
|
CAST_ACCESSOR(BigInt)
|
CAST_ACCESSOR(ObjectBoilerplateDescription)
|
CAST_ACCESSOR(Cell)
|
CAST_ACCESSOR(ArrayBoilerplateDescription)
|
CAST_ACCESSOR(DataHandler)
|
CAST_ACCESSOR(DescriptorArray)
|
CAST_ACCESSOR(EphemeronHashTable)
|
CAST_ACCESSOR(EnumCache)
|
CAST_ACCESSOR(FeedbackCell)
|
CAST_ACCESSOR(Foreign)
|
CAST_ACCESSOR(GlobalDictionary)
|
CAST_ACCESSOR(HeapObject)
|
CAST_ACCESSOR(JSAsyncFromSyncIterator)
|
CAST_ACCESSOR(JSBoundFunction)
|
CAST_ACCESSOR(JSDataView)
|
CAST_ACCESSOR(JSDate)
|
CAST_ACCESSOR(JSFunction)
|
CAST_ACCESSOR(JSGlobalObject)
|
CAST_ACCESSOR(JSGlobalProxy)
|
CAST_ACCESSOR(JSMessageObject)
|
CAST_ACCESSOR(JSObject)
|
CAST_ACCESSOR(JSReceiver)
|
CAST_ACCESSOR(JSStringIterator)
|
CAST_ACCESSOR(JSValue)
|
CAST_ACCESSOR(HeapNumber)
|
CAST_ACCESSOR(LayoutDescriptor)
|
CAST_ACCESSOR(MutableHeapNumber)
|
CAST_ACCESSOR(NameDictionary)
|
CAST_ACCESSOR(NormalizedMapCache)
|
CAST_ACCESSOR(NumberDictionary)
|
CAST_ACCESSOR(Object)
|
CAST_ACCESSOR(ObjectHashSet)
|
CAST_ACCESSOR(ObjectHashTable)
|
CAST_ACCESSOR(Oddball)
|
CAST_ACCESSOR(OrderedHashMap)
|
CAST_ACCESSOR(OrderedHashSet)
|
CAST_ACCESSOR(PropertyArray)
|
CAST_ACCESSOR(PropertyCell)
|
CAST_ACCESSOR(RegExpMatchInfo)
|
CAST_ACCESSOR(ScopeInfo)
|
CAST_ACCESSOR(SimpleNumberDictionary)
|
CAST_ACCESSOR(SmallOrderedHashMap)
|
CAST_ACCESSOR(SmallOrderedHashSet)
|
CAST_ACCESSOR(Smi)
|
CAST_ACCESSOR(SourcePositionTableWithFrameCache)
|
CAST_ACCESSOR(StackFrameInfo)
|
CAST_ACCESSOR(StringSet)
|
CAST_ACCESSOR(StringTable)
|
CAST_ACCESSOR(Struct)
|
CAST_ACCESSOR(TemplateObjectDescription)
|
CAST_ACCESSOR(Tuple2)
|
CAST_ACCESSOR(Tuple3)
|
|
bool Object::HasValidElements() {
|
// Dictionary is covered under FixedArray.
|
return IsFixedArray() || IsFixedDoubleArray() || IsFixedTypedArrayBase();
|
}
|
|
bool Object::KeyEquals(Object* second) {
|
Object* first = this;
|
if (second->IsNumber()) {
|
if (first->IsNumber()) return first->Number() == second->Number();
|
Object* temp = first;
|
first = second;
|
second = temp;
|
}
|
if (first->IsNumber()) {
|
DCHECK_LE(0, first->Number());
|
uint32_t expected = static_cast<uint32_t>(first->Number());
|
uint32_t index;
|
return Name::cast(second)->AsArrayIndex(&index) && index == expected;
|
}
|
return Name::cast(first)->Equals(Name::cast(second));
|
}
|
|
bool Object::FilterKey(PropertyFilter filter) {
|
DCHECK(!IsPropertyCell());
|
if (IsSymbol()) {
|
if (filter & SKIP_SYMBOLS) return true;
|
if (Symbol::cast(this)->is_private()) return true;
|
} else {
|
if (filter & SKIP_STRINGS) return true;
|
}
|
return false;
|
}
|
|
Handle<Object> Object::NewStorageFor(Isolate* isolate, Handle<Object> object,
|
Representation representation) {
|
if (!representation.IsDouble()) return object;
|
auto result = isolate->factory()->NewMutableHeapNumberWithHoleNaN();
|
if (object->IsUninitialized(isolate)) {
|
result->set_value_as_bits(kHoleNanInt64);
|
} else if (object->IsMutableHeapNumber()) {
|
// Ensure that all bits of the double value are preserved.
|
result->set_value_as_bits(
|
MutableHeapNumber::cast(*object)->value_as_bits());
|
} else {
|
result->set_value(object->Number());
|
}
|
return result;
|
}
|
|
Handle<Object> Object::WrapForRead(Isolate* isolate, Handle<Object> object,
|
Representation representation) {
|
DCHECK(!object->IsUninitialized(isolate));
|
if (!representation.IsDouble()) {
|
DCHECK(object->FitsRepresentation(representation));
|
return object;
|
}
|
return isolate->factory()->NewHeapNumber(
|
MutableHeapNumber::cast(*object)->value());
|
}
|
|
Representation Object::OptimalRepresentation() {
|
if (!FLAG_track_fields) return Representation::Tagged();
|
if (IsSmi()) {
|
return Representation::Smi();
|
} else if (FLAG_track_double_fields && IsHeapNumber()) {
|
return Representation::Double();
|
} else if (FLAG_track_computed_fields && IsUninitialized()) {
|
return Representation::None();
|
} else if (FLAG_track_heap_object_fields) {
|
DCHECK(IsHeapObject());
|
return Representation::HeapObject();
|
} else {
|
return Representation::Tagged();
|
}
|
}
|
|
|
ElementsKind Object::OptimalElementsKind() {
|
if (IsSmi()) return PACKED_SMI_ELEMENTS;
|
if (IsNumber()) return PACKED_DOUBLE_ELEMENTS;
|
return PACKED_ELEMENTS;
|
}
|
|
|
bool Object::FitsRepresentation(Representation representation) {
|
if (FLAG_track_fields && representation.IsSmi()) {
|
return IsSmi();
|
} else if (FLAG_track_double_fields && representation.IsDouble()) {
|
return IsMutableHeapNumber() || IsNumber();
|
} else if (FLAG_track_heap_object_fields && representation.IsHeapObject()) {
|
return IsHeapObject();
|
} else if (FLAG_track_fields && representation.IsNone()) {
|
return false;
|
}
|
return true;
|
}
|
|
bool Object::ToUint32(uint32_t* value) const {
|
if (IsSmi()) {
|
int num = Smi::ToInt(this);
|
if (num < 0) return false;
|
*value = static_cast<uint32_t>(num);
|
return true;
|
}
|
if (IsHeapNumber()) {
|
double num = HeapNumber::cast(this)->value();
|
return DoubleToUint32IfEqualToSelf(num, value);
|
}
|
return false;
|
}
|
|
// static
|
MaybeHandle<JSReceiver> Object::ToObject(Isolate* isolate,
|
Handle<Object> object,
|
const char* method_name) {
|
if (object->IsJSReceiver()) return Handle<JSReceiver>::cast(object);
|
return ToObject(isolate, object, isolate->native_context(), method_name);
|
}
|
|
|
// static
|
MaybeHandle<Name> Object::ToName(Isolate* isolate, Handle<Object> input) {
|
if (input->IsName()) return Handle<Name>::cast(input);
|
return ConvertToName(isolate, input);
|
}
|
|
// static
|
MaybeHandle<Object> Object::ToPropertyKey(Isolate* isolate,
|
Handle<Object> value) {
|
if (value->IsSmi() || HeapObject::cast(*value)->IsName()) return value;
|
return ConvertToPropertyKey(isolate, value);
|
}
|
|
// static
|
MaybeHandle<Object> Object::ToPrimitive(Handle<Object> input,
|
ToPrimitiveHint hint) {
|
if (input->IsPrimitive()) return input;
|
return JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(input), hint);
|
}
|
|
// static
|
MaybeHandle<Object> Object::ToNumber(Isolate* isolate, Handle<Object> input) {
|
if (input->IsNumber()) return input; // Shortcut.
|
return ConvertToNumberOrNumeric(isolate, input, Conversion::kToNumber);
|
}
|
|
// static
|
MaybeHandle<Object> Object::ToNumeric(Isolate* isolate, Handle<Object> input) {
|
if (input->IsNumber() || input->IsBigInt()) return input; // Shortcut.
|
return ConvertToNumberOrNumeric(isolate, input, Conversion::kToNumeric);
|
}
|
|
// static
|
MaybeHandle<Object> Object::ToInteger(Isolate* isolate, Handle<Object> input) {
|
if (input->IsSmi()) return input;
|
return ConvertToInteger(isolate, input);
|
}
|
|
// static
|
MaybeHandle<Object> Object::ToInt32(Isolate* isolate, Handle<Object> input) {
|
if (input->IsSmi()) return input;
|
return ConvertToInt32(isolate, input);
|
}
|
|
// static
|
MaybeHandle<Object> Object::ToUint32(Isolate* isolate, Handle<Object> input) {
|
if (input->IsSmi()) return handle(Smi::cast(*input)->ToUint32Smi(), isolate);
|
return ConvertToUint32(isolate, input);
|
}
|
|
// static
|
MaybeHandle<String> Object::ToString(Isolate* isolate, Handle<Object> input) {
|
if (input->IsString()) return Handle<String>::cast(input);
|
return ConvertToString(isolate, input);
|
}
|
|
// static
|
MaybeHandle<Object> Object::ToLength(Isolate* isolate, Handle<Object> input) {
|
if (input->IsSmi()) {
|
int value = std::max(Smi::ToInt(*input), 0);
|
return handle(Smi::FromInt(value), isolate);
|
}
|
return ConvertToLength(isolate, input);
|
}
|
|
// static
|
MaybeHandle<Object> Object::ToIndex(Isolate* isolate, Handle<Object> input,
|
MessageTemplate::Template error_index) {
|
if (input->IsSmi() && Smi::ToInt(*input) >= 0) return input;
|
return ConvertToIndex(isolate, input, error_index);
|
}
|
|
MaybeHandle<Object> Object::GetProperty(Isolate* isolate, Handle<Object> object,
|
Handle<Name> name) {
|
LookupIterator it(isolate, object, name);
|
if (!it.IsFound()) return it.factory()->undefined_value();
|
return GetProperty(&it);
|
}
|
|
MaybeHandle<Object> JSReceiver::GetProperty(Isolate* isolate,
|
Handle<JSReceiver> receiver,
|
Handle<Name> name) {
|
LookupIterator it(isolate, receiver, name, receiver);
|
if (!it.IsFound()) return it.factory()->undefined_value();
|
return Object::GetProperty(&it);
|
}
|
|
MaybeHandle<Object> Object::GetElement(Isolate* isolate, Handle<Object> object,
|
uint32_t index) {
|
LookupIterator it(isolate, object, index);
|
if (!it.IsFound()) return it.factory()->undefined_value();
|
return GetProperty(&it);
|
}
|
|
MaybeHandle<Object> JSReceiver::GetElement(Isolate* isolate,
|
Handle<JSReceiver> receiver,
|
uint32_t index) {
|
LookupIterator it(isolate, receiver, index, receiver);
|
if (!it.IsFound()) return it.factory()->undefined_value();
|
return Object::GetProperty(&it);
|
}
|
|
Handle<Object> JSReceiver::GetDataProperty(Handle<JSReceiver> object,
|
Handle<Name> name) {
|
LookupIterator it(object, name, object,
|
LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR);
|
if (!it.IsFound()) return it.factory()->undefined_value();
|
return GetDataProperty(&it);
|
}
|
|
MaybeHandle<Object> Object::SetElement(Isolate* isolate, Handle<Object> object,
|
uint32_t index, Handle<Object> value,
|
LanguageMode language_mode) {
|
LookupIterator it(isolate, object, index);
|
MAYBE_RETURN_NULL(
|
SetProperty(&it, value, language_mode, MAY_BE_STORE_FROM_KEYED));
|
return value;
|
}
|
|
MaybeHandle<Object> JSReceiver::GetPrototype(Isolate* isolate,
|
Handle<JSReceiver> receiver) {
|
// We don't expect access checks to be needed on JSProxy objects.
