// Copyright 2012 the V8 project authors. All rights reserved.
|
// Use of this source code is governed by a BSD-style license that can be
|
// found in the LICENSE file.
|
|
#ifndef V8_HEAP_HEAP_H_
|
#define V8_HEAP_HEAP_H_
|
|
#include <cmath>
|
#include <map>
|
#include <unordered_map>
|
#include <unordered_set>
|
#include <vector>
|
|
// Clients of this interface shouldn't depend on lots of heap internals.
|
// Do not include anything from src/heap here!
|
#include "include/v8.h"
|
#include "src/accessors.h"
|
#include "src/allocation.h"
|
#include "src/assert-scope.h"
|
#include "src/base/atomic-utils.h"
|
#include "src/external-reference-table.h"
|
#include "src/globals.h"
|
#include "src/heap-symbols.h"
|
#include "src/objects.h"
|
#include "src/objects/fixed-array.h"
|
#include "src/objects/string-table.h"
|
#include "src/roots.h"
|
#include "src/visitors.h"
|
|
namespace v8 {
|
|
namespace debug {
|
typedef void (*OutOfMemoryCallback)(void* data);
|
} // namespace debug
|
|
namespace internal {
|
|
namespace heap {
|
class HeapTester;
|
class TestMemoryAllocatorScope;
|
} // namespace heap
|
|
class ObjectBoilerplateDescription;
|
class BytecodeArray;
|
class CodeDataContainer;
|
class DeoptimizationData;
|
class HandlerTable;
|
class IncrementalMarking;
|
class JSArrayBuffer;
|
class ExternalString;
|
using v8::MemoryPressureLevel;
|
|
// Heap roots that are known to be immortal immovable, for which we can safely
|
// skip write barriers. This list is not complete and has omissions.
|
#define IMMORTAL_IMMOVABLE_ROOT_LIST(V) \
|
V(ArgumentsMarker) \
|
V(ArgumentsMarkerMap) \
|
V(ArrayBufferNeuteringProtector) \
|
V(ArrayIteratorProtector) \
|
V(BigIntMap) \
|
V(BlockContextMap) \
|
V(ObjectBoilerplateDescriptionMap) \
|
V(BooleanMap) \
|
V(ByteArrayMap) \
|
V(BytecodeArrayMap) \
|
V(CatchContextMap) \
|
V(CellMap) \
|
V(CodeMap) \
|
V(DebugEvaluateContextMap) \
|
V(DescriptorArrayMap) \
|
V(EphemeronHashTableMap) \
|
V(EmptyByteArray) \
|
V(EmptyDescriptorArray) \
|
V(EmptyFixedArray) \
|
V(EmptyFixedFloat32Array) \
|
V(EmptyFixedFloat64Array) \
|
V(EmptyFixedInt16Array) \
|
V(EmptyFixedInt32Array) \
|
V(EmptyFixedInt8Array) \
|
V(EmptyFixedUint16Array) \
|
V(EmptyFixedUint32Array) \
|
V(EmptyFixedUint8Array) \
|
V(EmptyFixedUint8ClampedArray) \
|
V(EmptyOrderedHashMap) \
|
V(EmptyOrderedHashSet) \
|
V(EmptyPropertyCell) \
|
V(EmptyScopeInfo) \
|
V(EmptyScript) \
|
V(EmptySloppyArgumentsElements) \
|
V(EmptySlowElementDictionary) \
|
V(EvalContextMap) \
|
V(Exception) \
|
V(FalseValue) \
|
V(FixedArrayMap) \
|
V(FixedCOWArrayMap) \
|
V(FixedDoubleArrayMap) \
|
V(ForeignMap) \
|
V(FreeSpaceMap) \
|
V(FunctionContextMap) \
|
V(GlobalDictionaryMap) \
|
V(GlobalPropertyCellMap) \
|
V(HashTableMap) \
|
V(HeapNumberMap) \
|
V(HoleNanValue) \
|
V(InfinityValue) \
|
V(IsConcatSpreadableProtector) \
|
V(JSMessageObjectMap) \
|
V(JsConstructEntryCode) \
|
V(JsEntryCode) \
|
V(ManyClosuresCell) \
|
V(ManyClosuresCellMap) \
|
V(MetaMap) \
|
V(MinusInfinityValue) \
|
V(MinusZeroValue) \
|
V(ModuleContextMap) \
|
V(ModuleInfoMap) \
|
V(MutableHeapNumberMap) \
|
V(NameDictionaryMap) \
|
V(NanValue) \
|
V(NativeContextMap) \
|
V(NoClosuresCellMap) \
|
V(NoElementsProtector) \
|
V(NullMap) \
|
V(NullValue) \
|
V(NumberDictionaryMap) \
|
V(OneClosureCellMap) \
|
V(OnePointerFillerMap) \
|
V(OptimizedOut) \
|
V(OrderedHashMapMap) \
|
V(OrderedHashSetMap) \
|
V(PreParsedScopeDataMap) \
|
V(PropertyArrayMap) \
|
V(ScopeInfoMap) \
|
V(ScriptContextMap) \
|
V(ScriptContextTableMap) \
|
V(SelfReferenceMarker) \
|
V(SharedFunctionInfoMap) \
|
V(SimpleNumberDictionaryMap) \
|
V(SloppyArgumentsElementsMap) \
|
V(SmallOrderedHashMapMap) \
|
V(SmallOrderedHashSetMap) \
|
V(ArraySpeciesProtector) \
|
V(TypedArraySpeciesProtector) \
|
V(PromiseSpeciesProtector) \
|
V(StaleRegister) \
|
V(StringLengthProtector) \
|
V(StringTableMap) \
|
V(SymbolMap) \
|
V(TerminationException) \
|
V(TheHoleMap) \
|
V(TheHoleValue) \
|
V(TransitionArrayMap) \
|
V(TrueValue) \
|
V(TwoPointerFillerMap) \
|
V(UndefinedMap) \
|
V(UndefinedValue) \
|
V(UninitializedMap) \
|
V(UninitializedValue) \
|
V(UncompiledDataWithoutPreParsedScopeMap) \
|
V(UncompiledDataWithPreParsedScopeMap) \
|
V(WeakFixedArrayMap) \
|
V(WeakArrayListMap) \
|
V(WithContextMap) \
|
V(empty_string) \
|
PRIVATE_SYMBOL_LIST(V)
|
|
class AllocationObserver;
|
class ArrayBufferCollector;
|
class ArrayBufferTracker;
|
class ConcurrentMarking;
|
class GCIdleTimeAction;
|
class GCIdleTimeHandler;
|
class GCIdleTimeHeapState;
|
class GCTracer;
|
class HeapController;
|
class HeapObjectAllocationTracker;
|
class HeapObjectsFilter;
|
class HeapStats;
|
class HistogramTimer;
|
class Isolate;
|
class LocalEmbedderHeapTracer;
|
class MemoryAllocator;
|
class MemoryReducer;
|
class MinorMarkCompactCollector;
|
class ObjectIterator;
|
class ObjectStats;
|
class Page;
|
class PagedSpace;
|
class RootVisitor;
|
class ScavengeJob;
|
class Scavenger;
|
class Space;
|
class StoreBuffer;
|
class StressScavengeObserver;
|
class TracePossibleWrapperReporter;
|
class WeakObjectRetainer;
