|
// Copyright (c) 1994-2006 Sun Microsystems Inc.
|
// All Rights Reserved.
|
//
|
// Redistribution and use in source and binary forms, with or without
|
// modification, are permitted provided that the following conditions are
|
// met:
|
//
|
// - Redistributions of source code must retain the above copyright notice,
|
// this list of conditions and the following disclaimer.
|
//
|
// - Redistribution in binary form must reproduce the above copyright
|
// notice, this list of conditions and the following disclaimer in the
|
// documentation and/or other materials provided with the distribution.
|
//
|
// - Neither the name of Sun Microsystems or the names of contributors may
|
// be used to endorse or promote products derived from this software without
|
// specific prior written permission.
|
//
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
// The original source code covered by the above license above has been
|
// modified significantly by Google Inc.
|
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
#ifndef V8_MIPS64_ASSEMBLER_MIPS64_INL_H_
|
#define V8_MIPS64_ASSEMBLER_MIPS64_INL_H_
|
|
#include "src/mips64/assembler-mips64.h"
|
|
#include "src/assembler.h"
|
#include "src/debug/debug.h"
|
#include "src/objects-inl.h"
|
|
namespace v8 {
|
namespace internal {
|
|
bool CpuFeatures::SupportsOptimizer() { return IsSupported(FPU); }
|
|
bool CpuFeatures::SupportsWasmSimd128() { return IsSupported(MIPS_SIMD); }
|
|
// -----------------------------------------------------------------------------
|
// Operand and MemOperand.
|
|
bool Operand::is_reg() const {
|
return rm_.is_valid();
|
}
|
|
int64_t Operand::immediate() const {
|
DCHECK(!is_reg());
|
DCHECK(!IsHeapObjectRequest());
|
return value_.immediate;
|
}
|
|
// -----------------------------------------------------------------------------
|
// RelocInfo.
|
|
void RelocInfo::apply(intptr_t delta) {
|
if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) {
|
// Absolute code pointer inside code object moves with the code object.
|
Assembler::RelocateInternalReference(rmode_, pc_, delta);
|
}
|
}
|
|
|
Address RelocInfo::target_address() {
|
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_));
|
return Assembler::target_address_at(pc_, constant_pool_);
|
}
|
|
Address RelocInfo::target_address_address() {
|
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_) ||
|
IsEmbeddedObject(rmode_) || IsExternalReference(rmode_) ||
|
IsOffHeapTarget(rmode_));
|
// Read the address of the word containing the target_address in an
|
// instruction stream.
|
// The only architecture-independent user of this function is the serializer.
|
// The serializer uses it to find out how many raw bytes of instruction to
|
// output before the next target.
|
// For an instruction like LUI/ORI where the target bits are mixed into the
|
// instruction bits, the size of the target will be zero, indicating that the
|
// serializer should not step forward in memory after a target is resolved
|
// and written. In this case the target_address_address function should
|
// return the end of the instructions to be patched, allowing the
|
// deserializer to deserialize the instructions as raw bytes and put them in
|
// place, ready to be patched with the target. After jump optimization,
|
// that is the address of the instruction that follows J/JAL/JR/JALR
|
// instruction.
|
return pc_ + Assembler::kInstructionsFor64BitConstant * kInstrSize;
|
}
|
|
|
Address RelocInfo::constant_pool_entry_address() {
|
UNREACHABLE();
|
}
|
|
|
int RelocInfo::target_address_size() {
|
return Assembler::kSpecialTargetSize;
|
}
|
|
Address Assembler::target_address_from_return_address(Address pc) {
|
return pc - kCallTargetAddressOffset;
|
}
|
|
void Assembler::deserialization_set_special_target_at(
|
Address instruction_payload, Code* code, Address target) {
|
set_target_address_at(
|
instruction_payload - kInstructionsFor64BitConstant * kInstrSize,
|
code ? code->constant_pool() : kNullAddress, target);
|
}
|
|
int Assembler::deserialization_special_target_size(
|
Address instruction_payload) {
|
return kSpecialTargetSize;
|
}
|
|
void Assembler::set_target_internal_reference_encoded_at(Address pc,
|
Address target) {
|
// Encoded internal references are j/jal instructions.