|
DCHECK(!receiver->IsAccessCheckNeeded() || receiver->IsJSObject());
|
PrototypeIterator iter(isolate, receiver, kStartAtReceiver,
|
PrototypeIterator::END_AT_NON_HIDDEN);
|
do {
|
if (!iter.AdvanceFollowingProxies()) return MaybeHandle<Object>();
|
} while (!iter.IsAtEnd());
|
return PrototypeIterator::GetCurrent(iter);
|
}
|
|
MaybeHandle<Object> JSReceiver::GetProperty(Isolate* isolate,
|
Handle<JSReceiver> receiver,
|
const char* name) {
|
Handle<String> str = isolate->factory()->InternalizeUtf8String(name);
|
return GetProperty(isolate, receiver, str);
|
}
|
|
// static
|
V8_WARN_UNUSED_RESULT MaybeHandle<FixedArray> JSReceiver::OwnPropertyKeys(
|
Handle<JSReceiver> object) {
|
return KeyAccumulator::GetKeys(object, KeyCollectionMode::kOwnOnly,
|
ALL_PROPERTIES,
|
GetKeysConversion::kConvertToString);
|
}
|
|
bool JSObject::PrototypeHasNoElements(Isolate* isolate, JSObject* object) {
|
DisallowHeapAllocation no_gc;
|
HeapObject* prototype = HeapObject::cast(object->map()->prototype());
|
ReadOnlyRoots roots(isolate);
|
HeapObject* null = roots.null_value();
|
HeapObject* empty_fixed_array = roots.empty_fixed_array();
|
HeapObject* empty_slow_element_dictionary =
|
roots.empty_slow_element_dictionary();
|
while (prototype != null) {
|
Map* map = prototype->map();
|
if (map->IsCustomElementsReceiverMap()) return false;
|
HeapObject* elements = JSObject::cast(prototype)->elements();
|
if (elements != empty_fixed_array &&
|
elements != empty_slow_element_dictionary) {
|
return false;
|
}
|
prototype = HeapObject::cast(map->prototype());
|
}
|
return true;
|
}
|
|
Object** HeapObject::RawField(const HeapObject* obj, int byte_offset) {
|
return reinterpret_cast<Object**>(FIELD_ADDR(obj, byte_offset));
|
}
|
|
MaybeObject** HeapObject::RawMaybeWeakField(HeapObject* obj, int byte_offset) {
|
return reinterpret_cast<MaybeObject**>(FIELD_ADDR(obj, byte_offset));
|
}
|
|
int Smi::ToInt(const Object* object) { return Smi::cast(object)->value(); }
|
|
MapWord MapWord::FromMap(const Map* map) {
|
return MapWord(reinterpret_cast<uintptr_t>(map));
|
}
|
|
Map* MapWord::ToMap() const { return reinterpret_cast<Map*>(value_); }
|
|
bool MapWord::IsForwardingAddress() const {
|
return HAS_SMI_TAG(reinterpret_cast<Object*>(value_));
|
}
|
|
|
MapWord MapWord::FromForwardingAddress(HeapObject* object) {
|
Address raw = reinterpret_cast<Address>(object) - kHeapObjectTag;
|
return MapWord(static_cast<uintptr_t>(raw));
|
}
|
|
|
HeapObject* MapWord::ToForwardingAddress() {
|
DCHECK(IsForwardingAddress());
|
return HeapObject::FromAddress(static_cast<Address>(value_));
|
}
|
|
|
#ifdef VERIFY_HEAP
|
void HeapObject::VerifyObjectField(Isolate* isolate, int offset) {
|
VerifyPointer(isolate, READ_FIELD(this, offset));
|
}
|
|
void HeapObject::VerifyMaybeObjectField(Isolate* isolate, int offset) {
|
MaybeObject::VerifyMaybeObjectPointer(isolate, READ_WEAK_FIELD(this, offset));
|
}
|
|
void HeapObject::VerifySmiField(int offset) {
|
CHECK(READ_FIELD(this, offset)->IsSmi());
|
}
|
#endif
|
|
ReadOnlyRoots HeapObject::GetReadOnlyRoots() const {
|
// TODO(v8:7464): When RO_SPACE is embedded, this will access a global
|
// variable instead.
|
return ReadOnlyRoots(MemoryChunk::FromHeapObject(this)->heap());
|
}
|
|
Heap* NeverReadOnlySpaceObject::GetHeap() const {
|
MemoryChunk* chunk =
|
MemoryChunk::FromAddress(reinterpret_cast<Address>(this));
|
// Make sure we are not accessing an object in RO space.
|
SLOW_DCHECK(chunk->owner()->identity() != RO_SPACE);
|
Heap* heap = chunk->heap();
|
SLOW_DCHECK(heap != nullptr);
|
return heap;
|
}
|
|
Isolate* NeverReadOnlySpaceObject::GetIsolate() const {
|
return GetHeap()->isolate();
|
}
|
|
Map* HeapObject::map() const {
|
return map_word().ToMap();
|
}
|
|
|
void HeapObject::set_map(Map* value) {
|
if (value != nullptr) {
|
#ifdef VERIFY_HEAP
|
Heap::FromWritableHeapObject(this)->VerifyObjectLayoutChange(this, value);
|
#endif
|
}
|
set_map_word(MapWord::FromMap(value));
|
if (value != nullptr) {
|
// TODO(1600) We are passing nullptr as a slot because maps can never be on
|
// evacuation candidate.
|
MarkingBarrier(this, nullptr, value);
|
}
|
}
|
|
Map* HeapObject::synchronized_map() const {
|
return synchronized_map_word().ToMap();
|
}
|
|
|
void HeapObject::synchronized_set_map(Map* value) {
|
if (value != nullptr) {
|
#ifdef VERIFY_HEAP
|
Heap::FromWritableHeapObject(this)->VerifyObjectLayoutChange(this, value);
|
#endif
|
}
|
synchronized_set_map_word(MapWord::FromMap(value));
|
if (value != nullptr) {
|
// TODO(1600) We are passing nullptr as a slot because maps can never be on
|
// evacuation candidate.
|
MarkingBarrier(this, nullptr, value);
|
}
|
}
|
|
|
// Unsafe accessor omitting write barrier.
|
void HeapObject::set_map_no_write_barrier(Map* value) {
|
if (value != nullptr) {
|
#ifdef VERIFY_HEAP
|
Heap::FromWritableHeapObject(this)->VerifyObjectLayoutChange(this, value);
|
#endif
|
}
|
set_map_word(MapWord::FromMap(value));
|
}
|
|
void HeapObject::set_map_after_allocation(Map* value, WriteBarrierMode mode) {
|
set_map_word(MapWord::FromMap(value));
|
if (mode != SKIP_WRITE_BARRIER) {
|
DCHECK_NOT_NULL(value);
|
// TODO(1600) We are passing nullptr as a slot because maps can never be on
|
// evacuation candidate.
|
MarkingBarrier(this, nullptr, value);
|
}
|
}
|
|
HeapObject** HeapObject::map_slot() {
|
return reinterpret_cast<HeapObject**>(FIELD_ADDR(this, kMapOffset));
|
}
|
|
MapWord HeapObject::map_word() const {
|
return MapWord(
|
reinterpret_cast<uintptr_t>(RELAXED_READ_FIELD(this, kMapOffset)));
|
}
|
|
|
void HeapObject::set_map_word(MapWord map_word) {
|
RELAXED_WRITE_FIELD(this, kMapOffset,
|
reinterpret_cast<Object*>(map_word.value_));
|
}
|
|
|
MapWord HeapObject::synchronized_map_word() const {
|
return MapWord(
|
reinterpret_cast<uintptr_t>(ACQUIRE_READ_FIELD(this, kMapOffset)));
|
}
|
|
|
void HeapObject::synchronized_set_map_word(MapWord map_word) {
|
RELEASE_WRITE_FIELD(
|
this, kMapOffset, reinterpret_cast<Object*>(map_word.value_));
|
}
|
|
int HeapObject::Size() const { return SizeFromMap(map()); }
|
|
double HeapNumberBase::value() const {
|
return READ_DOUBLE_FIELD(this, kValueOffset);
|
}
|
|
void HeapNumberBase::set_value(double value) {
|
WRITE_DOUBLE_FIELD(this, kValueOffset, value);
|
}
|
|
uint64_t HeapNumberBase::value_as_bits() const {
|
return READ_UINT64_FIELD(this, kValueOffset);
|
}
|
|
void HeapNumberBase::set_value_as_bits(uint64_t bits) {
|
WRITE_UINT64_FIELD(this, kValueOffset, bits);
|
}
|
|
int HeapNumberBase::get_exponent() {
|
return ((READ_INT_FIELD(this, kExponentOffset) & kExponentMask) >>
|
kExponentShift) - kExponentBias;
|
}
|
|
int HeapNumberBase::get_sign() {
|
return READ_INT_FIELD(this, kExponentOffset) & kSignMask;
|
}
|
|
ACCESSORS(JSReceiver, raw_properties_or_hash, Object, kPropertiesOrHashOffset)
|
|
FixedArrayBase* JSObject::elements() const {
|
Object* array = READ_FIELD(this, kElementsOffset);
|
return static_cast<FixedArrayBase*>(array);
|
}
|
|
bool AllocationSite::HasWeakNext() const {
|
return map() == GetReadOnlyRoots().allocation_site_map();
|
}
|
|
void AllocationSite::Initialize() {
|
set_transition_info_or_boilerplate(Smi::kZero);
|
SetElementsKind(GetInitialFastElementsKind());
|
set_nested_site(Smi::kZero);
|
set_pretenure_data(0);
|
set_pretenure_create_count(0);
|
set_dependent_code(
|
DependentCode::cast(GetReadOnlyRoots().empty_weak_fixed_array()),
|
SKIP_WRITE_BARRIER);
|
}
|
|
bool AllocationSite::IsZombie() const {
|
return pretenure_decision() == kZombie;
|
}
|
|
bool AllocationSite::IsMaybeTenure() const {
|
return pretenure_decision() == kMaybeTenure;
|
}
|
|
bool AllocationSite::PretenuringDecisionMade() const {
|
return pretenure_decision() != kUndecided;
|
}
|
|
|
void AllocationSite::MarkZombie() {
|
DCHECK(!IsZombie());
|
Initialize();
|
set_pretenure_decision(kZombie);
|
}
|
|
ElementsKind AllocationSite::GetElementsKind() const {
|
return ElementsKindBits::decode(transition_info());
|
}
|
|
|
void AllocationSite::SetElementsKind(ElementsKind kind) {
|
set_transition_info(ElementsKindBits::update(transition_info(), kind));
|
}
|
|
bool AllocationSite::CanInlineCall() const {
|
return DoNotInlineBit::decode(transition_info()) == 0;
|
}
|
|
|
void AllocationSite::SetDoNotInlineCall() {
|
set_transition_info(DoNotInlineBit::update(transition_info(), true));
|
}
|
|
bool AllocationSite::PointsToLiteral() const {
|
Object* raw_value = transition_info_or_boilerplate();
|
DCHECK_EQ(!raw_value->IsSmi(),
|
raw_value->IsJSArray() || raw_value->IsJSObject());
|
return !raw_value->IsSmi();
|
}
|
|
|
// Heuristic: We only need to create allocation site info if the boilerplate
|
// elements kind is the initial elements kind.
|
bool AllocationSite::ShouldTrack(ElementsKind boilerplate_elements_kind) {
|
return IsSmiElementsKind(boilerplate_elements_kind);
|
}
|
|
inline bool AllocationSite::CanTrack(InstanceType type) {
|
if (FLAG_allocation_site_pretenuring) {
|
// TurboFan doesn't care at all about String pretenuring feedback,
|
// so don't bother even trying to track that.
|
return type == JS_ARRAY_TYPE || type == JS_OBJECT_TYPE;
|
}
|
return type == JS_ARRAY_TYPE;
|
}
|
|
AllocationSite::PretenureDecision AllocationSite::pretenure_decision() const {
|
return PretenureDecisionBits::decode(pretenure_data());
|
}
|
|
void AllocationSite::set_pretenure_decision(PretenureDecision decision) {
|
int32_t value = pretenure_data();
|
set_pretenure_data(PretenureDecisionBits::update(value, decision));
|
}
|
|
bool AllocationSite::deopt_dependent_code() const {
|
return DeoptDependentCodeBit::decode(pretenure_data());
|
}
|
|
void AllocationSite::set_deopt_dependent_code(bool deopt) {
|
int32_t value = pretenure_data();
|
set_pretenure_data(DeoptDependentCodeBit::update(value, deopt));
|
}
|
|
int AllocationSite::memento_found_count() const {
|
return MementoFoundCountBits::decode(pretenure_data());
|
}
|
|
inline void AllocationSite::set_memento_found_count(int count) {
|
int32_t value = pretenure_data();
|
// Verify that we can count more mementos than we can possibly find in one
|
// new space collection.