|
|
typedef void (*ObjectSlotCallback)(HeapObject** from, HeapObject* to);
|
|
enum ArrayStorageAllocationMode {
|
DONT_INITIALIZE_ARRAY_ELEMENTS,
|
INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE
|
};
|
|
enum class ClearRecordedSlots { kYes, kNo };
|
|
enum class ClearFreedMemoryMode { kClearFreedMemory, kDontClearFreedMemory };
|
|
enum class FixedArrayVisitationMode { kRegular, kIncremental };
|
|
enum class TraceRetainingPathMode { kEnabled, kDisabled };
|
|
enum class RetainingPathOption { kDefault, kTrackEphemeronPath };
|
|
enum class GarbageCollectionReason {
|
kUnknown = 0,
|
kAllocationFailure = 1,
|
kAllocationLimit = 2,
|
kContextDisposal = 3,
|
kCountersExtension = 4,
|
kDebugger = 5,
|
kDeserializer = 6,
|
kExternalMemoryPressure = 7,
|
kFinalizeMarkingViaStackGuard = 8,
|
kFinalizeMarkingViaTask = 9,
|
kFullHashtable = 10,
|
kHeapProfiler = 11,
|
kIdleTask = 12,
|
kLastResort = 13,
|
kLowMemoryNotification = 14,
|
kMakeHeapIterable = 15,
|
kMemoryPressure = 16,
|
kMemoryReducer = 17,
|
kRuntime = 18,
|
kSamplingProfiler = 19,
|
kSnapshotCreator = 20,
|
kTesting = 21,
|
kExternalFinalize = 22
|
// If you add new items here, then update the incremental_marking_reason,
|
// mark_compact_reason, and scavenge_reason counters in counters.h.
|
// Also update src/tools/metrics/histograms/histograms.xml in chromium.
|
};
|
|
enum class YoungGenerationHandling {
|
kRegularScavenge = 0,
|
kFastPromotionDuringScavenge = 1,
|
// Histogram::InspectConstructionArguments in chromium requires us to have at
|
// least three buckets.
|
kUnusedBucket = 2,
|
// If you add new items here, then update the young_generation_handling in
|
// counters.h.
|
// Also update src/tools/metrics/histograms/histograms.xml in chromium.
|
};
|
|
class AllocationResult {
|
public:
|
static inline AllocationResult Retry(AllocationSpace space = NEW_SPACE) {
|
return AllocationResult(space);
|
}
|
|
// Implicit constructor from Object*.
|
AllocationResult(Object* object) // NOLINT
|
: object_(object) {
|
// AllocationResults can't return Smis, which are used to represent
|
// failure and the space to retry in.
|
CHECK(!object->IsSmi());
|
}
|
|
AllocationResult() : object_(Smi::FromInt(NEW_SPACE)) {}
|
|
inline bool IsRetry() { return object_->IsSmi(); }
|
inline HeapObject* ToObjectChecked();
|
inline AllocationSpace RetrySpace();
|
|
template <typename T>
|
bool To(T** obj) {
|
if (IsRetry()) return false;
|
*obj = T::cast(object_);
|
return true;
|
}
|
|
private:
|
explicit AllocationResult(AllocationSpace space)
|
: object_(Smi::FromInt(static_cast<int>(space))) {}
|
|
Object* object_;
|
};
|
|
STATIC_ASSERT(sizeof(AllocationResult) == kPointerSize);
|
|
#ifdef DEBUG
|
struct CommentStatistic {
|
const char* comment;
|
int size;
|
int count;
|
void Clear() {
|
comment = nullptr;
|
size = 0;
|
count = 0;
|
}
|
// Must be small, since an iteration is used for lookup.
|
static const int kMaxComments = 64;
|
};
|
#endif
|
|
class Heap {
|
public:
|
// Declare all the root indices. This defines the root list order.
|
// clang-format off
|
enum RootListIndex {
|
#define DECL(type, name, camel_name) k##camel_name##RootIndex,
|
STRONG_ROOT_LIST(DECL)
|
#undef DECL
|
|
#define DECL(name, str) k##name##RootIndex,
|
INTERNALIZED_STRING_LIST(DECL)
|
#undef DECL
|
|
#define DECL(name) k##name##RootIndex,
|
PRIVATE_SYMBOL_LIST(DECL)
|
#undef DECL
|
|
#define DECL(name, description) k##name##RootIndex,
|
PUBLIC_SYMBOL_LIST(DECL)
|
WELL_KNOWN_SYMBOL_LIST(DECL)
|
#undef DECL
|
|
#define DECL(accessor_name, AccessorName) k##AccessorName##AccessorRootIndex,
|
ACCESSOR_INFO_LIST(DECL)
|
#undef DECL
|
|
#define DECL(NAME, Name, name) k##Name##MapRootIndex,
|
STRUCT_LIST(DECL)
|
#undef DECL
|
|
#define DECL(NAME, Name, Size, name) k##Name##Size##MapRootIndex,
|
ALLOCATION_SITE_LIST(DECL)
|
#undef DECL
|
|
#define DECL(NAME, Name, Size, name) k##Name##Size##MapRootIndex,
|
DATA_HANDLER_LIST(DECL)
|
#undef DECL
|
|
kStringTableRootIndex,
|
|
#define DECL(type, name, camel_name) k##camel_name##RootIndex,
|
SMI_ROOT_LIST(DECL)
|
#undef DECL
|
|
kRootListLength,
|
kStrongRootListLength = kStringTableRootIndex,
|
kSmiRootsStart = kStringTableRootIndex + 1
|
};
|
// clang-format on
|
|
enum FindMementoMode { kForRuntime, kForGC };
|
|
enum HeapState {
|
NOT_IN_GC,
|
SCAVENGE,
|
MARK_COMPACT,
|
MINOR_MARK_COMPACT,
|
TEAR_DOWN
|
};
|
|
using PretenuringFeedbackMap = std::unordered_map<AllocationSite*, size_t>;
|
|
// Taking this mutex prevents the GC from entering a phase that relocates
|
// object references.
|
base::Mutex* relocation_mutex() { return &relocation_mutex_; }
|
|
// Support for partial snapshots. After calling this we have a linear
|
// space to write objects in each space.
|
struct Chunk {
|
uint32_t size;
|
Address start;
|
Address end;
|
};
|
typedef std::vector<Chunk> Reservation;
|
|
static const int kInitalOldGenerationLimitFactor = 2;
|
|
#if V8_OS_ANDROID
|
// Don't apply pointer multiplier on Android since it has no swap space and
|
// should instead adapt it's heap size based on available physical memory.