|
Instr instr = Assembler::instr_at(pc + 0 * kInstrSize);
|
|
uint64_t imm28 = target & static_cast<uint64_t>(kImm28Mask);
|
|
instr &= ~kImm26Mask;
|
uint64_t imm26 = imm28 >> 2;
|
DCHECK(is_uint26(imm26));
|
|
instr_at_put(pc, instr | (imm26 & kImm26Mask));
|
// Currently used only by deserializer, and all code will be flushed
|
// after complete deserialization, no need to flush on each reference.
|
}
|
|
void Assembler::deserialization_set_target_internal_reference_at(
|
Address pc, Address target, RelocInfo::Mode mode) {
|
if (mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
|
DCHECK(IsJ(instr_at(pc)));
|
set_target_internal_reference_encoded_at(pc, target);
|
} else {
|
DCHECK(mode == RelocInfo::INTERNAL_REFERENCE);
|
Memory<Address>(pc) = target;
|
}
|
}
|
|
HeapObject* RelocInfo::target_object() {
|
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
return HeapObject::cast(reinterpret_cast<Object*>(
|
Assembler::target_address_at(pc_, constant_pool_)));
|
}
|
|
Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
|
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
return Handle<HeapObject>(reinterpret_cast<HeapObject**>(
|
Assembler::target_address_at(pc_, constant_pool_)));
|
}
|
|
void RelocInfo::set_target_object(Heap* heap, HeapObject* target,
|
WriteBarrierMode write_barrier_mode,
|
ICacheFlushMode icache_flush_mode) {
|
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
Assembler::set_target_address_at(pc_, constant_pool_,
|
reinterpret_cast<Address>(target),
|
icache_flush_mode);
|
if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != nullptr) {
|
WriteBarrierForCode(host(), this, target);
|
}
|
}
|
|
|
Address RelocInfo::target_external_reference() {
|
DCHECK(rmode_ == EXTERNAL_REFERENCE);
|
return Assembler::target_address_at(pc_, constant_pool_);
|
}
|
|
void RelocInfo::set_target_external_reference(
|
Address target, ICacheFlushMode icache_flush_mode) {
|
DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
|
Assembler::set_target_address_at(pc_, constant_pool_, target,
|
icache_flush_mode);
|
}
|
|
Address RelocInfo::target_internal_reference() {
|
if (rmode_ == INTERNAL_REFERENCE) {
|
return Memory<Address>(pc_);
|
} else {
|
// Encoded internal references are j/jal instructions.
|
DCHECK(rmode_ == INTERNAL_REFERENCE_ENCODED);
|
Instr instr = Assembler::instr_at(pc_ + 0 * kInstrSize);
|
instr &= kImm26Mask;
|
uint64_t imm28 = instr << 2;
|
uint64_t segment = pc_ & ~static_cast<uint64_t>(kImm28Mask);
|
return static_cast<Address>(segment | imm28);
|
}
|
}
|
|
|
Address RelocInfo::target_internal_reference_address() {
|
DCHECK(rmode_ == INTERNAL_REFERENCE || rmode_ == INTERNAL_REFERENCE_ENCODED);
|
return pc_;
|
}
|
|
Address RelocInfo::target_runtime_entry(Assembler* origin) {
|
DCHECK(IsRuntimeEntry(rmode_));
|
return target_address();
|
}
|
|
void RelocInfo::set_target_runtime_entry(Address target,
|
WriteBarrierMode write_barrier_mode,
|
ICacheFlushMode icache_flush_mode) {
|
DCHECK(IsRuntimeEntry(rmode_));
|
if (target_address() != target)
|
set_target_address(target, write_barrier_mode, icache_flush_mode);
|
}
|
|
Address RelocInfo::target_off_heap_target() {
|
DCHECK(IsOffHeapTarget(rmode_));
|
return Assembler::target_address_at(pc_, constant_pool_);