|
DCHECK((GetHeap()->MaxSemiSpaceSize() /
|
(Heap::kMinObjectSizeInWords * kPointerSize +
|
AllocationMemento::kSize)) < MementoFoundCountBits::kMax);
|
DCHECK_LT(count, MementoFoundCountBits::kMax);
|
set_pretenure_data(MementoFoundCountBits::update(value, count));
|
}
|
|
int AllocationSite::memento_create_count() const {
|
return pretenure_create_count();
|
}
|
|
void AllocationSite::set_memento_create_count(int count) {
|
set_pretenure_create_count(count);
|
}
|
|
bool AllocationSite::IncrementMementoFoundCount(int increment) {
|
if (IsZombie()) return false;
|
|
int value = memento_found_count();
|
set_memento_found_count(value + increment);
|
return memento_found_count() >= kPretenureMinimumCreated;
|
}
|
|
|
inline void AllocationSite::IncrementMementoCreateCount() {
|
DCHECK(FLAG_allocation_site_pretenuring);
|
int value = memento_create_count();
|
set_memento_create_count(value + 1);
|
}
|
|
bool AllocationMemento::IsValid() const {
|
return allocation_site()->IsAllocationSite() &&
|
!AllocationSite::cast(allocation_site())->IsZombie();
|
}
|
|
AllocationSite* AllocationMemento::GetAllocationSite() const {
|
DCHECK(IsValid());
|
return AllocationSite::cast(allocation_site());
|
}
|
|
Address AllocationMemento::GetAllocationSiteUnchecked() const {
|
return reinterpret_cast<Address>(allocation_site());
|
}
|
|
void JSObject::EnsureCanContainHeapObjectElements(Handle<JSObject> object) {
|
JSObject::ValidateElements(*object);
|
ElementsKind elements_kind = object->map()->elements_kind();
|
if (!IsObjectElementsKind(elements_kind)) {
|
if (IsHoleyElementsKind(elements_kind)) {
|
TransitionElementsKind(object, HOLEY_ELEMENTS);
|
} else {
|
TransitionElementsKind(object, PACKED_ELEMENTS);
|
}
|
}
|
}
|
|
|
void JSObject::EnsureCanContainElements(Handle<JSObject> object,
|
Object** objects,
|
uint32_t count,
|
EnsureElementsMode mode) {
|
ElementsKind current_kind = object->GetElementsKind();
|
ElementsKind target_kind = current_kind;
|
{
|
DisallowHeapAllocation no_allocation;
|
DCHECK(mode != ALLOW_COPIED_DOUBLE_ELEMENTS);
|
bool is_holey = IsHoleyElementsKind(current_kind);
|
if (current_kind == HOLEY_ELEMENTS) return;
|
Object* the_hole = object->GetReadOnlyRoots().the_hole_value();
|
for (uint32_t i = 0; i < count; ++i) {
|
Object* current = *objects++;
|
if (current == the_hole) {
|
is_holey = true;
|
target_kind = GetHoleyElementsKind(target_kind);
|
} else if (!current->IsSmi()) {
|
if (mode == ALLOW_CONVERTED_DOUBLE_ELEMENTS && current->IsNumber()) {
|
if (IsSmiElementsKind(target_kind)) {
|
if (is_holey) {
|
target_kind = HOLEY_DOUBLE_ELEMENTS;
|
} else {
|
target_kind = PACKED_DOUBLE_ELEMENTS;
|
}
|
}
|
} else if (is_holey) {
|
target_kind = HOLEY_ELEMENTS;
|
break;
|
} else {
|
target_kind = PACKED_ELEMENTS;
|
}
|
}
|
}
|
}
|
if (target_kind != current_kind) {
|
TransitionElementsKind(object, target_kind);
|
}
|
}
|
|
|
void JSObject::EnsureCanContainElements(Handle<JSObject> object,
|
Handle<FixedArrayBase> elements,
|
uint32_t length,
|
EnsureElementsMode mode) {
|
ReadOnlyRoots roots = object->GetReadOnlyRoots();
|
if (elements->map() != roots.fixed_double_array_map()) {
|
DCHECK(elements->map() == roots.fixed_array_map() ||
|
elements->map() == roots.fixed_cow_array_map());
|
if (mode == ALLOW_COPIED_DOUBLE_ELEMENTS) {
|
mode = DONT_ALLOW_DOUBLE_ELEMENTS;
|
}
|
Object** objects =
|
Handle<FixedArray>::cast(elements)->GetFirstElementAddress();
|
EnsureCanContainElements(object, objects, length, mode);
|
return;
|
}
|
|
DCHECK(mode == ALLOW_COPIED_DOUBLE_ELEMENTS);
|
if (object->GetElementsKind() == HOLEY_SMI_ELEMENTS) {
|
TransitionElementsKind(object, HOLEY_DOUBLE_ELEMENTS);
|
} else if (object->GetElementsKind() == PACKED_SMI_ELEMENTS) {
|
Handle<FixedDoubleArray> double_array =
|
Handle<FixedDoubleArray>::cast(elements);
|
for (uint32_t i = 0; i < length; ++i) {
|
if (double_array->is_the_hole(i)) {
|
TransitionElementsKind(object, HOLEY_DOUBLE_ELEMENTS);
|
return;
|
}
|
}
|
TransitionElementsKind(object, PACKED_DOUBLE_ELEMENTS);
|
}
|
}
|
|
|
void JSObject::SetMapAndElements(Handle<JSObject> object,
|
Handle<Map> new_map,
|
Handle<FixedArrayBase> value) {
|
JSObject::MigrateToMap(object, new_map);
|
DCHECK((object->map()->has_fast_smi_or_object_elements() ||
|
(*value == object->GetReadOnlyRoots().empty_fixed_array()) ||
|
object->map()->has_fast_string_wrapper_elements()) ==
|
(value->map() == object->GetReadOnlyRoots().fixed_array_map() ||
|
value->map() == object->GetReadOnlyRoots().fixed_cow_array_map()));
|
DCHECK((*value == object->GetReadOnlyRoots().empty_fixed_array()) ||
|
(object->map()->has_fast_double_elements() ==
|
value->IsFixedDoubleArray()));
|
object->set_elements(*value);
|
}
|
|
|
void JSObject::set_elements(FixedArrayBase* value, WriteBarrierMode mode) {
|
WRITE_FIELD(this, kElementsOffset, value);
|
CONDITIONAL_WRITE_BARRIER(this, kElementsOffset, value, mode);
|
}
|
|
|
void JSObject::initialize_elements() {
|
FixedArrayBase* elements = map()->GetInitialElements();
|
WRITE_FIELD(this, kElementsOffset, elements);
|
}
|
|
|
InterceptorInfo* JSObject::GetIndexedInterceptor() {
|
return map()->GetIndexedInterceptor();
|
}
|
|
InterceptorInfo* JSObject::GetNamedInterceptor() {
|
return map()->GetNamedInterceptor();
|
}
|
|
double Oddball::to_number_raw() const {
|
return READ_DOUBLE_FIELD(this, kToNumberRawOffset);
|
}
|
|
void Oddball::set_to_number_raw(double value) {
|
WRITE_DOUBLE_FIELD(this, kToNumberRawOffset, value);
|
}
|
|
void Oddball::set_to_number_raw_as_bits(uint64_t bits) {
|
WRITE_UINT64_FIELD(this, kToNumberRawOffset, bits);
|
}
|
|
ACCESSORS(Oddball, to_string, String, kToStringOffset)
|
ACCESSORS(Oddball, to_number, Object, kToNumberOffset)
|
ACCESSORS(Oddball, type_of, String, kTypeOfOffset)
|
|
byte Oddball::kind() const { return Smi::ToInt(READ_FIELD(this, kKindOffset)); }
|
|
void Oddball::set_kind(byte value) {
|
WRITE_FIELD(this, kKindOffset, Smi::FromInt(value));
|
}
|
|
|
// static
|
Handle<Object> Oddball::ToNumber(Isolate* isolate, Handle<Oddball> input) {
|
return handle(input->to_number(), isolate);
|
}
|
|
|
ACCESSORS(Cell, value, Object, kValueOffset)
|
ACCESSORS(FeedbackCell, value, HeapObject, kValueOffset)
|
ACCESSORS(PropertyCell, dependent_code, DependentCode, kDependentCodeOffset)
|
ACCESSORS(PropertyCell, name, Name, kNameOffset)
|
ACCESSORS(PropertyCell, value, Object, kValueOffset)
|
ACCESSORS(PropertyCell, property_details_raw, Object, kDetailsOffset)
|
|
PropertyDetails PropertyCell::property_details() const {
|
return PropertyDetails(Smi::cast(property_details_raw()));
|
}
|
|
|
void PropertyCell::set_property_details(PropertyDetails details) {
|
set_property_details_raw(details.AsSmi());
|
}
|
|
int JSObject::GetHeaderSize() const { return GetHeaderSize(map()); }
|
|
int JSObject::GetHeaderSize(const Map* map) {
|
// Check for the most common kind of JavaScript object before
|
// falling into the generic switch. This speeds up the internal
|
// field operations considerably on average.
|
InstanceType instance_type = map->instance_type();
|
return instance_type == JS_OBJECT_TYPE
|
? JSObject::kHeaderSize
|
: GetHeaderSize(instance_type, map->has_prototype_slot());
|
}
|
|
inline bool IsSpecialReceiverInstanceType(InstanceType instance_type) {
|
return instance_type <= LAST_SPECIAL_RECEIVER_TYPE;
|
}
|
|
// This should be in objects/map-inl.h, but can't, because of a cyclic
|
// dependency.
|
bool Map::IsSpecialReceiverMap() const {
|
bool result = IsSpecialReceiverInstanceType(instance_type());
|
DCHECK_IMPLIES(!result,
|
!has_named_interceptor() && !is_access_check_needed());
|
return result;
|
}
|
|
inline bool IsCustomElementsReceiverInstanceType(InstanceType instance_type) {
|
return instance_type <= LAST_CUSTOM_ELEMENTS_RECEIVER;
|
}
|
|
// This should be in objects/map-inl.h, but can't, because of a cyclic
|
// dependency.
|
bool Map::IsCustomElementsReceiverMap() const {
|
return IsCustomElementsReceiverInstanceType(instance_type());
|
}
|
|
// static
|
int JSObject::GetEmbedderFieldCount(const Map* map) {
|
int instance_size = map->instance_size();
|
if (instance_size == kVariableSizeSentinel) return 0;
|
return ((instance_size - GetHeaderSize(map)) >> kPointerSizeLog2) -
|
map->GetInObjectProperties();
|
}
|
|
int JSObject::GetEmbedderFieldCount() const {
|
return GetEmbedderFieldCount(map());
|
}
|
|
int JSObject::GetEmbedderFieldOffset(int index) {
|
DCHECK(index < GetEmbedderFieldCount() && index >= 0);
|
return GetHeaderSize() + (kPointerSize * index);
|
}
|
|
Object* JSObject::GetEmbedderField(int index) {
|
DCHECK(index < GetEmbedderFieldCount() && index >= 0);
|
// Internal objects do follow immediately after the header, whereas in-object
|
// properties are at the end of the object. Therefore there is no need
|
// to adjust the index here.
|
return READ_FIELD(this, GetHeaderSize() + (kPointerSize * index));
|
}
|
|
void JSObject::SetEmbedderField(int index, Object* value) {
|
DCHECK(index < GetEmbedderFieldCount() && index >= 0);
|
// Internal objects do follow immediately after the header, whereas in-object
|
// properties are at the end of the object. Therefore there is no need
|
// to adjust the index here.
|
int offset = GetHeaderSize() + (kPointerSize * index);
|
WRITE_FIELD(this, offset, value);
|
WRITE_BARRIER(this, offset, value);
|
}
|
|
void JSObject::SetEmbedderField(int index, Smi* value) {
|
DCHECK(index < GetEmbedderFieldCount() && index >= 0);
|
// Internal objects do follow immediately after the header, whereas in-object
|
// properties are at the end of the object. Therefore there is no need
|
// to adjust the index here.
|
int offset = GetHeaderSize() + (kPointerSize * index);
|
WRITE_FIELD(this, offset, value);
|
}
|
|
|
bool JSObject::IsUnboxedDoubleField(FieldIndex index) {
|
if (!FLAG_unbox_double_fields) return false;
|
return map()->IsUnboxedDoubleField(index);
|
}
|
|
// Access fast-case object properties at index. The use of these routines
|
// is needed to correctly distinguish between properties stored in-object and
|
// properties stored in the properties array.
|
Object* JSObject::RawFastPropertyAt(FieldIndex index) {
|
DCHECK(!IsUnboxedDoubleField(index));
|
if (index.is_inobject()) {
|
return READ_FIELD(this, index.offset());
|
} else {
|
return property_array()->get(index.outobject_array_index());
|
}
|
}
|
|
|
double JSObject::RawFastDoublePropertyAt(FieldIndex index) {
|
DCHECK(IsUnboxedDoubleField(index));
|
return READ_DOUBLE_FIELD(this, index.offset());
|
}
|
|
uint64_t JSObject::RawFastDoublePropertyAsBitsAt(FieldIndex index) {
|
DCHECK(IsUnboxedDoubleField(index));
|
return READ_UINT64_FIELD(this, index.offset());
|
}
|
|
void JSObject::RawFastPropertyAtPut(FieldIndex index, Object* value) {
|
if (index.is_inobject()) {
|
int offset = index.offset();
|
WRITE_FIELD(this, offset, value);
|
WRITE_BARRIER(this, offset, value);
|
} else {
|
property_array()->set(index.outobject_array_index(), value);
|
}
|
}
|
|
void JSObject::RawFastDoublePropertyAsBitsAtPut(FieldIndex index,
|
uint64_t bits) {
|
// Double unboxing is enabled only on 64-bit platforms.
|
DCHECK_EQ(kDoubleSize, kPointerSize);
|
Address field_addr = FIELD_ADDR(this, index.offset());
|
base::Relaxed_Store(reinterpret_cast<base::AtomicWord*>(field_addr),
|
static_cast<base::AtomicWord>(bits));
|
}
|
|
void JSObject::FastPropertyAtPut(FieldIndex index, Object* value) {
|
if (IsUnboxedDoubleField(index)) {
|
DCHECK(value->IsMutableHeapNumber());
|
// Ensure that all bits of the double value are preserved.
|
RawFastDoublePropertyAsBitsAtPut(
|
index, MutableHeapNumber::cast(value)->value_as_bits());
|
} else {
|
RawFastPropertyAtPut(index, value);
|
}
|
}
|
|
void JSObject::WriteToField(int descriptor, PropertyDetails details,
|
Object* value) {
|
DCHECK_EQ(kField, details.location());
|
DCHECK_EQ(kData, details.kind());
|
DisallowHeapAllocation no_gc;
|
FieldIndex index = FieldIndex::ForDescriptor(map(), descriptor);
|
if (details.representation().IsDouble()) {
|
// Nothing more to be done.
|
if (value->IsUninitialized()) {
|
return;
|
}
|
// Manipulating the signaling NaN used for the hole and uninitialized
|
// double field sentinel in C++, e.g. with bit_cast or value()/set_value(),
|
// will change its value on ia32 (the x87 stack is used to return values
|
// and stores to the stack silently clear the signalling bit).
|
uint64_t bits;
|
if (value->IsSmi()) {
|
bits = bit_cast<uint64_t>(static_cast<double>(Smi::ToInt(value)));
|
} else {
|
DCHECK(value->IsHeapNumber());
|
bits = HeapNumber::cast(value)->value_as_bits();
|
}
|
if (IsUnboxedDoubleField(index)) {
|
RawFastDoublePropertyAsBitsAtPut(index, bits);
|
} else {
|
auto box = MutableHeapNumber::cast(RawFastPropertyAt(index));
|
box->set_value_as_bits(bits);
|
}
|
} else {
|
RawFastPropertyAtPut(index, value);
|
}
|
}
|
|
int JSObject::GetInObjectPropertyOffset(int index) {
|
return map()->GetInObjectPropertyOffset(index);
|
}
|
|
|
Object* JSObject::InObjectPropertyAt(int index) {
|
int offset = GetInObjectPropertyOffset(index);
|
return READ_FIELD(this, offset);
|
}
|
|
|
Object* JSObject::InObjectPropertyAtPut(int index,
|
Object* value,
|
WriteBarrierMode mode) {
|
// Adjust for the number of properties stored in the object.