|
static const int kPointerMultiplier = 1;
|
#else
|
static const int kPointerMultiplier = i::kPointerSize / 4;
|
#endif
|
|
// Semi-space size needs to be a multiple of page size.
|
static const size_t kMinSemiSpaceSizeInKB =
|
1 * kPointerMultiplier * ((1 << kPageSizeBits) / KB);
|
static const size_t kMaxSemiSpaceSizeInKB =
|
16 * kPointerMultiplier * ((1 << kPageSizeBits) / KB);
|
|
static const int kTraceRingBufferSize = 512;
|
static const int kStacktraceBufferSize = 512;
|
|
static const int kNoGCFlags = 0;
|
static const int kReduceMemoryFootprintMask = 1;
|
static const int kAbortIncrementalMarkingMask = 2;
|
static const int kFinalizeIncrementalMarkingMask = 4;
|
|
// Making the heap iterable requires us to abort incremental marking.
|
static const int kMakeHeapIterableMask = kAbortIncrementalMarkingMask;
|
|
// The roots that have an index less than this are always in old space.
|
static const int kOldSpaceRoots = 0x20;
|
|
// The minimum size of a HeapObject on the heap.
|
static const int kMinObjectSizeInWords = 2;
|
|
static const int kMinPromotedPercentForFastPromotionMode = 90;
|
|
STATIC_ASSERT(kUndefinedValueRootIndex ==
|
Internals::kUndefinedValueRootIndex);
|
STATIC_ASSERT(kTheHoleValueRootIndex == Internals::kTheHoleValueRootIndex);
|
STATIC_ASSERT(kNullValueRootIndex == Internals::kNullValueRootIndex);
|
STATIC_ASSERT(kTrueValueRootIndex == Internals::kTrueValueRootIndex);
|
STATIC_ASSERT(kFalseValueRootIndex == Internals::kFalseValueRootIndex);
|
STATIC_ASSERT(kempty_stringRootIndex == Internals::kEmptyStringRootIndex);
|
|
// Calculates the maximum amount of filler that could be required by the
|
// given alignment.
|
static int GetMaximumFillToAlign(AllocationAlignment alignment);
|
// Calculates the actual amount of filler required for a given address at the
|
// given alignment.
|
static int GetFillToAlign(Address address, AllocationAlignment alignment);
|
|
void FatalProcessOutOfMemory(const char* location);
|
|
V8_EXPORT_PRIVATE static bool RootIsImmortalImmovable(int root_index);
|
|
// Checks whether the space is valid.
|
static bool IsValidAllocationSpace(AllocationSpace space);
|
|
// Generated code can embed direct references to non-writable roots if
|
// they are in new space.
|
static bool RootCanBeWrittenAfterInitialization(RootListIndex root_index);
|
|
// Zapping is needed for verify heap, and always done in debug builds.
|
static inline bool ShouldZapGarbage() {
|
#ifdef DEBUG
|
return true;
|
#else
|
#ifdef VERIFY_HEAP
|
return FLAG_verify_heap;
|
#else
|
return false;
|
#endif
|
#endif
|
}
|
|
static uintptr_t ZapValue() {
|
return FLAG_clear_free_memory ? kClearedFreeMemoryValue : kZapValue;
|
}
|
|
static inline bool IsYoungGenerationCollector(GarbageCollector collector) {
|
return collector == SCAVENGER || collector == MINOR_MARK_COMPACTOR;
|
}
|
|
static inline GarbageCollector YoungGenerationCollector() {
|
#if ENABLE_MINOR_MC
|
return (FLAG_minor_mc) ? MINOR_MARK_COMPACTOR : SCAVENGER;
|
#else
|
return SCAVENGER;
|
#endif // ENABLE_MINOR_MC
|
}
|
|
static inline const char* CollectorName(GarbageCollector collector) {
|
switch (collector) {
|
case SCAVENGER:
|
return "Scavenger";
|
case MARK_COMPACTOR:
|
return "Mark-Compact";
|
case MINOR_MARK_COMPACTOR:
|
return "Minor Mark-Compact";
|
}
|
return "Unknown collector";
|
}
|
|
// Copy block of memory from src to dst. Size of block should be aligned
|
// by pointer size.
|
static inline void CopyBlock(Address dst, Address src, int byte_size);
|
|
V8_EXPORT_PRIVATE static void WriteBarrierForCodeSlow(Code* host);
|
V8_EXPORT_PRIVATE static void GenerationalBarrierSlow(HeapObject* object,
|
Address slot,
|
HeapObject* value);
|
V8_EXPORT_PRIVATE static void GenerationalBarrierForElementsSlow(
|
Heap* heap, FixedArray* array, int offset, int length);
|
V8_EXPORT_PRIVATE static void GenerationalBarrierForCodeSlow(
|
Code* host, RelocInfo* rinfo, HeapObject* value);
|
V8_EXPORT_PRIVATE static void MarkingBarrierSlow(HeapObject* object,
|
Address slot,
|
HeapObject* value);
|
V8_EXPORT_PRIVATE static void MarkingBarrierForElementsSlow(
|
Heap* heap, HeapObject* object);
|
V8_EXPORT_PRIVATE static void MarkingBarrierForCodeSlow(Code* host,
|
RelocInfo* rinfo,
|
HeapObject* value);
|
V8_EXPORT_PRIVATE static bool PageFlagsAreConsistent(HeapObject* object);
|
|
// Notifies the heap that is ok to start marking or other activities that
|
// should not happen during deserialization.
|
void NotifyDeserializationComplete();
|
|
inline Address* NewSpaceAllocationTopAddress();
|
inline Address* NewSpaceAllocationLimitAddress();
|
inline Address* OldSpaceAllocationTopAddress();
|
inline Address* OldSpaceAllocationLimitAddress();
|
|
// FreeSpace objects have a null map after deserialization. Update the map.
|
void RepairFreeListsAfterDeserialization();
|
|
// Move len elements within a given array from src_index index to dst_index
|
// index.
|
void MoveElements(FixedArray* array, int dst_index, int src_index, int len,
|
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
|
|
// Initialize a filler object to keep the ability to iterate over the heap
|
// when introducing gaps within pages. If slots could have been recorded in
|
// the freed area, then pass ClearRecordedSlots::kYes as the mode. Otherwise,
|
// pass ClearRecordedSlots::kNo. If the memory after the object header of
|
// the filler should be cleared, pass in kClearFreedMemory. The default is
|
// kDontClearFreedMemory.
|
V8_EXPORT_PRIVATE HeapObject* CreateFillerObjectAt(
|
Address addr, int size, ClearRecordedSlots clear_slots_mode,
|
ClearFreedMemoryMode clear_memory_mode =
|
ClearFreedMemoryMode::kDontClearFreedMemory);
|
|
template <typename T>
|
void CreateFillerForArray(T* object, int elements_to_trim, int bytes_to_trim);
|
|
bool CanMoveObjectStart(HeapObject* object);
|
|
static bool IsImmovable(HeapObject* object);
|
|
// Trim the given array from the left. Note that this relocates the object
|
// start and hence is only valid if there is only a single reference to it.