|
}
|
|
void RelocInfo::WipeOut() {
|
DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
|
IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
|
IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_) ||
|
IsOffHeapTarget(rmode_));
|
if (IsInternalReference(rmode_)) {
|
Memory<Address>(pc_) = kNullAddress;
|
} else if (IsInternalReferenceEncoded(rmode_)) {
|
Assembler::set_target_internal_reference_encoded_at(pc_, kNullAddress);
|
} else {
|
Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress);
|
}
|
}
|
|
template <typename ObjectVisitor>
|
void RelocInfo::Visit(ObjectVisitor* visitor) {
|
RelocInfo::Mode mode = rmode();
|
if (mode == RelocInfo::EMBEDDED_OBJECT) {
|
visitor->VisitEmbeddedPointer(host(), this);
|
} else if (RelocInfo::IsCodeTargetMode(mode)) {
|
visitor->VisitCodeTarget(host(), this);
|
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
|
visitor->VisitExternalReference(host(), this);
|
} else if (mode == RelocInfo::INTERNAL_REFERENCE ||
|
mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
|
visitor->VisitInternalReference(host(), this);
|
} else if (RelocInfo::IsRuntimeEntry(mode)) {
|
visitor->VisitRuntimeEntry(host(), this);
|
} else if (RelocInfo::IsOffHeapTarget(mode)) {
|
visitor->VisitOffHeapTarget(host(), this);
|
}
|
}
|
|
// -----------------------------------------------------------------------------
|
// Assembler.
|
|
|
void Assembler::CheckBuffer() {
|
if (buffer_space() <= kGap) {
|
GrowBuffer();
|
}
|
}
|
|
|
void Assembler::CheckForEmitInForbiddenSlot() {
|
if (!is_buffer_growth_blocked()) {
|
CheckBuffer();
|
}
|
if (IsPrevInstrCompactBranch()) {
|
// Nop instruction to precede a CTI in forbidden slot:
|
Instr nop = SPECIAL | SLL;
|
*reinterpret_cast<Instr*>(pc_) = nop;
|
pc_ += kInstrSize;
|
|
ClearCompactBranchState();
|
}
|
}
|
|
|
void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) {
|
if (IsPrevInstrCompactBranch()) {
|
if (Instruction::IsForbiddenAfterBranchInstr(x)) {
|
// Nop instruction to precede a CTI in forbidden slot:
|
Instr nop = SPECIAL | SLL;
|
*reinterpret_cast<Instr*>(pc_) = nop;
|
pc_ += kInstrSize;
|
}
|
ClearCompactBranchState();
|
}
|
*reinterpret_cast<Instr*>(pc_) = x;
|
pc_ += kInstrSize;
|
if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) {
|
EmittedCompactBranchInstruction();
|
}
|
CheckTrampolinePoolQuick();
|
}
|
|
template <>
|
inline void Assembler::EmitHelper(uint8_t x);
|
|
template <typename T>
|
void Assembler::EmitHelper(T x) {
|
*reinterpret_cast<T*>(pc_) = x;
|
pc_ += sizeof(x);
|
CheckTrampolinePoolQuick();
|
}
|
|
template <>
|
void Assembler::EmitHelper(uint8_t x) {
|
*reinterpret_cast<uint8_t*>(pc_) = x;
|
pc_ += sizeof(x);
|
if (reinterpret_cast<intptr_t>(pc_) % kInstrSize == 0) {
|
CheckTrampolinePoolQuick();
|
}
|
}
|
|
void Assembler::emit(Instr x, CompactBranchType is_compact_branch) {
|
if (!is_buffer_growth_blocked()) {
|
CheckBuffer();
|
}
|
EmitHelper(x, is_compact_branch);
|
}
|
|
|
void Assembler::emit(uint64_t data) {
|
CheckForEmitInForbiddenSlot();
|
EmitHelper(data);
|
}
|
|
EnsureSpace::EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); }
|
|
} // namespace internal
|
} // namespace v8
|
|
#endif // V8_MIPS64_ASSEMBLER_MIPS64_INL_H_
|