|
int offset = GetInObjectPropertyOffset(index);
|
WRITE_FIELD(this, offset, value);
|
CONDITIONAL_WRITE_BARRIER(this, offset, value, mode);
|
return value;
|
}
|
|
|
void JSObject::InitializeBody(Map* map, int start_offset,
|
Object* pre_allocated_value,
|
Object* filler_value) {
|
DCHECK(!filler_value->IsHeapObject() || !Heap::InNewSpace(filler_value));
|
DCHECK(!pre_allocated_value->IsHeapObject() ||
|
!Heap::InNewSpace(pre_allocated_value));
|
int size = map->instance_size();
|
int offset = start_offset;
|
if (filler_value != pre_allocated_value) {
|
int end_of_pre_allocated_offset =
|
size - (map->UnusedPropertyFields() * kPointerSize);
|
DCHECK_LE(kHeaderSize, end_of_pre_allocated_offset);
|
while (offset < end_of_pre_allocated_offset) {
|
WRITE_FIELD(this, offset, pre_allocated_value);
|
offset += kPointerSize;
|
}
|
}
|
while (offset < size) {
|
WRITE_FIELD(this, offset, filler_value);
|
offset += kPointerSize;
|
}
|
}
|
|
void Struct::InitializeBody(int object_size) {
|
Object* value = GetReadOnlyRoots().undefined_value();
|
for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) {
|
WRITE_FIELD(this, offset, value);
|
}
|
}
|
|
bool Object::ToArrayLength(uint32_t* index) const {
|
return Object::ToUint32(index);
|
}
|
|
bool Object::ToArrayIndex(uint32_t* index) const {
|
return Object::ToUint32(index) && *index != kMaxUInt32;
|
}
|
|
|
void Object::VerifyApiCallResultType() {
|
#if DEBUG
|
if (IsSmi()) return;
|
DCHECK(IsHeapObject());
|
if (!(IsString() || IsSymbol() || IsJSReceiver() || IsHeapNumber() ||
|
IsBigInt() || IsUndefined() || IsTrue() || IsFalse() || IsNull())) {
|
FATAL("API call returned invalid object");
|
}
|
#endif // DEBUG
|
}
|
|
Object* PropertyArray::get(int index) const {
|
DCHECK_GE(index, 0);
|
DCHECK_LE(index, this->length());
|
return RELAXED_READ_FIELD(this, kHeaderSize + index * kPointerSize);
|
}
|
|
void PropertyArray::set(int index, Object* value) {
|
DCHECK(IsPropertyArray());
|
DCHECK_GE(index, 0);
|
DCHECK_LT(index, this->length());
|
int offset = kHeaderSize + index * kPointerSize;
|
RELAXED_WRITE_FIELD(this, offset, value);
|
WRITE_BARRIER(this, offset, value);
|
}
|
|
int RegExpMatchInfo::NumberOfCaptureRegisters() {
|
DCHECK_GE(length(), kLastMatchOverhead);
|
Object* obj = get(kNumberOfCapturesIndex);
|
return Smi::ToInt(obj);
|
}
|
|
void RegExpMatchInfo::SetNumberOfCaptureRegisters(int value) {
|
DCHECK_GE(length(), kLastMatchOverhead);
|
set(kNumberOfCapturesIndex, Smi::FromInt(value));
|
}
|
|
String* RegExpMatchInfo::LastSubject() {
|
DCHECK_GE(length(), kLastMatchOverhead);
|
Object* obj = get(kLastSubjectIndex);
|
return String::cast(obj);
|
}
|
|
void RegExpMatchInfo::SetLastSubject(String* value) {
|
DCHECK_GE(length(), kLastMatchOverhead);
|
set(kLastSubjectIndex, value);
|
}
|
|
Object* RegExpMatchInfo::LastInput() {
|
DCHECK_GE(length(), kLastMatchOverhead);
|
return get(kLastInputIndex);
|
}
|
|
void RegExpMatchInfo::SetLastInput(Object* value) {
|
DCHECK_GE(length(), kLastMatchOverhead);
|
set(kLastInputIndex, value);
|
}
|
|
int RegExpMatchInfo::Capture(int i) {
|
DCHECK_LT(i, NumberOfCaptureRegisters());
|
Object* obj = get(kFirstCaptureIndex + i);
|
return Smi::ToInt(obj);
|
}
|
|
void RegExpMatchInfo::SetCapture(int i, int value) {
|
DCHECK_LT(i, NumberOfCaptureRegisters());
|
set(kFirstCaptureIndex + i, Smi::FromInt(value));
|
}
|
|
WriteBarrierMode HeapObject::GetWriteBarrierMode(
|
const DisallowHeapAllocation& promise) {
|
Heap* heap = Heap::FromWritableHeapObject(this);
|
if (heap->incremental_marking()->IsMarking()) return UPDATE_WRITE_BARRIER;
|
if (Heap::InNewSpace(this)) return SKIP_WRITE_BARRIER;
|
return UPDATE_WRITE_BARRIER;
|
}
|
|
AllocationAlignment HeapObject::RequiredAlignment(Map* map) {
|
#ifdef V8_HOST_ARCH_32_BIT
|
int instance_type = map->instance_type();
|
if (instance_type == FIXED_FLOAT64_ARRAY_TYPE ||
|
instance_type == FIXED_DOUBLE_ARRAY_TYPE) {
|
return kDoubleAligned;
|
}
|
if (instance_type == HEAP_NUMBER_TYPE) return kDoubleUnaligned;
|
#endif // V8_HOST_ARCH_32_BIT
|
return kWordAligned;
|
}
|
|
bool HeapObject::NeedsRehashing() const {
|
switch (map()->instance_type()) {
|
case DESCRIPTOR_ARRAY_TYPE:
|
return DescriptorArray::cast(this)->number_of_descriptors() > 1;
|
case TRANSITION_ARRAY_TYPE:
|
return TransitionArray::cast(this)->number_of_entries() > 1;
|
case ORDERED_HASH_MAP_TYPE:
|
return OrderedHashMap::cast(this)->NumberOfElements() > 0;
|
case ORDERED_HASH_SET_TYPE:
|
return OrderedHashSet::cast(this)->NumberOfElements() > 0;
|
case NAME_DICTIONARY_TYPE:
|
case GLOBAL_DICTIONARY_TYPE:
|
case NUMBER_DICTIONARY_TYPE:
|
case SIMPLE_NUMBER_DICTIONARY_TYPE:
|
case STRING_TABLE_TYPE:
|
case HASH_TABLE_TYPE:
|
case SMALL_ORDERED_HASH_MAP_TYPE:
|
case SMALL_ORDERED_HASH_SET_TYPE:
|
return true;
|
default:
|
return false;
|
}
|
}
|
|
Address HeapObject::GetFieldAddress(int field_offset) const {
|
return FIELD_ADDR(this, field_offset);
|
}
|
|
void PropertyArray::set(int index, Object* value, WriteBarrierMode mode) {
|
DCHECK_GE(index, 0);
|
DCHECK_LT(index, this->length());
|
int offset = kHeaderSize + index * kPointerSize;
|
RELAXED_WRITE_FIELD(this, offset, value);
|
CONDITIONAL_WRITE_BARRIER(this, offset, value, mode);
|
}
|
|
Object** PropertyArray::data_start() {
|
return HeapObject::RawField(this, kHeaderSize);
|
}
|
|
ACCESSORS(EnumCache, keys, FixedArray, kKeysOffset)
|
ACCESSORS(EnumCache, indices, FixedArray, kIndicesOffset)
|
|
int DescriptorArray::number_of_descriptors() const {
|
return Smi::ToInt(get(kDescriptorLengthIndex)->ToSmi());
|
}
|
|
int DescriptorArray::number_of_descriptors_storage() const {
|
return (length() - kFirstIndex) / kEntrySize;
|
}
|
|
int DescriptorArray::NumberOfSlackDescriptors() const {
|
return number_of_descriptors_storage() - number_of_descriptors();
|
}
|
|
|
void DescriptorArray::SetNumberOfDescriptors(int number_of_descriptors) {
|
set(kDescriptorLengthIndex,
|
MaybeObject::FromObject(Smi::FromInt(number_of_descriptors)));
|
}
|
|
inline int DescriptorArray::number_of_entries() const {
|
return number_of_descriptors();
|
}
|
|
void DescriptorArray::CopyEnumCacheFrom(DescriptorArray* array) {
|
set(kEnumCacheIndex, array->get(kEnumCacheIndex));
|
}
|
|
EnumCache* DescriptorArray::GetEnumCache() {
|
return EnumCache::cast(get(kEnumCacheIndex)->ToStrongHeapObject());
|
}
|
|
// Perform a binary search in a fixed array.
|
template <SearchMode search_mode, typename T>
|
int BinarySearch(T* array, Name* name, int valid_entries,
|
int* out_insertion_index) {
|
DCHECK(search_mode == ALL_ENTRIES || out_insertion_index == nullptr);
|
int low = 0;
|
int high = array->number_of_entries() - 1;
|
uint32_t hash = name->hash_field();
|
int limit = high;
|
|
DCHECK(low <= high);
|
|
while (low != high) {
|
int mid = low + (high - low) / 2;
|
Name* mid_name = array->GetSortedKey(mid);
|
uint32_t mid_hash = mid_name->hash_field();
|
|
if (mid_hash >= hash) {
|
high = mid;
|
} else {
|
low = mid + 1;
|
}
|
}
|
|
for (; low <= limit; ++low) {
|
int sort_index = array->GetSortedKeyIndex(low);
|
Name* entry = array->GetKey(sort_index);
|
uint32_t current_hash = entry->hash_field();
|
if (current_hash != hash) {
|
if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) {
|
*out_insertion_index = sort_index + (current_hash > hash ? 0 : 1);
|
}
|
return T::kNotFound;
|
}
|
if (entry == name) {
|
if (search_mode == ALL_ENTRIES || sort_index < valid_entries) {
|
return sort_index;
|
}
|
return T::kNotFound;
|
}
|
}
|
|
if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) {
|
*out_insertion_index = limit + 1;
|
}
|
return T::kNotFound;
|
}
|
|
|
// Perform a linear search in this fixed array. len is the number of entry
|
// indices that are valid.
|
template <SearchMode search_mode, typename T>
|
int LinearSearch(T* array, Name* name, int valid_entries,
|
int* out_insertion_index) {
|
if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) {
|
uint32_t hash = name->hash_field();
|
int len = array->number_of_entries();
|
for (int number = 0; number < len; number++) {
|
int sorted_index = array->GetSortedKeyIndex(number);
|
Name* entry = array->GetKey(sorted_index);
|
uint32_t current_hash = entry->hash_field();
|
if (current_hash > hash) {
|
*out_insertion_index = sorted_index;
|
return T::kNotFound;
|
}
|
if (entry == name) return sorted_index;
|
}
|
*out_insertion_index = len;
|
return T::kNotFound;
|
} else {
|
DCHECK_LE(valid_entries, array->number_of_entries());
|
DCHECK_NULL(out_insertion_index); // Not supported here.
|
for (int number = 0; number < valid_entries; number++) {
|
if (array->GetKey(number) == name) return number;
|
}
|
return T::kNotFound;
|
}
|
}
|
|
template <SearchMode search_mode, typename T>
|
int Search(T* array, Name* name, int valid_entries, int* out_insertion_index) {
|
SLOW_DCHECK(array->IsSortedNoDuplicates());
|
|
if (valid_entries == 0) {
|
if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) {
|
*out_insertion_index = 0;
|
}
|
return T::kNotFound;
|
}
|
|
// Fast case: do linear search for small arrays.
|
const int kMaxElementsForLinearSearch = 8;
|
if (valid_entries <= kMaxElementsForLinearSearch) {
|
return LinearSearch<search_mode>(array, name, valid_entries,
|
out_insertion_index);
|
}
|
|
// Slow case: perform binary search.
|
return BinarySearch<search_mode>(array, name, valid_entries,
|
out_insertion_index);
|
}
|
|
|
int DescriptorArray::Search(Name* name, int valid_descriptors) {
|
DCHECK(name->IsUniqueName());
|
return internal::Search<VALID_ENTRIES>(this, name, valid_descriptors,
|
nullptr);
|
}
|
|
int DescriptorArray::Search(Name* name, Map* map) {
|
DCHECK(name->IsUniqueName());
|
int number_of_own_descriptors = map->NumberOfOwnDescriptors();
|
if (number_of_own_descriptors == 0) return kNotFound;
|
return Search(name, number_of_own_descriptors);
|
}
|
|
int DescriptorArray::SearchWithCache(Isolate* isolate, Name* name, Map* map) {
|
DCHECK(name->IsUniqueName());
|
int number_of_own_descriptors = map->NumberOfOwnDescriptors();
|
if (number_of_own_descriptors == 0) return kNotFound;
|
|
DescriptorLookupCache* cache = isolate->descriptor_lookup_cache();
|
int number = cache->Lookup(map, name);
|
|
if (number == DescriptorLookupCache::kAbsent) {
|
number = Search(name, number_of_own_descriptors);
|
cache->Update(map, name, number);
|
}
|
|
return number;
|
}
|
|
|
Object** DescriptorArray::GetKeySlot(int descriptor_number) {
|
DCHECK(descriptor_number < number_of_descriptors());
|
DCHECK((*RawFieldOfElementAt(ToKeyIndex(descriptor_number)))->IsObject());
|
return reinterpret_cast<Object**>(
|
RawFieldOfElementAt(ToKeyIndex(descriptor_number)));
|
}
|
|
MaybeObject** DescriptorArray::GetDescriptorStartSlot(int descriptor_number) {
|
return reinterpret_cast<MaybeObject**>(GetKeySlot(descriptor_number));
|
}
|
|
MaybeObject** DescriptorArray::GetDescriptorEndSlot(int descriptor_number) {
|
return GetValueSlot(descriptor_number - 1) + 1;
|
}
|
|
|
Name* DescriptorArray::GetKey(int descriptor_number) {
|
DCHECK(descriptor_number < number_of_descriptors());
|
return Name::cast(get(ToKeyIndex(descriptor_number))->ToStrongHeapObject());
|
}
|
|
|
int DescriptorArray::GetSortedKeyIndex(int descriptor_number) {
|
return GetDetails(descriptor_number).pointer();
|
}
|
|
|
Name* DescriptorArray::GetSortedKey(int descriptor_number) {
|
return GetKey(GetSortedKeyIndex(descriptor_number));
|
}
|
|
|
void DescriptorArray::SetSortedKey(int descriptor_index, int pointer) {
|
PropertyDetails details = GetDetails(descriptor_index);
|
set(ToDetailsIndex(descriptor_index),
|
MaybeObject::FromObject(details.set_pointer(pointer).AsSmi()));
|
}
|
|
MaybeObject** DescriptorArray::GetValueSlot(int descriptor_number) {
|
DCHECK(descriptor_number < number_of_descriptors());
|
return RawFieldOfElementAt(ToValueIndex(descriptor_number));
|
}
|
|
|
int DescriptorArray::GetValueOffset(int descriptor_number) {
|
return OffsetOfElementAt(ToValueIndex(descriptor_number));
|
}
|
|
Object* DescriptorArray::GetStrongValue(int descriptor_number) {
|
DCHECK(descriptor_number < number_of_descriptors());
|
return get(ToValueIndex(descriptor_number))->ToObject();
|
}
|
|
|
void DescriptorArray::SetValue(int descriptor_index, Object* value) {
|
set(ToValueIndex(descriptor_index), MaybeObject::FromObject(value));
|
}
|
|
MaybeObject* DescriptorArray::GetValue(int descriptor_number) {
|
DCHECK_LT(descriptor_number, number_of_descriptors());
|
return get(ToValueIndex(descriptor_number));
|
}
|
|
PropertyDetails DescriptorArray::GetDetails(int descriptor_number) {
|
DCHECK(descriptor_number < number_of_descriptors());
|
MaybeObject* details = get(ToDetailsIndex(descriptor_number));
|
return PropertyDetails(details->ToSmi());
|
}
|
|
int DescriptorArray::GetFieldIndex(int descriptor_number) {
|
DCHECK_EQ(GetDetails(descriptor_number).location(), kField);
|
return GetDetails(descriptor_number).field_index();
|
}
|
|
FieldType* DescriptorArray::GetFieldType(int descriptor_number) {
|
DCHECK_EQ(GetDetails(descriptor_number).location(), kField);
|
MaybeObject* wrapped_type = GetValue(descriptor_number);
|
return Map::UnwrapFieldType(wrapped_type);
|
}
|
|
void DescriptorArray::Set(int descriptor_number, Name* key, MaybeObject* value,
|
PropertyDetails details) {
|
// Range check.