|
FixedArrayBase* LeftTrimFixedArray(FixedArrayBase* obj, int elements_to_trim);
|
|
// Trim the given array from the right.
|
void RightTrimFixedArray(FixedArrayBase* obj, int elements_to_trim);
|
void RightTrimWeakFixedArray(WeakFixedArray* obj, int elements_to_trim);
|
|
// Converts the given boolean condition to JavaScript boolean value.
|
inline Oddball* ToBoolean(bool condition);
|
|
// Notify the heap that a context has been disposed.
|
int NotifyContextDisposed(bool dependant_context);
|
|
void set_native_contexts_list(Object* object) {
|
native_contexts_list_ = object;
|
}
|
Object* native_contexts_list() const { return native_contexts_list_; }
|
|
void set_allocation_sites_list(Object* object) {
|
allocation_sites_list_ = object;
|
}
|
Object* allocation_sites_list() { return allocation_sites_list_; }
|
|
// Used in CreateAllocationSiteStub and the (de)serializer.
|
Object** allocation_sites_list_address() { return &allocation_sites_list_; }
|
|
// Traverse all the allocaions_sites [nested_site and weak_next] in the list
|
// and foreach call the visitor
|
void ForeachAllocationSite(Object* list,
|
std::function<void(AllocationSite*)> visitor);
|
|
// Number of mark-sweeps.
|
int ms_count() const { return ms_count_; }
|
|
// Checks whether the given object is allowed to be migrated from it's
|
// current space into the given destination space. Used for debugging.
|
bool AllowedToBeMigrated(HeapObject* object, AllocationSpace dest);
|
|
void CheckHandleCount();
|
|
// Number of "runtime allocations" done so far.
|
uint32_t allocations_count() { return allocations_count_; }
|
|
// Print short heap statistics.
|
void PrintShortHeapStatistics();
|
|
bool write_protect_code_memory() const { return write_protect_code_memory_; }
|
|
uintptr_t code_space_memory_modification_scope_depth() {
|
return code_space_memory_modification_scope_depth_;
|
}
|
|
void increment_code_space_memory_modification_scope_depth() {
|
code_space_memory_modification_scope_depth_++;
|
}
|
|
void decrement_code_space_memory_modification_scope_depth() {
|
code_space_memory_modification_scope_depth_--;
|
}
|
|
void UnprotectAndRegisterMemoryChunk(MemoryChunk* chunk);
|
void UnprotectAndRegisterMemoryChunk(HeapObject* object);
|
void UnregisterUnprotectedMemoryChunk(MemoryChunk* chunk);
|
V8_EXPORT_PRIVATE void ProtectUnprotectedMemoryChunks();
|
|
void EnableUnprotectedMemoryChunksRegistry() {
|
unprotected_memory_chunks_registry_enabled_ = true;
|
}
|
|
void DisableUnprotectedMemoryChunksRegistry() {
|
unprotected_memory_chunks_registry_enabled_ = false;
|
}
|
|
bool unprotected_memory_chunks_registry_enabled() {
|
return unprotected_memory_chunks_registry_enabled_;
|
}
|
|
inline HeapState gc_state() { return gc_state_; }
|
void SetGCState(HeapState state);
|
bool IsTearingDown() const { return gc_state_ == TEAR_DOWN; }
|
|
inline bool IsInGCPostProcessing() { return gc_post_processing_depth_ > 0; }
|
|
// If an object has an AllocationMemento trailing it, return it, otherwise
|
// return nullptr;
|
template <FindMementoMode mode>
|
inline AllocationMemento* FindAllocationMemento(Map* map, HeapObject* object);
|
|
// Returns false if not able to reserve.
|
bool ReserveSpace(Reservation* reservations, std::vector<Address>* maps);
|
|
//
|
// Support for the API.
|
//
|
|
void CreateApiObjects();
|
|
// Implements the corresponding V8 API function.
|
bool IdleNotification(double deadline_in_seconds);
|
bool IdleNotification(int idle_time_in_ms);
|
|
void MemoryPressureNotification(MemoryPressureLevel level,
|
bool is_isolate_locked);
|
void CheckMemoryPressure();
|
|
void AddNearHeapLimitCallback(v8::NearHeapLimitCallback, void* data);
|
void RemoveNearHeapLimitCallback(v8::NearHeapLimitCallback callback,
|
size_t heap_limit);
|
|
double MonotonicallyIncreasingTimeInMs();
|
|
void RecordStats(HeapStats* stats, bool take_snapshot = false);
|
|
// Check new space expansion criteria and expand semispaces if it was hit.
|
void CheckNewSpaceExpansionCriteria();
|
|
void VisitExternalResources(v8::ExternalResourceVisitor* visitor);
|
|
// An object should be promoted if the object has survived a
|
// scavenge operation.
|
inline bool ShouldBePromoted(Address old_address);
|
|
void IncrementDeferredCount(v8::Isolate::UseCounterFeature feature);
|
|
inline uint64_t HashSeed();
|
|
inline int NextScriptId();
|
inline int NextDebuggingId();
|
inline int GetNextTemplateSerialNumber();
|
|
void SetSerializedObjects(FixedArray* objects);
|
void SetSerializedGlobalProxySizes(FixedArray* sizes);
|
|
// For post mortem debugging.
|
void RememberUnmappedPage(Address page, bool compacted);
|
|
int64_t external_memory_hard_limit() { return MaxOldGenerationSize() / 2; }
|
|
int64_t external_memory() { return external_memory_; }
|
void update_external_memory(int64_t delta) { external_memory_ += delta; }
|
|
void update_external_memory_concurrently_freed(intptr_t freed) {
|
external_memory_concurrently_freed_ += freed;
|
}
|
|
void account_external_memory_concurrently_freed() {
|
external_memory_ -= external_memory_concurrently_freed_;
|
external_memory_concurrently_freed_ = 0;
|
}
|
|
void ProcessMovedExternalString(Page* old_page, Page* new_page,
|
ExternalString* string);
|
|
void CompactWeakArrayLists(PretenureFlag pretenure);
|
|
void AddRetainedMap(Handle<Map> map);
|
|
// This event is triggered after successful allocation of a new object made
|
// by runtime. Allocations of target space for object evacuation do not
|
// trigger the event. In order to track ALL allocations one must turn off
|
// FLAG_inline_new.
|
inline void OnAllocationEvent(HeapObject* object, int size_in_bytes);
|
|
// This event is triggered after object is moved to a new place.