|
DCHECK(descriptor_number < number_of_descriptors());
|
set(ToKeyIndex(descriptor_number), MaybeObject::FromObject(key));
|
set(ToValueIndex(descriptor_number), value);
|
set(ToDetailsIndex(descriptor_number),
|
MaybeObject::FromObject(details.AsSmi()));
|
}
|
|
void DescriptorArray::Set(int descriptor_number, Descriptor* desc) {
|
Name* key = *desc->GetKey();
|
MaybeObject* value = *desc->GetValue();
|
Set(descriptor_number, key, value, desc->GetDetails());
|
}
|
|
|
void DescriptorArray::Append(Descriptor* desc) {
|
DisallowHeapAllocation no_gc;
|
int descriptor_number = number_of_descriptors();
|
SetNumberOfDescriptors(descriptor_number + 1);
|
Set(descriptor_number, desc);
|
|
uint32_t hash = desc->GetKey()->Hash();
|
|
int insertion;
|
|
for (insertion = descriptor_number; insertion > 0; --insertion) {
|
Name* key = GetSortedKey(insertion - 1);
|
if (key->Hash() <= hash) break;
|
SetSortedKey(insertion, GetSortedKeyIndex(insertion - 1));
|
}
|
|
SetSortedKey(insertion, descriptor_number);
|
}
|
|
|
void DescriptorArray::SwapSortedKeys(int first, int second) {
|
int first_key = GetSortedKeyIndex(first);
|
SetSortedKey(first, GetSortedKeyIndex(second));
|
SetSortedKey(second, first_key);
|
}
|
|
MaybeObject* DescriptorArray::get(int index) const {
|
return WeakFixedArray::Get(index);
|
}
|
|
void DescriptorArray::set(int index, MaybeObject* value) {
|
WeakFixedArray::Set(index, value);
|
}
|
|
bool StringSetShape::IsMatch(String* key, Object* value) {
|
DCHECK(value->IsString());
|
return key->Equals(String::cast(value));
|
}
|
|
uint32_t StringSetShape::Hash(Isolate* isolate, String* key) {
|
return key->Hash();
|
}
|
|
uint32_t StringSetShape::HashForObject(Isolate* isolate, Object* object) {
|
return String::cast(object)->Hash();
|
}
|
|
StringTableKey::StringTableKey(uint32_t hash_field)
|
: HashTableKey(hash_field >> Name::kHashShift), hash_field_(hash_field) {}
|
|
void StringTableKey::set_hash_field(uint32_t hash_field) {
|
hash_field_ = hash_field;
|
set_hash(hash_field >> Name::kHashShift);
|
}
|
|
Handle<Object> StringTableShape::AsHandle(Isolate* isolate,
|
StringTableKey* key) {
|
return key->AsHandle(isolate);
|
}
|
|
uint32_t StringTableShape::HashForObject(Isolate* isolate, Object* object) {
|
return String::cast(object)->Hash();
|
}
|
|
int StringTableShape::GetMapRootIndex() {
|
return Heap::kStringTableMapRootIndex;
|
}
|
|
bool NumberDictionary::requires_slow_elements() {
|
Object* max_index_object = get(kMaxNumberKeyIndex);
|
if (!max_index_object->IsSmi()) return false;
|
return 0 != (Smi::ToInt(max_index_object) & kRequiresSlowElementsMask);
|
}
|
|
uint32_t NumberDictionary::max_number_key() {
|
DCHECK(!requires_slow_elements());
|
Object* max_index_object = get(kMaxNumberKeyIndex);
|
if (!max_index_object->IsSmi()) return 0;
|
uint32_t value = static_cast<uint32_t>(Smi::ToInt(max_index_object));
|
return value >> kRequiresSlowElementsTagSize;
|
}
|
|
void NumberDictionary::set_requires_slow_elements() {
|
set(kMaxNumberKeyIndex, Smi::FromInt(kRequiresSlowElementsMask));
|
}
|
|
DEFINE_DEOPT_ELEMENT_ACCESSORS(TranslationByteArray, ByteArray)
|
DEFINE_DEOPT_ELEMENT_ACCESSORS(InlinedFunctionCount, Smi)
|
DEFINE_DEOPT_ELEMENT_ACCESSORS(LiteralArray, FixedArray)
|
DEFINE_DEOPT_ELEMENT_ACCESSORS(OsrBytecodeOffset, Smi)
|
DEFINE_DEOPT_ELEMENT_ACCESSORS(OsrPcOffset, Smi)
|
DEFINE_DEOPT_ELEMENT_ACCESSORS(OptimizationId, Smi)
|
DEFINE_DEOPT_ELEMENT_ACCESSORS(InliningPositions, PodArray<InliningPosition>)
|
|
DEFINE_DEOPT_ENTRY_ACCESSORS(BytecodeOffsetRaw, Smi)
|
DEFINE_DEOPT_ENTRY_ACCESSORS(TranslationIndex, Smi)
|
DEFINE_DEOPT_ENTRY_ACCESSORS(Pc, Smi)
|
|
int PropertyArray::length() const {
|
Object* value_obj = READ_FIELD(this, kLengthAndHashOffset);
|
int value = Smi::ToInt(value_obj);
|
return LengthField::decode(value);
|
}
|
|
void PropertyArray::initialize_length(int len) {
|
SLOW_DCHECK(len >= 0);
|
SLOW_DCHECK(len < LengthField::kMax);
|
WRITE_FIELD(this, kLengthAndHashOffset, Smi::FromInt(len));
|
}
|
|
int PropertyArray::synchronized_length() const {
|
Object* value_obj = ACQUIRE_READ_FIELD(this, kLengthAndHashOffset);
|
int value = Smi::ToInt(value_obj);
|
return LengthField::decode(value);
|
}
|
|
int PropertyArray::Hash() const {
|
Object* value_obj = READ_FIELD(this, kLengthAndHashOffset);
|
int value = Smi::ToInt(value_obj);
|
return HashField::decode(value);
|
}
|
|
void PropertyArray::SetHash(int hash) {
|
Object* value_obj = READ_FIELD(this, kLengthAndHashOffset);
|
int value = Smi::ToInt(value_obj);
|
value = HashField::update(value, hash);
|
WRITE_FIELD(this, kLengthAndHashOffset, Smi::FromInt(value));
|
}
|
|
SMI_ACCESSORS(FreeSpace, size, kSizeOffset)
|
RELAXED_SMI_ACCESSORS(FreeSpace, size, kSizeOffset)
|
|
|
int FreeSpace::Size() { return size(); }
|
|
|
FreeSpace* FreeSpace::next() {
|
DCHECK(map() == Heap::FromWritableHeapObject(this)->root(
|
Heap::kFreeSpaceMapRootIndex) ||
|
(!Heap::FromWritableHeapObject(this)->deserialization_complete() &&
|
map() == nullptr));
|
DCHECK_LE(kNextOffset + kPointerSize, relaxed_read_size());
|
return reinterpret_cast<FreeSpace*>(Memory<Address>(address() + kNextOffset));
|
}
|
|
|
void FreeSpace::set_next(FreeSpace* next) {
|
DCHECK(map() == Heap::FromWritableHeapObject(this)->root(
|
Heap::kFreeSpaceMapRootIndex) ||
|
(!Heap::FromWritableHeapObject(this)->deserialization_complete() &&
|
map() == nullptr));
|
DCHECK_LE(kNextOffset + kPointerSize, relaxed_read_size());
|
base::Relaxed_Store(
|
reinterpret_cast<base::AtomicWord*>(address() + kNextOffset),
|
reinterpret_cast<base::AtomicWord>(next));
|
}
|
|
|
FreeSpace* FreeSpace::cast(HeapObject* o) {
|
SLOW_DCHECK(!Heap::FromWritableHeapObject(o)->deserialization_complete() ||
|
o->IsFreeSpace());
|
return reinterpret_cast<FreeSpace*>(o);
|
}
|
|
int HeapObject::SizeFromMap(Map* map) const {
|
int instance_size = map->instance_size();
|
if (instance_size != kVariableSizeSentinel) return instance_size;
|
// Only inline the most frequent cases.
|
InstanceType instance_type = map->instance_type();
|
if (instance_type >= FIRST_FIXED_ARRAY_TYPE &&
|
instance_type <= LAST_FIXED_ARRAY_TYPE) {
|
return FixedArray::SizeFor(
|
reinterpret_cast<const FixedArray*>(this)->synchronized_length());
|
}
|
if (instance_type == ONE_BYTE_STRING_TYPE ||
|
instance_type == ONE_BYTE_INTERNALIZED_STRING_TYPE) {
|
// Strings may get concurrently truncated, hence we have to access its
|
// length synchronized.
|
return SeqOneByteString::SizeFor(
|
reinterpret_cast<const SeqOneByteString*>(this)->synchronized_length());
|
}
|
if (instance_type == BYTE_ARRAY_TYPE) {
|
return ByteArray::SizeFor(
|
reinterpret_cast<const ByteArray*>(this)->synchronized_length());
|
}
|
if (instance_type == BYTECODE_ARRAY_TYPE) {
|
return BytecodeArray::SizeFor(
|
reinterpret_cast<const BytecodeArray*>(this)->synchronized_length());
|
}
|
if (instance_type == FREE_SPACE_TYPE) {
|
return reinterpret_cast<const FreeSpace*>(this)->relaxed_read_size();
|
}
|
if (instance_type == STRING_TYPE ||
|
instance_type == INTERNALIZED_STRING_TYPE) {
|
// Strings may get concurrently truncated, hence we have to access its
|
// length synchronized.
|
return SeqTwoByteString::SizeFor(
|
reinterpret_cast<const SeqTwoByteString*>(this)->synchronized_length());
|
}
|
if (instance_type == FIXED_DOUBLE_ARRAY_TYPE) {
|
return FixedDoubleArray::SizeFor(
|
reinterpret_cast<const FixedDoubleArray*>(this)->synchronized_length());
|
}
|
if (instance_type == FEEDBACK_METADATA_TYPE) {
|
return FeedbackMetadata::SizeFor(
|
reinterpret_cast<const FeedbackMetadata*>(this)
|
->synchronized_slot_count());
|
}
|
if (instance_type >= FIRST_WEAK_FIXED_ARRAY_TYPE &&
|
instance_type <= LAST_WEAK_FIXED_ARRAY_TYPE) {
|
return WeakFixedArray::SizeFor(
|
reinterpret_cast<const WeakFixedArray*>(this)->synchronized_length());
|
}
|
if (instance_type == WEAK_ARRAY_LIST_TYPE) {
|
return WeakArrayList::SizeForCapacity(
|
reinterpret_cast<const WeakArrayList*>(this)->synchronized_capacity());
|
}
|
if (instance_type >= FIRST_FIXED_TYPED_ARRAY_TYPE &&
|
instance_type <= LAST_FIXED_TYPED_ARRAY_TYPE) {
|
return reinterpret_cast<const FixedTypedArrayBase*>(this)->TypedArraySize(
|
instance_type);
|
}
|
if (instance_type == SMALL_ORDERED_HASH_SET_TYPE) {
|
return SmallOrderedHashSet::SizeFor(
|
reinterpret_cast<const SmallOrderedHashSet*>(this)->Capacity());
|
}
|
if (instance_type == PROPERTY_ARRAY_TYPE) {
|
return PropertyArray::SizeFor(
|
reinterpret_cast<const PropertyArray*>(this)->synchronized_length());
|
}
|
if (instance_type == SMALL_ORDERED_HASH_MAP_TYPE) {
|
return SmallOrderedHashMap::SizeFor(
|
reinterpret_cast<const SmallOrderedHashMap*>(this)->Capacity());
|
}
|
if (instance_type == FEEDBACK_VECTOR_TYPE) {
|
return FeedbackVector::SizeFor(
|
reinterpret_cast<const FeedbackVector*>(this)->length());
|
}
|
if (instance_type == BIGINT_TYPE) {
|
return BigInt::SizeFor(reinterpret_cast<const BigInt*>(this)->length());
|
}
|
if (instance_type == PRE_PARSED_SCOPE_DATA_TYPE) {
|
return PreParsedScopeData::SizeFor(
|
reinterpret_cast<const PreParsedScopeData*>(this)->length());
|
}
|
DCHECK(instance_type == CODE_TYPE);
|
return reinterpret_cast<const Code*>(this)->CodeSize();
|
}
|
|
Object* JSBoundFunction::raw_bound_target_function() const {
|
return READ_FIELD(this, kBoundTargetFunctionOffset);
|
}
|
|
ACCESSORS(JSBoundFunction, bound_target_function, JSReceiver,
|
kBoundTargetFunctionOffset)
|
ACCESSORS(JSBoundFunction, bound_this, Object, kBoundThisOffset)
|
ACCESSORS(JSBoundFunction, bound_arguments, FixedArray, kBoundArgumentsOffset)
|
|
ACCESSORS(JSFunction, shared, SharedFunctionInfo, kSharedFunctionInfoOffset)
|
ACCESSORS(JSFunction, feedback_cell, FeedbackCell, kFeedbackCellOffset)
|
|
ACCESSORS(JSGlobalObject, native_context, Context, kNativeContextOffset)
|
ACCESSORS(JSGlobalObject, global_proxy, JSObject, kGlobalProxyOffset)
|
|
ACCESSORS(JSGlobalProxy, native_context, Object, kNativeContextOffset)
|
|
ACCESSORS(AsyncGeneratorRequest, next, Object, kNextOffset)
|
SMI_ACCESSORS(AsyncGeneratorRequest, resume_mode, kResumeModeOffset)
|
ACCESSORS(AsyncGeneratorRequest, value, Object, kValueOffset)
|
ACCESSORS(AsyncGeneratorRequest, promise, Object, kPromiseOffset)
|
|
ACCESSORS(Tuple2, value1, Object, kValue1Offset)
|
ACCESSORS(Tuple2, value2, Object, kValue2Offset)
|
ACCESSORS(Tuple3, value3, Object, kValue3Offset)
|
|
ACCESSORS(TemplateObjectDescription, raw_strings, FixedArray, kRawStringsOffset)
|
ACCESSORS(TemplateObjectDescription, cooked_strings, FixedArray,
|
kCookedStringsOffset)
|
|
ACCESSORS(AccessorPair, getter, Object, kGetterOffset)
|
ACCESSORS(AccessorPair, setter, Object, kSetterOffset)
|
|
ACCESSORS(AllocationSite, transition_info_or_boilerplate, Object,
|
kTransitionInfoOrBoilerplateOffset)
|
|
JSObject* AllocationSite::boilerplate() const {
|
DCHECK(PointsToLiteral());
|
return JSObject::cast(transition_info_or_boilerplate());
|
}
|
|
void AllocationSite::set_boilerplate(JSObject* object, WriteBarrierMode mode) {
|
set_transition_info_or_boilerplate(object, mode);
|
}
|
|
int AllocationSite::transition_info() const {
|
DCHECK(!PointsToLiteral());
|
return Smi::cast(transition_info_or_boilerplate())->value();
|
}
|
|
void AllocationSite::set_transition_info(int value) {
|
DCHECK(!PointsToLiteral());
|
set_transition_info_or_boilerplate(Smi::FromInt(value), SKIP_WRITE_BARRIER);
|
}
|
|
ACCESSORS(AllocationSite, nested_site, Object, kNestedSiteOffset)
|
INT32_ACCESSORS(AllocationSite, pretenure_data, kPretenureDataOffset)
|
INT32_ACCESSORS(AllocationSite, pretenure_create_count,
|
kPretenureCreateCountOffset)
|
ACCESSORS(AllocationSite, dependent_code, DependentCode,
|
kDependentCodeOffset)
|
ACCESSORS_CHECKED(AllocationSite, weak_next, Object, kWeakNextOffset,
|
HasWeakNext())
|
ACCESSORS(AllocationMemento, allocation_site, Object, kAllocationSiteOffset)
|
|
SMI_ACCESSORS(StackFrameInfo, line_number, kLineNumberIndex)
|
SMI_ACCESSORS(StackFrameInfo, column_number, kColumnNumberIndex)
|
SMI_ACCESSORS(StackFrameInfo, script_id, kScriptIdIndex)
|
ACCESSORS(StackFrameInfo, script_name, Object, kScriptNameIndex)
|
ACCESSORS(StackFrameInfo, script_name_or_source_url, Object,
|
kScriptNameOrSourceUrlIndex)
|
ACCESSORS(StackFrameInfo, function_name, Object, kFunctionNameIndex)
|
SMI_ACCESSORS(StackFrameInfo, flag, kFlagIndex)
|
BOOL_ACCESSORS(StackFrameInfo, flag, is_eval, kIsEvalBit)
|
BOOL_ACCESSORS(StackFrameInfo, flag, is_constructor, kIsConstructorBit)
|
BOOL_ACCESSORS(StackFrameInfo, flag, is_wasm, kIsWasmBit)
|
SMI_ACCESSORS(StackFrameInfo, id, kIdIndex)
|
|
ACCESSORS(SourcePositionTableWithFrameCache, source_position_table, ByteArray,
|
kSourcePositionTableIndex)
|
ACCESSORS(SourcePositionTableWithFrameCache, stack_frame_cache,
|
SimpleNumberDictionary, kStackFrameCacheIndex)
|
|
|
FeedbackVector* JSFunction::feedback_vector() const {
|
DCHECK(has_feedback_vector());
|
return FeedbackVector::cast(feedback_cell()->value());
|
}
|
|
// Code objects that are marked for deoptimization are not considered to be
|
// optimized. This is because the JSFunction might have been already
|
// deoptimized but its code() still needs to be unlinked, which will happen on
|
// its next activation.
|
// TODO(jupvfranco): rename this function. Maybe RunOptimizedCode,
|
// or IsValidOptimizedCode.
|
bool JSFunction::IsOptimized() {
|
return code()->kind() == Code::OPTIMIZED_FUNCTION &&
|
!code()->marked_for_deoptimization();
|
}
|
|
bool JSFunction::HasOptimizedCode() {
|
return IsOptimized() ||
|
(has_feedback_vector() && feedback_vector()->has_optimized_code() &&
|
!feedback_vector()->optimized_code()->marked_for_deoptimization());
|
}
|
|
bool JSFunction::HasOptimizationMarker() {
|
return has_feedback_vector() && feedback_vector()->has_optimization_marker();
|
}
|
|
void JSFunction::ClearOptimizationMarker() {
|
DCHECK(has_feedback_vector());
|
feedback_vector()->ClearOptimizationMarker();
|
}
|
|
// Optimized code marked for deoptimization will tier back down to running
|
// interpreted on its next activation, and already doesn't count as IsOptimized.
|
bool JSFunction::IsInterpreted() {
|
return code()->is_interpreter_trampoline_builtin() ||
|
(code()->kind() == Code::OPTIMIZED_FUNCTION &&
|
code()->marked_for_deoptimization());
|
}
|
|
bool JSFunction::ChecksOptimizationMarker() {
|
return code()->checks_optimization_marker();
|
}
|
|
bool JSFunction::IsMarkedForOptimization() {
|
return has_feedback_vector() && feedback_vector()->optimization_marker() ==
|
OptimizationMarker::kCompileOptimized;
|
}
|
|
|
bool JSFunction::IsMarkedForConcurrentOptimization() {
|
return has_feedback_vector() &&
|
feedback_vector()->optimization_marker() ==
|
OptimizationMarker::kCompileOptimizedConcurrent;
|
}
|
|
|
bool JSFunction::IsInOptimizationQueue() {
|
return has_feedback_vector() && feedback_vector()->optimization_marker() ==
|
OptimizationMarker::kInOptimizationQueue;
|
}
|
|
|
void JSFunction::CompleteInobjectSlackTrackingIfActive() {
|
if (!has_prototype_slot()) return;
|
if (has_initial_map() && initial_map()->IsInobjectSlackTrackingInProgress()) {
|
initial_map()->CompleteInobjectSlackTracking(GetIsolate());
|
}
|
}
|
|
AbstractCode* JSFunction::abstract_code() {
|
if (IsInterpreted()) {
|
return AbstractCode::cast(shared()->GetBytecodeArray());
|
} else {
|
return AbstractCode::cast(code());
|
}
|
}
|
|
Code* JSFunction::code() { return Code::cast(READ_FIELD(this, kCodeOffset)); }
|
|
void JSFunction::set_code(Code* value) {
|
DCHECK(!Heap::InNewSpace(value));
|
WRITE_FIELD(this, kCodeOffset, value);
|
MarkingBarrier(this, HeapObject::RawField(this, kCodeOffset), value);
|
}
|
|
|
void JSFunction::set_code_no_write_barrier(Code* value) {
|
DCHECK(!Heap::InNewSpace(value));
|
WRITE_FIELD(this, kCodeOffset, value);
|
}
|
|
void JSFunction::ClearOptimizedCodeSlot(const char* reason) {
|
if (has_feedback_vector() && feedback_vector()->has_optimized_code()) {
|
if (FLAG_trace_opt) {
|
PrintF("[evicting entry from optimizing code feedback slot (%s) for ",
|
reason);
|
ShortPrint();
|
PrintF("]\n");
|
}
|
feedback_vector()->ClearOptimizedCode();
|
}
|
}
|
|
void JSFunction::SetOptimizationMarker(OptimizationMarker marker) {
|
DCHECK(has_feedback_vector());
|
DCHECK(ChecksOptimizationMarker());
|
DCHECK(!HasOptimizedCode());
|
|
feedback_vector()->SetOptimizationMarker(marker);
|
}
|
|
bool JSFunction::has_feedback_vector() const {
|
return !feedback_cell()->value()->IsUndefined();
|
}
|
|
Context* JSFunction::context() {
|
return Context::cast(READ_FIELD(this, kContextOffset));
|
}
|
|
bool JSFunction::has_context() const {
|
return READ_FIELD(this, kContextOffset)->IsContext();
|
}
|
|
JSGlobalProxy* JSFunction::global_proxy() { return context()->global_proxy(); }
|
|
Context* JSFunction::native_context() { return context()->native_context(); }
|
|
|
void JSFunction::set_context(Object* value) {
|
DCHECK(value->IsUndefined() || value->IsContext());
|
WRITE_FIELD(this, kContextOffset, value);
|
WRITE_BARRIER(this, kContextOffset, value);
|
}
|
|
ACCESSORS_CHECKED(JSFunction, prototype_or_initial_map, Object,
|
kPrototypeOrInitialMapOffset, map()->has_prototype_slot())
|
|
bool JSFunction::has_prototype_slot() const {
|
return map()->has_prototype_slot();
|
}
|
|
Map* JSFunction::initial_map() {
|
return Map::cast(prototype_or_initial_map());
|
}
|
|
|
bool JSFunction::has_initial_map() {
|
DCHECK(has_prototype_slot());
|
return prototype_or_initial_map()->IsMap();
|
}
|
|
|
bool JSFunction::has_instance_prototype() {
|
DCHECK(has_prototype_slot());
|
return has_initial_map() || !prototype_or_initial_map()->IsTheHole();
|
}
|
|
bool JSFunction::has_prototype() {
|
DCHECK(has_prototype_slot());
|
return map()->has_non_instance_prototype() || has_instance_prototype();
|
}
|
|
bool JSFunction::has_prototype_property() {
|
return (has_prototype_slot() && IsConstructor()) ||
|
IsGeneratorFunction(shared()->kind());
|
}
|
|
bool JSFunction::PrototypeRequiresRuntimeLookup() {
|
return !has_prototype_property() || map()->has_non_instance_prototype();
|
}
|
|
Object* JSFunction::instance_prototype() {
|
DCHECK(has_instance_prototype());
|
if (has_initial_map()) return initial_map()->prototype();
|
// When there is no initial map and the prototype is a JSReceiver, the
|
// initial map field is used for the prototype field.
|
return prototype_or_initial_map();
|
}
|
|
|
Object* JSFunction::prototype() {
|
DCHECK(has_prototype());
|
// If the function's prototype property has been set to a non-JSReceiver
|
// value, that value is stored in the constructor field of the map.
|
if (map()->has_non_instance_prototype()) {
|
Object* prototype = map()->GetConstructor();
|
// The map must have a prototype in that field, not a back pointer.
|
DCHECK(!prototype->IsMap());
|
DCHECK(!prototype->IsFunctionTemplateInfo());
|
return prototype;
|
}
|
return instance_prototype();
|
}
|
|
|
bool JSFunction::is_compiled() {
|
return code()->builtin_index() != Builtins::kCompileLazy;
|
}
|
|
// static
|
bool Foreign::IsNormalized(Object* value) {
|
if (value == Smi::kZero) return true;
|
return Foreign::cast(value)->foreign_address() != kNullAddress;
|
}
|
|
Address Foreign::foreign_address() {
|
return AddressFrom<Address>(READ_INTPTR_FIELD(this, kForeignAddressOffset));
|
}
|
|
void Foreign::set_foreign_address(Address value) {
|
WRITE_INTPTR_FIELD(this, kForeignAddressOffset, OffsetFrom(value));
|
}
|
|
template <class Derived>
|
void SmallOrderedHashTable<Derived>::SetDataEntry(int entry, int relative_index,
|
Object* value) {
|
Address entry_offset = GetDataEntryOffset(entry, relative_index);
|
RELAXED_WRITE_FIELD(this, entry_offset, value);
|
WRITE_BARRIER(this, static_cast<int>(entry_offset), value);
|
}
|
|
ACCESSORS(JSValue, value, Object, kValueOffset)
|
|
|
ACCESSORS(JSDate, value, Object, kValueOffset)
|
ACCESSORS(JSDate, cache_stamp, Object, kCacheStampOffset)
|
ACCESSORS(JSDate, year, Object, kYearOffset)
|
ACCESSORS(JSDate, month, Object, kMonthOffset)
|
ACCESSORS(JSDate, day, Object, kDayOffset)
|
ACCESSORS(JSDate, weekday, Object, kWeekdayOffset)
|
ACCESSORS(JSDate, hour, Object, kHourOffset)
|
ACCESSORS(JSDate, min, Object, kMinOffset)
|
ACCESSORS(JSDate, sec, Object, kSecOffset)
|
|
|
SMI_ACCESSORS(JSMessageObject, type, kTypeOffset)
|
ACCESSORS(JSMessageObject, argument, Object, kArgumentsOffset)
|
ACCESSORS(JSMessageObject, script, Script, kScriptOffset)
|
ACCESSORS(JSMessageObject, stack_frames, Object, kStackFramesOffset)
|
SMI_ACCESSORS(JSMessageObject, start_position, kStartPositionOffset)
|
SMI_ACCESSORS(JSMessageObject, end_position, kEndPositionOffset)
|
SMI_ACCESSORS(JSMessageObject, error_level, kErrorLevelOffset)
|
|
ElementsKind JSObject::GetElementsKind() const {
|
ElementsKind kind = map()->elements_kind();
|
#if VERIFY_HEAP && DEBUG
|
FixedArrayBase* fixed_array =
|
reinterpret_cast<FixedArrayBase*>(READ_FIELD(this, kElementsOffset));
|
|
// If a GC was caused while constructing this object, the elements
|
// pointer may point to a one pointer filler map.