|
inline void OnMoveEvent(HeapObject* target, HeapObject* source,
|
int size_in_bytes);
|
|
inline bool CanAllocateInReadOnlySpace();
|
bool deserialization_complete() const { return deserialization_complete_; }
|
|
bool HasLowAllocationRate();
|
bool HasHighFragmentation();
|
bool HasHighFragmentation(size_t used, size_t committed);
|
|
void ActivateMemoryReducerIfNeeded();
|
|
bool ShouldOptimizeForMemoryUsage();
|
|
bool HighMemoryPressure() {
|
return memory_pressure_level_ != MemoryPressureLevel::kNone;
|
}
|
|
void RestoreHeapLimit(size_t heap_limit) {
|
// Do not set the limit lower than the live size + some slack.
|
size_t min_limit = SizeOfObjects() + SizeOfObjects() / 4;
|
max_old_generation_size_ =
|
Min(max_old_generation_size_, Max(heap_limit, min_limit));
|
}
|
|
// ===========================================================================
|
// Initialization. ===========================================================
|
// ===========================================================================
|
|
// Configure heap sizes
|
// max_semi_space_size_in_kb: maximum semi-space size in KB
|
// max_old_generation_size_in_mb: maximum old generation size in MB
|
// code_range_size_in_mb: code range size in MB
|
void ConfigureHeap(size_t max_semi_space_size_in_kb,
|
size_t max_old_generation_size_in_mb,
|
size_t code_range_size_in_mb);
|
void ConfigureHeapDefault();
|
|
// Prepares the heap, setting up memory areas that are needed in the isolate
|
// without actually creating any objects.
|
void SetUp();
|
|
// (Re-)Initialize hash seed from flag or RNG.
|
void InitializeHashSeed();
|
|
// Bootstraps the object heap with the core set of objects required to run.
|
// Returns whether it succeeded.
|
bool CreateHeapObjects();
|
|
// Create ObjectStats if live_object_stats_ or dead_object_stats_ are nullptr.
|
void CreateObjectStats();
|
|
// Sets the TearDown state, so no new GC tasks get posted.
|
void StartTearDown();
|
|
// Destroys all memory allocated by the heap.
|
void TearDown();
|
|
// Returns whether SetUp has been called.
|
bool HasBeenSetUp();
|
|
// ===========================================================================
|
// Getters for spaces. =======================================================
|
// ===========================================================================
|
|
inline Address NewSpaceTop();
|
|
NewSpace* new_space() { return new_space_; }
|
OldSpace* old_space() { return old_space_; }
|
CodeSpace* code_space() { return code_space_; }
|
MapSpace* map_space() { return map_space_; }
|
LargeObjectSpace* lo_space() { return lo_space_; }
|
NewLargeObjectSpace* new_lo_space() { return new_lo_space_; }
|
ReadOnlySpace* read_only_space() { return read_only_space_; }
|
|
inline PagedSpace* paged_space(int idx);
|
inline Space* space(int idx);
|
|
// Returns name of the space.
|
const char* GetSpaceName(int idx);
|
|
// ===========================================================================
|
// Getters to other components. ==============================================
|
// ===========================================================================
|
|
GCTracer* tracer() { return tracer_; }
|
|
MemoryAllocator* memory_allocator() { return memory_allocator_; }
|
|
inline Isolate* isolate();
|
|
MarkCompactCollector* mark_compact_collector() {
|
return mark_compact_collector_;
|
}
|
|
MinorMarkCompactCollector* minor_mark_compact_collector() {
|
return minor_mark_compact_collector_;
|
}
|
|
ArrayBufferCollector* array_buffer_collector() {
|
return array_buffer_collector_;
|
}
|
|
// ===========================================================================
|
// Root set access. ==========================================================
|
// ===========================================================================
|
friend class ReadOnlyRoots;
|
|
public:
|
// Heap root getters.
|
#define ROOT_ACCESSOR(type, name, camel_name) inline type* name();
|
MUTABLE_ROOT_LIST(ROOT_ACCESSOR)
|
#undef ROOT_ACCESSOR
|
|
#define DATA_HANDLER_MAP_ACCESSOR(NAME, Name, Size, name) \
|
inline Map* name##_map();
|
DATA_HANDLER_LIST(DATA_HANDLER_MAP_ACCESSOR)
|
#undef DATA_HANDLER_MAP_ACCESSOR
|
|
#define ACCESSOR_INFO_ACCESSOR(accessor_name, AccessorName) \
|
inline AccessorInfo* accessor_name##_accessor();
|
ACCESSOR_INFO_LIST(ACCESSOR_INFO_ACCESSOR)
|
#undef ACCESSOR_INFO_ACCESSOR
|
|
Object* root(RootListIndex index) { return roots_[index]; }
|
Handle<Object> root_handle(RootListIndex index) {
|
return Handle<Object>(&roots_[index]);
|
}
|
template <typename T>
|
bool IsRootHandle(Handle<T> handle, RootListIndex* index) const {
|
Object** const handle_location = bit_cast<Object**>(handle.address());
|
if (handle_location >= &roots_[kRootListLength]) return false;
|
if (handle_location < &roots_[0]) return false;
|
*index = static_cast<RootListIndex>(handle_location - &roots_[0]);
|
return true;
|
}
|
|
// Generated code can embed this address to get access to the roots.
|
Object** roots_array_start() { return roots_; }
|
|
ExternalReferenceTable* external_reference_table() {
|
DCHECK(external_reference_table_.is_initialized());
|
return &external_reference_table_;
|
}
|
|
static constexpr int roots_to_external_reference_table_offset() {
|
return kRootsExternalReferenceTableOffset;
|
}
|
|
static constexpr int roots_to_builtins_offset() {
|
return kRootsBuiltinsOffset;
|
}
|
|
static constexpr int root_register_addressable_end_offset() {
|
return kRootRegisterAddressableEndOffset;
|
}
|
|
Address root_register_addressable_end() {
|
return reinterpret_cast<Address>(roots_array_start()) +
|
kRootRegisterAddressableEndOffset;
|
}
|
|
// Sets the stub_cache_ (only used when expanding the dictionary).
|
void SetRootCodeStubs(SimpleNumberDictionary* value);
|
|
void SetRootMaterializedObjects(FixedArray* objects) {
|
roots_[kMaterializedObjectsRootIndex] = objects;
|
}
|
|
void SetRootScriptList(Object* value) {
|
roots_[kScriptListRootIndex] = value;
|
}
|
|
void SetRootStringTable(StringTable* value) {
|
roots_[kStringTableRootIndex] = value;
|
}
|
|
void SetRootNoScriptSharedFunctionInfos(Object* value) {
|
roots_[kNoScriptSharedFunctionInfosRootIndex] = value;
|
}
|
|
void SetMessageListeners(TemplateList* value) {
|
roots_[kMessageListenersRootIndex] = value;
|
}
|
|
// Set the stack limit in the roots_ array. Some architectures generate
|
// code that looks here, because it is faster than loading from the static
|
// jslimit_/real_jslimit_ variable in the StackGuard.