|
if (ElementsAreSafeToExamine()) {
|
Map* map = fixed_array->map();
|
if (IsSmiOrObjectElementsKind(kind)) {
|
DCHECK(map == GetReadOnlyRoots().fixed_array_map() ||
|
map == GetReadOnlyRoots().fixed_cow_array_map());
|
} else if (IsDoubleElementsKind(kind)) {
|
DCHECK(fixed_array->IsFixedDoubleArray() ||
|
fixed_array == GetReadOnlyRoots().empty_fixed_array());
|
} else if (kind == DICTIONARY_ELEMENTS) {
|
DCHECK(fixed_array->IsFixedArray());
|
DCHECK(fixed_array->IsDictionary());
|
} else {
|
DCHECK(kind > DICTIONARY_ELEMENTS);
|
}
|
DCHECK(!IsSloppyArgumentsElementsKind(kind) ||
|
(elements()->IsFixedArray() && elements()->length() >= 2));
|
}
|
#endif
|
return kind;
|
}
|
|
bool JSObject::HasObjectElements() {
|
return IsObjectElementsKind(GetElementsKind());
|
}
|
|
bool JSObject::HasSmiElements() { return IsSmiElementsKind(GetElementsKind()); }
|
|
bool JSObject::HasSmiOrObjectElements() {
|
return IsSmiOrObjectElementsKind(GetElementsKind());
|
}
|
|
bool JSObject::HasDoubleElements() {
|
return IsDoubleElementsKind(GetElementsKind());
|
}
|
|
bool JSObject::HasHoleyElements() {
|
return IsHoleyElementsKind(GetElementsKind());
|
}
|
|
|
bool JSObject::HasFastElements() {
|
return IsFastElementsKind(GetElementsKind());
|
}
|
|
bool JSObject::HasFastPackedElements() {
|
return IsFastPackedElementsKind(GetElementsKind());
|
}
|
|
bool JSObject::HasDictionaryElements() {
|
return GetElementsKind() == DICTIONARY_ELEMENTS;
|
}
|
|
|
bool JSObject::HasFastArgumentsElements() {
|
return GetElementsKind() == FAST_SLOPPY_ARGUMENTS_ELEMENTS;
|
}
|
|
|
bool JSObject::HasSlowArgumentsElements() {
|
return GetElementsKind() == SLOW_SLOPPY_ARGUMENTS_ELEMENTS;
|
}
|
|
|
bool JSObject::HasSloppyArgumentsElements() {
|
return IsSloppyArgumentsElementsKind(GetElementsKind());
|
}
|
|
bool JSObject::HasStringWrapperElements() {
|
return IsStringWrapperElementsKind(GetElementsKind());
|
}
|
|
bool JSObject::HasFastStringWrapperElements() {
|
return GetElementsKind() == FAST_STRING_WRAPPER_ELEMENTS;
|
}
|
|
bool JSObject::HasSlowStringWrapperElements() {
|
return GetElementsKind() == SLOW_STRING_WRAPPER_ELEMENTS;
|
}
|
|
bool JSObject::HasFixedTypedArrayElements() {
|
DCHECK_NOT_NULL(elements());
|
return map()->has_fixed_typed_array_elements();
|
}
|
|
#define FIXED_TYPED_ELEMENTS_CHECK(Type, type, TYPE, ctype) \
|
bool JSObject::HasFixed##Type##Elements() { \
|
HeapObject* array = elements(); \
|
DCHECK_NOT_NULL(array); \
|
if (!array->IsHeapObject()) return false; \
|
return array->map()->instance_type() == FIXED_##TYPE##_ARRAY_TYPE; \
|
}
|
|
TYPED_ARRAYS(FIXED_TYPED_ELEMENTS_CHECK)
|
|
#undef FIXED_TYPED_ELEMENTS_CHECK
|
|
|
bool JSObject::HasNamedInterceptor() {
|
return map()->has_named_interceptor();
|
}
|
|
|
bool JSObject::HasIndexedInterceptor() {
|
return map()->has_indexed_interceptor();
|
}
|
|
void JSGlobalObject::set_global_dictionary(GlobalDictionary* dictionary) {
|
DCHECK(IsJSGlobalObject());
|
set_raw_properties_or_hash(dictionary);
|
}
|
|
GlobalDictionary* JSGlobalObject::global_dictionary() {
|
DCHECK(!HasFastProperties());
|
DCHECK(IsJSGlobalObject());
|
return GlobalDictionary::cast(raw_properties_or_hash());
|
}
|
|
NumberDictionary* JSObject::element_dictionary() {
|
DCHECK(HasDictionaryElements() || HasSlowStringWrapperElements());
|
return NumberDictionary::cast(elements());
|
}
|
|
// static
|
Maybe<bool> Object::GreaterThan(Isolate* isolate, Handle<Object> x,
|
Handle<Object> y) {
|
Maybe<ComparisonResult> result = Compare(isolate, x, y);
|
if (result.IsJust()) {
|
switch (result.FromJust()) {
|
case ComparisonResult::kGreaterThan:
|
return Just(true);
|
case ComparisonResult::kLessThan:
|
case ComparisonResult::kEqual:
|
case ComparisonResult::kUndefined:
|
return Just(false);
|
}
|
}
|
return Nothing<bool>();
|
}
|
|
|
// static
|
Maybe<bool> Object::GreaterThanOrEqual(Isolate* isolate, Handle<Object> x,
|
Handle<Object> y) {
|
Maybe<ComparisonResult> result = Compare(isolate, x, y);
|
if (result.IsJust()) {
|
switch (result.FromJust()) {
|
case ComparisonResult::kEqual:
|
case ComparisonResult::kGreaterThan:
|
return Just(true);
|
case ComparisonResult::kLessThan:
|
case ComparisonResult::kUndefined:
|
return Just(false);
|
}
|
}
|
return Nothing<bool>();
|
}
|
|
|
// static
|
Maybe<bool> Object::LessThan(Isolate* isolate, Handle<Object> x,
|
Handle<Object> y) {
|
Maybe<ComparisonResult> result = Compare(isolate, x, y);
|
if (result.IsJust()) {
|
switch (result.FromJust()) {
|
case ComparisonResult::kLessThan:
|
return Just(true);
|
case ComparisonResult::kEqual:
|
case ComparisonResult::kGreaterThan:
|
case ComparisonResult::kUndefined:
|
return Just(false);
|
}
|
}
|
return Nothing<bool>();
|
}
|
|
|
// static
|
Maybe<bool> Object::LessThanOrEqual(Isolate* isolate, Handle<Object> x,
|
Handle<Object> y) {
|
Maybe<ComparisonResult> result = Compare(isolate, x, y);
|
if (result.IsJust()) {
|
switch (result.FromJust()) {
|
case ComparisonResult::kEqual:
|
case ComparisonResult::kLessThan:
|
return Just(true);
|
case ComparisonResult::kGreaterThan:
|
case ComparisonResult::kUndefined:
|
return Just(false);
|
}
|
}
|
return Nothing<bool>();
|
}
|
|
MaybeHandle<Object> Object::GetPropertyOrElement(Isolate* isolate,
|
Handle<Object> object,
|
Handle<Name> name) {
|
LookupIterator it = LookupIterator::PropertyOrElement(isolate, object, name);
|
return GetProperty(&it);
|
}
|
|
MaybeHandle<Object> Object::SetPropertyOrElement(Isolate* isolate,
|
Handle<Object> object,
|
Handle<Name> name,
|
Handle<Object> value,
|
LanguageMode language_mode,
|
StoreFromKeyed store_mode) {
|
LookupIterator it = LookupIterator::PropertyOrElement(isolate, object, name);
|
MAYBE_RETURN_NULL(SetProperty(&it, value, language_mode, store_mode));
|
return value;
|
}
|
|
MaybeHandle<Object> Object::GetPropertyOrElement(Handle<Object> receiver,
|
Handle<Name> name,
|
Handle<JSReceiver> holder) {
|
LookupIterator it = LookupIterator::PropertyOrElement(holder->GetIsolate(),
|
receiver, name, holder);
|
return GetProperty(&it);
|
}
|
|
|
void JSReceiver::initialize_properties() {
|
Heap* heap = GetHeap();
|
ReadOnlyRoots roots(heap);
|
DCHECK(!Heap::InNewSpace(roots.empty_fixed_array()));
|
DCHECK(!Heap::InNewSpace(heap->empty_property_dictionary()));
|
if (map()->is_dictionary_map()) {
|
WRITE_FIELD(this, kPropertiesOrHashOffset,
|
heap->empty_property_dictionary());
|
} else {
|
WRITE_FIELD(this, kPropertiesOrHashOffset, roots.empty_fixed_array());
|
}
|
}
|
|
bool JSReceiver::HasFastProperties() const {
|
DCHECK(
|
raw_properties_or_hash()->IsSmi() ||
|
(raw_properties_or_hash()->IsDictionary() == map()->is_dictionary_map()));
|
return !map()->is_dictionary_map();
|
}
|
|
NameDictionary* JSReceiver::property_dictionary() const {
|
DCHECK(!IsJSGlobalObject());
|
DCHECK(!HasFastProperties());
|
|
Object* prop = raw_properties_or_hash();
|
if (prop->IsSmi()) {
|
return GetHeap()->empty_property_dictionary();
|
}
|
|
return NameDictionary::cast(prop);
|
}
|
|
// TODO(gsathya): Pass isolate directly to this function and access
|
// the heap from this.
|
PropertyArray* JSReceiver::property_array() const {
|
DCHECK(HasFastProperties());
|
|
Object* prop = raw_properties_or_hash();
|
if (prop->IsSmi() || prop == GetReadOnlyRoots().empty_fixed_array()) {
|
return GetReadOnlyRoots().empty_property_array();
|
}
|
|
return PropertyArray::cast(prop);
|
}
|
|
Maybe<bool> JSReceiver::HasProperty(Handle<JSReceiver> object,
|
Handle<Name> name) {
|
LookupIterator it = LookupIterator::PropertyOrElement(object->GetIsolate(),
|
object, name, object);
|
return HasProperty(&it);
|
}
|
|
|
Maybe<bool> JSReceiver::HasOwnProperty(Handle<JSReceiver> object,
|
uint32_t index) {
|
if (object->IsJSModuleNamespace()) return Just(false);
|
|
if (object->IsJSObject()) { // Shortcut.