|
void SetStackLimits();
|
|
// The stack limit is thread-dependent. To be able to reproduce the same
|
// snapshot blob, we need to reset it before serializing.
|
void ClearStackLimits();
|
|
// Generated code can treat direct references to this root as constant.
|
bool RootCanBeTreatedAsConstant(RootListIndex root_index);
|
|
Map* MapForFixedTypedArray(ExternalArrayType array_type);
|
Map* MapForFixedTypedArray(ElementsKind elements_kind);
|
FixedTypedArrayBase* EmptyFixedTypedArrayForMap(const Map* map);
|
|
void RegisterStrongRoots(Object** start, Object** end);
|
void UnregisterStrongRoots(Object** start);
|
|
bool IsDeserializeLazyHandler(Code* code);
|
void SetDeserializeLazyHandler(Code* code);
|
void SetDeserializeLazyHandlerWide(Code* code);
|
void SetDeserializeLazyHandlerExtraWide(Code* code);
|
|
void SetBuiltinsConstantsTable(FixedArray* cache);
|
|
// ===========================================================================
|
// Inline allocation. ========================================================
|
// ===========================================================================
|
|
// Indicates whether inline bump-pointer allocation has been disabled.
|
bool inline_allocation_disabled() { return inline_allocation_disabled_; }
|
|
// Switch whether inline bump-pointer allocation should be used.
|
void EnableInlineAllocation();
|
void DisableInlineAllocation();
|
|
// ===========================================================================
|
// Methods triggering GCs. ===================================================
|
// ===========================================================================
|
|
// Performs garbage collection operation.
|
// Returns whether there is a chance that another major GC could
|
// collect more garbage.
|
V8_EXPORT_PRIVATE bool CollectGarbage(
|
AllocationSpace space, GarbageCollectionReason gc_reason,
|
const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
|
|
// Performs a full garbage collection. If (flags & kMakeHeapIterableMask) is
|
// non-zero, then the slower precise sweeper is used, which leaves the heap
|
// in a state where we can iterate over the heap visiting all objects.
|
V8_EXPORT_PRIVATE void CollectAllGarbage(
|
int flags, GarbageCollectionReason gc_reason,
|
const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
|
|
// Last hope GC, should try to squeeze as much as possible.
|
void CollectAllAvailableGarbage(GarbageCollectionReason gc_reason);
|
|
// Reports and external memory pressure event, either performs a major GC or
|
// completes incremental marking in order to free external resources.
|
void ReportExternalMemoryPressure();
|
|
typedef v8::Isolate::GetExternallyAllocatedMemoryInBytesCallback
|
GetExternallyAllocatedMemoryInBytesCallback;
|
|
void SetGetExternallyAllocatedMemoryInBytesCallback(
|
GetExternallyAllocatedMemoryInBytesCallback callback) {
|
external_memory_callback_ = callback;
|
}
|
|
// Invoked when GC was requested via the stack guard.
|
void HandleGCRequest();
|
|
// ===========================================================================
|
// Builtins. =================================================================
|
// ===========================================================================
|
|
Code* builtin(int index);
|
Address builtin_address(int index);
|
void set_builtin(int index, HeapObject* builtin);
|
|
// ===========================================================================
|
// Iterators. ================================================================
|
// ===========================================================================
|
|
void IterateRoots(RootVisitor* v, VisitMode mode);
|
void IterateStrongRoots(RootVisitor* v, VisitMode mode);
|
// Iterates over entries in the smi roots list. Only interesting to the
|
// serializer/deserializer, since GC does not care about smis.
|
void IterateSmiRoots(RootVisitor* v);
|
// Iterates over weak string tables.
|
void IterateWeakRoots(RootVisitor* v, VisitMode mode);
|
// Iterates over weak global handles.
|
void IterateWeakGlobalHandles(RootVisitor* v);
|
// Iterates over builtins.
|
void IterateBuiltins(RootVisitor* v);
|
|
// ===========================================================================
|
// Store buffer API. =========================================================
|
// ===========================================================================
|
|
// Used for query incremental marking status in generated code.
|
Address* IsMarkingFlagAddress() {
|
return reinterpret_cast<Address*>(&is_marking_flag_);
|
}
|
|
void SetIsMarkingFlag(uint8_t flag) { is_marking_flag_ = flag; }
|
|
Address* store_buffer_top_address();
|
static intptr_t store_buffer_mask_constant();
|
static Address store_buffer_overflow_function_address();
|
|
void ClearRecordedSlot(HeapObject* object, Object** slot);
|
void ClearRecordedSlotRange(Address start, Address end);
|
|
bool HasRecordedSlot(HeapObject* object, Object** slot);
|
|
// ===========================================================================
|
// Incremental marking API. ==================================================
|
// ===========================================================================
|
|
int GCFlagsForIncrementalMarking() {
|
return ShouldOptimizeForMemoryUsage() ? kReduceMemoryFootprintMask
|
: kNoGCFlags;
|
}
|
|
// Start incremental marking and ensure that idle time handler can perform
|
// incremental steps.
|
void StartIdleIncrementalMarking(
|
GarbageCollectionReason gc_reason,
|
GCCallbackFlags gc_callback_flags = GCCallbackFlags::kNoGCCallbackFlags);
|
|
// Starts incremental marking assuming incremental marking is currently
|
// stopped.
|
void StartIncrementalMarking(
|
int gc_flags, GarbageCollectionReason gc_reason,
|
GCCallbackFlags gc_callback_flags = GCCallbackFlags::kNoGCCallbackFlags);
|
|
void StartIncrementalMarkingIfAllocationLimitIsReached(
|
int gc_flags,
|
GCCallbackFlags gc_callback_flags = GCCallbackFlags::kNoGCCallbackFlags);
|
|
void FinalizeIncrementalMarkingIfComplete(GarbageCollectionReason gc_reason);
|
// Synchronously finalizes incremental marking.
|
void FinalizeIncrementalMarkingAtomically(GarbageCollectionReason gc_reason);
|
|
void RegisterDeserializedObjectsForBlackAllocation(
|
Reservation* reservations, const std::vector<HeapObject*>& large_objects,
|
const std::vector<Address>& maps);
|
|
IncrementalMarking* incremental_marking() { return incremental_marking_; }
|
|
// ===========================================================================
|
// Concurrent marking API. ===================================================
|
// ===========================================================================
|
|
ConcurrentMarking* concurrent_marking() { return concurrent_marking_; }
|
|
// The runtime uses this function to notify potentially unsafe object layout
|
// changes that require special synchronization with the concurrent marker.
|
// The old size is the size of the object before layout change.
|
void NotifyObjectLayoutChange(HeapObject* object, int old_size,
|
const DisallowHeapAllocation&);
|
|
#ifdef VERIFY_HEAP
|
// This function checks that either
|
// - the map transition is safe,
|
// - or it was communicated to GC using NotifyObjectLayoutChange.
|
void VerifyObjectLayoutChange(HeapObject* object, Map* new_map);
|
#endif
|
|
// ===========================================================================
|
// Deoptimization support API. ===============================================
|
// ===========================================================================
|
|
// Setters for code offsets of well-known deoptimization targets.
|
void SetArgumentsAdaptorDeoptPCOffset(int pc_offset);
|
void SetConstructStubCreateDeoptPCOffset(int pc_offset);
|
void SetConstructStubInvokeDeoptPCOffset(int pc_offset);
|
void SetInterpreterEntryReturnPCOffset(int pc_offset);
|
|
// Invalidates references in the given {code} object that are directly
|
// embedded within the instruction stream. Mutates write-protected code.
|
void InvalidateCodeEmbeddedObjects(Code* code);
|
|
// Invalidates references in the given {code} object that are referenced
|
// transitively from the deoptimization data. Mutates write-protected code.
|
void InvalidateCodeDeoptimizationData(Code* code);
|
|
void DeoptMarkedAllocationSites();
|
|
bool DeoptMaybeTenuredAllocationSites();
|
|
// ===========================================================================
|
// Embedder heap tracer support. =============================================
|
// ===========================================================================
|
|
LocalEmbedderHeapTracer* local_embedder_heap_tracer() {
|
return local_embedder_heap_tracer_;
|
}
|
void SetEmbedderHeapTracer(EmbedderHeapTracer* tracer);
|
void TracePossibleWrapper(JSObject* js_object);
|
void RegisterExternallyReferencedObject(Object** object);
|
void SetEmbedderStackStateForNextFinalizaton(
|
EmbedderHeapTracer::EmbedderStackState stack_state);
|
|
// ===========================================================================
|
// External string table API. ================================================
|
// ===========================================================================
|
|
// Registers an external string.
|
inline void RegisterExternalString(String* string);
|
|
// Called when a string's resource is changed. The size of the payload is sent
|
// as argument of the method.
|
inline void UpdateExternalString(String* string, size_t old_payload,
|
size_t new_payload);
|
|
// Finalizes an external string by deleting the associated external
|
// data and clearing the resource pointer.
|
inline void FinalizeExternalString(String* string);
|
|
// ===========================================================================
|
// Methods checking/returning the space of a given object/address. ===========
|
// ===========================================================================
|
|
// Returns whether the object resides in new space.
|
static inline bool InNewSpace(Object* object);
|
static inline bool InNewSpace(MaybeObject* object);
|
static inline bool InNewSpace(HeapObject* heap_object);
|
static inline bool InFromSpace(Object* object);
|
static inline bool InFromSpace(MaybeObject* object);
|
static inline bool InFromSpace(HeapObject* heap_object);
|
static inline bool InToSpace(Object* object);
|
static inline bool InToSpace(MaybeObject* object);
|
static inline bool InToSpace(HeapObject* heap_object);
|
|
// Returns whether the object resides in old space.
|
inline bool InOldSpace(Object* object);
|
|
// Returns whether the object resides in read-only space.
|
inline bool InReadOnlySpace(Object* object);
|
|
// Checks whether an address/object in the heap (including auxiliary
|
// area and unused area).
|
bool Contains(HeapObject* value);
|
|
// Checks whether an address/object in a space.
|
// Currently used by tests, serialization and heap verification only.
|
bool InSpace(HeapObject* value, AllocationSpace space);
|
|
// Slow methods that can be used for verification as they can also be used
|
// with off-heap Addresses.
|
bool ContainsSlow(Address addr);
|
bool InSpaceSlow(Address addr, AllocationSpace space);
|
inline bool InNewSpaceSlow(Address address);
|
inline bool InOldSpaceSlow(Address address);
|
|
// Find the heap which owns this HeapObject. Should never be called for
|
// objects in RO space.
|
static inline Heap* FromWritableHeapObject(const HeapObject* obj);
|
|
// ===========================================================================
|
// Object statistics tracking. ===============================================
|
// ===========================================================================
|
|
// Returns the number of buckets used by object statistics tracking during a
|
// major GC. Note that the following methods fail gracefully when the bounds
|
// are exceeded though.
|
size_t NumberOfTrackedHeapObjectTypes();
|
|
// Returns object statistics about count and size at the last major GC.
|
// Objects are being grouped into buckets that roughly resemble existing
|
// instance types.
|
size_t ObjectCountAtLastGC(size_t index);
|
size_t ObjectSizeAtLastGC(size_t index);
|
|
// Retrieves names of buckets used by object statistics tracking.
|
bool GetObjectTypeName(size_t index, const char** object_type,
|
const char** object_sub_type);
|
|
// The total number of native contexts object on the heap.
|
size_t NumberOfNativeContexts();
|
// The total number of native contexts that were detached but were not
|
// garbage collected yet.
|
size_t NumberOfDetachedContexts();
|
|
// ===========================================================================
|
// Code statistics. ==========================================================
|
// ===========================================================================
|
|
// Collect code (Code and BytecodeArray objects) statistics.
|
void CollectCodeStatistics();
|
|
// ===========================================================================
|
// GC statistics. ============================================================
|
// ===========================================================================
|
|
// Returns the maximum amount of memory reserved for the heap.
|
size_t MaxReserved();
|
size_t MaxSemiSpaceSize() { return max_semi_space_size_; }
|
size_t InitialSemiSpaceSize() { return initial_semispace_size_; }
|
size_t MaxOldGenerationSize() { return max_old_generation_size_; }
|
|
V8_EXPORT_PRIVATE static size_t ComputeMaxOldGenerationSize(
|
uint64_t physical_memory);
|
|
static size_t ComputeMaxSemiSpaceSize(uint64_t physical_memory) {
|
const uint64_t min_physical_memory = 512 * MB;
|
const uint64_t max_physical_memory = 3 * static_cast<uint64_t>(GB);
|
|
uint64_t capped_physical_memory =
|
Max(Min(physical_memory, max_physical_memory), min_physical_memory);
|
// linearly scale max semi-space size: (X-A)/(B-A)*(D-C)+C
|
size_t semi_space_size_in_kb =
|
static_cast<size_t>(((capped_physical_memory - min_physical_memory) *
|
(kMaxSemiSpaceSizeInKB - kMinSemiSpaceSizeInKB)) /
|
(max_physical_memory - min_physical_memory) +
|
kMinSemiSpaceSizeInKB);
|
return RoundUp(semi_space_size_in_kb, (1 << kPageSizeBits) / KB);
|
}
|
|
// Returns the capacity of the heap in bytes w/o growing. Heap grows when
|
// more spaces are needed until it reaches the limit.
|
size_t Capacity();
|
|
// Returns the capacity of the old generation.
|
size_t OldGenerationCapacity();
|
|
// Returns the amount of memory currently committed for the heap and memory
|
// held alive by the unmapper.
|
size_t CommittedMemoryOfHeapAndUnmapper();
|
|
// Returns the amount of memory currently committed for the heap.