|
LookupIterator it(object->GetIsolate(), object, index, object,
|
LookupIterator::OWN);
|
return HasProperty(&it);
|
}
|
|
Maybe<PropertyAttributes> attributes =
|
JSReceiver::GetOwnPropertyAttributes(object, index);
|
MAYBE_RETURN(attributes, Nothing<bool>());
|
return Just(attributes.FromJust() != ABSENT);
|
}
|
|
Maybe<PropertyAttributes> JSReceiver::GetPropertyAttributes(
|
Handle<JSReceiver> object, Handle<Name> name) {
|
LookupIterator it = LookupIterator::PropertyOrElement(object->GetIsolate(),
|
object, name, object);
|
return GetPropertyAttributes(&it);
|
}
|
|
|
Maybe<PropertyAttributes> JSReceiver::GetOwnPropertyAttributes(
|
Handle<JSReceiver> object, Handle<Name> name) {
|
LookupIterator it = LookupIterator::PropertyOrElement(
|
object->GetIsolate(), object, name, object, LookupIterator::OWN);
|
return GetPropertyAttributes(&it);
|
}
|
|
Maybe<PropertyAttributes> JSReceiver::GetOwnPropertyAttributes(
|
Handle<JSReceiver> object, uint32_t index) {
|
LookupIterator it(object->GetIsolate(), object, index, object,
|
LookupIterator::OWN);
|
return GetPropertyAttributes(&it);
|
}
|
|
Maybe<bool> JSReceiver::HasElement(Handle<JSReceiver> object, uint32_t index) {
|
LookupIterator it(object->GetIsolate(), object, index, object);
|
return HasProperty(&it);
|
}
|
|
|
Maybe<PropertyAttributes> JSReceiver::GetElementAttributes(
|
Handle<JSReceiver> object, uint32_t index) {
|
Isolate* isolate = object->GetIsolate();
|
LookupIterator it(isolate, object, index, object);
|
return GetPropertyAttributes(&it);
|
}
|
|
|
Maybe<PropertyAttributes> JSReceiver::GetOwnElementAttributes(
|
Handle<JSReceiver> object, uint32_t index) {
|
Isolate* isolate = object->GetIsolate();
|
LookupIterator it(isolate, object, index, object, LookupIterator::OWN);
|
return GetPropertyAttributes(&it);
|
}
|
|
|
bool JSGlobalObject::IsDetached() {
|
return JSGlobalProxy::cast(global_proxy())->IsDetachedFrom(this);
|
}
|
|
|
bool JSGlobalProxy::IsDetachedFrom(JSGlobalObject* global) const {
|
const PrototypeIterator iter(this->GetIsolate(),
|
const_cast<JSGlobalProxy*>(this));
|
return iter.GetCurrent() != global;
|
}
|
|
inline int JSGlobalProxy::SizeWithEmbedderFields(int embedder_field_count) {
|
DCHECK_GE(embedder_field_count, 0);
|
return kSize + embedder_field_count * kPointerSize;
|
}
|
|
Object* AccessorPair::get(AccessorComponent component) {
|
return component == ACCESSOR_GETTER ? getter() : setter();
|
}
|
|
|
void AccessorPair::set(AccessorComponent component, Object* value) {
|
if (component == ACCESSOR_GETTER) {
|
set_getter(value);
|
} else {
|
set_setter(value);
|
}
|
}
|
|
|
void AccessorPair::SetComponents(Object* getter, Object* setter) {
|
if (!getter->IsNull()) set_getter(getter);
|
if (!setter->IsNull()) set_setter(setter);
|
}
|
|
bool AccessorPair::Equals(AccessorPair* pair) {
|
return (this == pair) || pair->Equals(getter(), setter());
|
}
|
|
|
bool AccessorPair::Equals(Object* getter_value, Object* setter_value) {
|
return (getter() == getter_value) && (setter() == setter_value);
|
}
|
|
|
bool AccessorPair::ContainsAccessor() {
|
return IsJSAccessor(getter()) || IsJSAccessor(setter());
|
}
|
|
|
bool AccessorPair::IsJSAccessor(Object* obj) {
|
return obj->IsCallable() || obj->IsUndefined();
|
}
|
|
template <typename Derived, typename Shape>
|
void Dictionary<Derived, Shape>::ClearEntry(Isolate* isolate, int entry) {
|
Object* the_hole = this->GetReadOnlyRoots().the_hole_value();
|
PropertyDetails details = PropertyDetails::Empty();
|
Derived::cast(this)->SetEntry(isolate, entry, the_hole, the_hole, details);
|
}
|
|
template <typename Derived, typename Shape>
|
void Dictionary<Derived, Shape>::SetEntry(Isolate* isolate, int entry,
|
Object* key, Object* value,
|
PropertyDetails details) {
|
DCHECK(Dictionary::kEntrySize == 2 || Dictionary::kEntrySize == 3);
|
DCHECK(!key->IsName() || details.dictionary_index() > 0);
|
int index = DerivedHashTable::EntryToIndex(entry);
|
DisallowHeapAllocation no_gc;
|
WriteBarrierMode mode = this->GetWriteBarrierMode(no_gc);
|
this->set(index + Derived::kEntryKeyIndex, key, mode);
|
this->set(index + Derived::kEntryValueIndex, value, mode);
|
if (Shape::kHasDetails) DetailsAtPut(isolate, entry, details);
|
}
|
|
Object* GlobalDictionaryShape::Unwrap(Object* object) {
|
return PropertyCell::cast(object)->name();
|
}
|
|
int GlobalDictionaryShape::GetMapRootIndex() {
|
return Heap::kGlobalDictionaryMapRootIndex;
|
}
|
|
Name* NameDictionary::NameAt(int entry) { return Name::cast(KeyAt(entry)); }
|
|
int NameDictionaryShape::GetMapRootIndex() {
|
return Heap::kNameDictionaryMapRootIndex;
|
}
|
|
PropertyCell* GlobalDictionary::CellAt(int entry) {
|
DCHECK(KeyAt(entry)->IsPropertyCell());
|
return PropertyCell::cast(KeyAt(entry));
|
}
|
|
bool GlobalDictionaryShape::IsLive(ReadOnlyRoots roots, Object* k) {
|
DCHECK_NE(roots.the_hole_value(), k);
|
return k != roots.undefined_value();
|
}
|
|
bool GlobalDictionaryShape::IsKey(ReadOnlyRoots roots, Object* k) {
|
return IsLive(roots, k) && !PropertyCell::cast(k)->value()->IsTheHole(roots);
|
}
|
|
Name* GlobalDictionary::NameAt(int entry) { return CellAt(entry)->name(); }
|
Object* GlobalDictionary::ValueAt(int entry) { return CellAt(entry)->value(); }
|
|
void GlobalDictionary::SetEntry(Isolate* isolate, int entry, Object* key,
|
Object* value, PropertyDetails details) {
|
DCHECK_EQ(key, PropertyCell::cast(value)->name());
|
set(EntryToIndex(entry) + kEntryKeyIndex, value);
|
DetailsAtPut(isolate, entry, details);
|
}
|
|
void GlobalDictionary::ValueAtPut(int entry, Object* value) {
|
set(EntryToIndex(entry), value);
|
}
|
|
bool NumberDictionaryBaseShape::IsMatch(uint32_t key, Object* other) {
|
DCHECK(other->IsNumber());
|
return key == static_cast<uint32_t>(other->Number());
|
}
|
|
uint32_t NumberDictionaryBaseShape::Hash(Isolate* isolate, uint32_t key) {
|
return ComputeIntegerHash(key, isolate->heap()->HashSeed());
|
}
|
|
uint32_t NumberDictionaryBaseShape::HashForObject(Isolate* isolate,
|
Object* other) {
|
DCHECK(other->IsNumber());
|
return ComputeIntegerHash(static_cast<uint32_t>(other->Number()),
|
isolate->heap()->HashSeed());
|
}
|
|
Handle<Object> NumberDictionaryBaseShape::AsHandle(Isolate* isolate,
|
uint32_t key) {
|
return isolate->factory()->NewNumberFromUint(key);
|
}
|
|
int NumberDictionaryShape::GetMapRootIndex() {
|
return Heap::kNumberDictionaryMapRootIndex;
|
}
|
|
int SimpleNumberDictionaryShape::GetMapRootIndex() {
|
return Heap::kSimpleNumberDictionaryMapRootIndex;
|
}
|
|
bool NameDictionaryShape::IsMatch(Handle<Name> key, Object* other) {
|
DCHECK(other->IsTheHole() || Name::cast(other)->IsUniqueName());
|
DCHECK(key->IsUniqueName());
|
return *key == other;
|
}
|
|
uint32_t NameDictionaryShape::Hash(Isolate* isolate, Handle<Name> key) {
|
return key->Hash();
|
}
|
|
uint32_t NameDictionaryShape::HashForObject(Isolate* isolate, Object* other) {
|
return Name::cast(other)->Hash();
|
}
|
|
bool GlobalDictionaryShape::IsMatch(Handle<Name> key, Object* other) {
|
DCHECK(PropertyCell::cast(other)->name()->IsUniqueName());
|
return *key == PropertyCell::cast(other)->name();
|
}
|
|
uint32_t GlobalDictionaryShape::HashForObject(Isolate* isolate, Object* other) {
|
return PropertyCell::cast(other)->name()->Hash();
|
}
|
|
Handle<Object> NameDictionaryShape::AsHandle(Isolate* isolate,
|
Handle<Name> key) {
|
DCHECK(key->IsUniqueName());
|
return key;
|
}
|
|
|
template <typename Dictionary>
|
PropertyDetails GlobalDictionaryShape::DetailsAt(Dictionary* dict, int entry) {
|
DCHECK_LE(0, entry); // Not found is -1, which is not caught by get().
|
return dict->CellAt(entry)->property_details();
|
}
|
|
template <typename Dictionary>
|
void GlobalDictionaryShape::DetailsAtPut(Isolate* isolate, Dictionary* dict,
|
int entry, PropertyDetails value) {
|
DCHECK_LE(0, entry); // Not found is -1, which is not caught by get().
|
PropertyCell* cell = dict->CellAt(entry);
|
if (cell->property_details().IsReadOnly() != value.IsReadOnly()) {
|
cell->dependent_code()->DeoptimizeDependentCodeGroup(
|
isolate, DependentCode::kPropertyCellChangedGroup);
|
}
|
cell->set_property_details(value);
|
}
|
|
bool ObjectHashTableShape::IsMatch(Handle<Object> key, Object* other) {
|
return key->SameValue(other);
|
}
|
|
uint32_t ObjectHashTableShape::Hash(Isolate* isolate, Handle<Object> key) {
|
return Smi::ToInt(key->GetHash());
|
}
|
|
uint32_t ObjectHashTableShape::HashForObject(Isolate* isolate, Object* other) {
|
return Smi::ToInt(other->GetHash());
|
}
|
|
// static
|
Object* Object::GetSimpleHash(Object* object) {
|
DisallowHeapAllocation no_gc;
|
if (object->IsSmi()) {
|
uint32_t hash = ComputeIntegerHash(Smi::ToInt(object));
|
return Smi::FromInt(hash & Smi::kMaxValue);
|
}
|
if (object->IsHeapNumber()) {
|
double num = HeapNumber::cast(object)->value();
|
if (std::isnan(num)) return Smi::FromInt(Smi::kMaxValue);
|
// Use ComputeIntegerHash for all values in Signed32 range, including -0,
|
// which is considered equal to 0 because collections use SameValueZero.
|
uint32_t hash;
|
// Check range before conversion to avoid undefined behavior.
|
if (num >= kMinInt && num <= kMaxInt && FastI2D(FastD2I(num)) == num) {
|
hash = ComputeIntegerHash(FastD2I(num));
|
} else {
|
hash = ComputeLongHash(double_to_uint64(num));
|
}
|
return Smi::FromInt(hash & Smi::kMaxValue);
|
}
|
if (object->IsName()) {
|
uint32_t hash = Name::cast(object)->Hash();
|
return Smi::FromInt(hash);
|
}
|
if (object->IsOddball()) {
|
uint32_t hash = Oddball::cast(object)->to_string()->Hash();
|
return Smi::FromInt(hash);
|
}
|
if (object->IsBigInt()) {
|
uint32_t hash = BigInt::cast(object)->Hash();
|
return Smi::FromInt(hash & Smi::kMaxValue);
|
}
|
DCHECK(object->IsJSReceiver());
|
return object;
|
}
|
|
Object* Object::GetHash() {
|
DisallowHeapAllocation no_gc;
|
Object* hash = GetSimpleHash(this);
|
if (hash->IsSmi()) return hash;
|
|
DCHECK(IsJSReceiver());
|
JSReceiver* receiver = JSReceiver::cast(this);
|
Isolate* isolate = receiver->GetIsolate();
|
return receiver->GetIdentityHash(isolate);
|
}
|
|
Handle<Object> ObjectHashTableShape::AsHandle(Handle<Object> key) {
|
return key;
|
}
|
|
Relocatable::Relocatable(Isolate* isolate) {
|
isolate_ = isolate;
|
prev_ = isolate->relocatable_top();
|
isolate->set_relocatable_top(this);
|
}
|
|
|
Relocatable::~Relocatable() {
|
DCHECK_EQ(isolate_->relocatable_top(), this);
|
isolate_->set_relocatable_top(prev_);
|
}
|
|
|
template<class Derived, class TableType>
|
Object* OrderedHashTableIterator<Derived, TableType>::CurrentKey() {
|
TableType* table(TableType::cast(this->table()));
|
int index = Smi::ToInt(this->index());
|
Object* key = table->KeyAt(index);
|
DCHECK(!key->IsTheHole());
|
return key;
|
}
|
|
// Predictably converts HeapObject* or Address to uint32 by calculating
|
// offset of the address in respective MemoryChunk.
|
static inline uint32_t ObjectAddressForHashing(void* object) {
|
uint32_t value = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(object));
|
return value & MemoryChunk::kAlignmentMask;
|
}
|
|
static inline Handle<Object> MakeEntryPair(Isolate* isolate, uint32_t index,
|
Handle<Object> value) {
|
Handle<Object> key = isolate->factory()->Uint32ToString(index);
|
Handle<FixedArray> entry_storage =
|
isolate->factory()->NewUninitializedFixedArray(2);
|
{
|
entry_storage->set(0, *key, SKIP_WRITE_BARRIER);
|
entry_storage->set(1, *value, SKIP_WRITE_BARRIER);
|
}
|
return isolate->factory()->NewJSArrayWithElements(entry_storage,
|
PACKED_ELEMENTS, 2);
|
}
|
|
static inline Handle<Object> MakeEntryPair(Isolate* isolate, Handle<Object> key,
|
Handle<Object> value) {
|
Handle<FixedArray> entry_storage =
|
isolate->factory()->NewUninitializedFixedArray(2);
|
{
|
entry_storage->set(0, *key, SKIP_WRITE_BARRIER);
|
entry_storage->set(1, *value, SKIP_WRITE_BARRIER);
|
}
|
return isolate->factory()->NewJSArrayWithElements(entry_storage,
|
PACKED_ELEMENTS, 2);
|
}
|
|
ACCESSORS(JSIteratorResult, value, Object, kValueOffset)
|
ACCESSORS(JSIteratorResult, done, Object, kDoneOffset)
|
|
ACCESSORS(JSAsyncFromSyncIterator, sync_iterator, JSReceiver,
|
kSyncIteratorOffset)
|
ACCESSORS(JSAsyncFromSyncIterator, next, Object, kNextOffset)
|
|
ACCESSORS(JSStringIterator, string, String, kStringOffset)
|
SMI_ACCESSORS(JSStringIterator, index, kNextIndexOffset)
|
|
bool ScopeInfo::IsAsmModule() const { return AsmModuleField::decode(Flags()); }
|
|
bool ScopeInfo::HasSimpleParameters() const {
|
return HasSimpleParametersField::decode(Flags());
|
}
|
|
#define FIELD_ACCESSORS(name) \
|
void ScopeInfo::Set##name(int value) { set(k##name, Smi::FromInt(value)); } \
|
int ScopeInfo::name() const { \
|
if (length() > 0) { \
|
return Smi::ToInt(get(k##name)); \
|
} else { \
|
return 0; \
|
} \
|
}
|
FOR_EACH_SCOPE_INFO_NUMERIC_FIELD(FIELD_ACCESSORS)
|
#undef FIELD_ACCESSORS
|
|
FreshlyAllocatedBigInt* FreshlyAllocatedBigInt::cast(Object* object) {
|
SLOW_DCHECK(object->IsBigInt());
|
return reinterpret_cast<FreshlyAllocatedBigInt*>(object);
|
}
|
|
} // namespace internal
|
} // namespace v8
|
|
#include "src/objects/object-macros-undef.h"
|
|
#endif // V8_OBJECTS_INL_H_
|