|
size_t CommittedMemory();
|
|
// Returns the amount of memory currently committed for the old space.
|
size_t CommittedOldGenerationMemory();
|
|
// Returns the amount of executable memory currently committed for the heap.
|
size_t CommittedMemoryExecutable();
|
|
// Returns the amount of phyical memory currently committed for the heap.
|
size_t CommittedPhysicalMemory();
|
|
// Returns the maximum amount of memory ever committed for the heap.
|
size_t MaximumCommittedMemory() { return maximum_committed_; }
|
|
// Updates the maximum committed memory for the heap. Should be called
|
// whenever a space grows.
|
void UpdateMaximumCommitted();
|
|
// Returns the available bytes in space w/o growing.
|
// Heap doesn't guarantee that it can allocate an object that requires
|
// all available bytes. Check MaxHeapObjectSize() instead.
|
size_t Available();
|
|
// Returns of size of all objects residing in the heap.
|
size_t SizeOfObjects();
|
|
void UpdateSurvivalStatistics(int start_new_space_size);
|
|
inline void IncrementPromotedObjectsSize(size_t object_size) {
|
promoted_objects_size_ += object_size;
|
}
|
inline size_t promoted_objects_size() { return promoted_objects_size_; }
|
|
inline void IncrementSemiSpaceCopiedObjectSize(size_t object_size) {
|
semi_space_copied_object_size_ += object_size;
|
}
|
inline size_t semi_space_copied_object_size() {
|
return semi_space_copied_object_size_;
|
}
|
|
inline size_t SurvivedNewSpaceObjectSize() {
|
return promoted_objects_size_ + semi_space_copied_object_size_;
|
}
|
|
inline void IncrementNodesDiedInNewSpace() { nodes_died_in_new_space_++; }
|
|
inline void IncrementNodesCopiedInNewSpace() { nodes_copied_in_new_space_++; }
|
|
inline void IncrementNodesPromoted() { nodes_promoted_++; }
|
|
inline void IncrementYoungSurvivorsCounter(size_t survived) {
|
survived_last_scavenge_ = survived;
|
survived_since_last_expansion_ += survived;
|
}
|
|
inline uint64_t OldGenerationObjectsAndPromotedExternalMemorySize() {
|
return OldGenerationSizeOfObjects() + PromotedExternalMemorySize();
|
}
|
|
inline void UpdateNewSpaceAllocationCounter();
|
|
inline size_t NewSpaceAllocationCounter();
|
|
// This should be used only for testing.
|
void set_new_space_allocation_counter(size_t new_value) {
|
new_space_allocation_counter_ = new_value;
|
}
|
|
void UpdateOldGenerationAllocationCounter() {
|
old_generation_allocation_counter_at_last_gc_ =
|
OldGenerationAllocationCounter();
|
old_generation_size_at_last_gc_ = 0;
|
}
|
|
size_t OldGenerationAllocationCounter() {
|
return old_generation_allocation_counter_at_last_gc_ +
|
PromotedSinceLastGC();
|
}
|
|
// This should be used only for testing.
|
void set_old_generation_allocation_counter_at_last_gc(size_t new_value) {
|
old_generation_allocation_counter_at_last_gc_ = new_value;
|
}
|
|
size_t PromotedSinceLastGC() {
|
size_t old_generation_size = OldGenerationSizeOfObjects();
|
DCHECK_GE(old_generation_size, old_generation_size_at_last_gc_);
|
return old_generation_size - old_generation_size_at_last_gc_;
|
}
|
|
// This is called by the sweeper when it discovers more free space
|
// than expected at the end of the preceding GC.
|
void NotifyRefinedOldGenerationSize(size_t decreased_bytes) {
|
if (old_generation_size_at_last_gc_ != 0) {
|
// OldGenerationSizeOfObjects() is now smaller by |decreased_bytes|.
|
// Adjust old_generation_size_at_last_gc_ too, so that PromotedSinceLastGC
|
// continues to increase monotonically, rather than decreasing here.
|
DCHECK_GE(old_generation_size_at_last_gc_, decreased_bytes);
|
old_generation_size_at_last_gc_ -= decreased_bytes;
|
}
|
}
|
|
int gc_count() const { return gc_count_; }
|
|
// Returns the size of objects residing in non-new spaces.
|
// Excludes external memory held by those objects.
|
size_t OldGenerationSizeOfObjects();
|
|
// ===========================================================================
|
// Prologue/epilogue callback methods.========================================
|
// ===========================================================================
|
|
void AddGCPrologueCallback(v8::Isolate::GCCallbackWithData callback,
|
GCType gc_type_filter, void* data);
|
void RemoveGCPrologueCallback(v8::Isolate::GCCallbackWithData callback,
|
void* data);
|
|
void AddGCEpilogueCallback(v8::Isolate::GCCallbackWithData callback,
|
GCType gc_type_filter, void* data);
|
void RemoveGCEpilogueCallback(v8::Isolate::GCCallbackWithData callback,
|
void* data);
|
|
void CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags);
|
void CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags flags);
|
|
// ===========================================================================
|
// Allocation methods. =======================================================
|
// ===========================================================================
|
|
// Creates a filler object and returns a heap object immediately after it.
|
V8_WARN_UNUSED_RESULT HeapObject* PrecedeWithFiller(HeapObject* object,
|
int filler_size);
|
|
// Creates a filler object if needed for alignment and returns a heap object
|
// immediately after it. If any space is left after the returned object,
|
// another filler object is created so the over allocated memory is iterable.
|
V8_WARN_UNUSED_RESULT HeapObject* AlignWithFiller(
|
HeapObject* object, int object_size, int allocation_size,
|
AllocationAlignment alignment);
|
|
// ===========================================================================
|
// ArrayBuffer tracking. =====================================================
|
// ===========================================================================
|
|
// TODO(gc): API usability: encapsulate mutation of JSArrayBuffer::is_external
|
// in the registration/unregistration APIs. Consider dropping the "New" from
|
// "RegisterNewArrayBuffer" because one can re-register a previously
|
// unregistered buffer, too, and the name is confusing.
|
void RegisterNewArrayBuffer(JSArrayBuffer* buffer);
|
void UnregisterArrayBuffer(JSArrayBuffer* buffer);
|
|
// ===========================================================================
|
// Allocation site tracking. =================================================
|
// ===========================================================================
|
|
// Updates the AllocationSite of a given {object}. The entry (including the
|
// count) is cached on the local pretenuring feedback.
|
inline void UpdateAllocationSite(
|
Map* map, HeapObject* object,
|
PretenuringFeedbackMap* pretenuring_feedback);
|
|
// Merges local pretenuring feedback into the global one. Note that this
|
// method needs to be called after evacuation, as allocation sites may be
|
// evacuated and this method resolves forward pointers accordingly.
|
void MergeAllocationSitePretenuringFeedback(
|
const PretenuringFeedbackMap& local_pretenuring_feedback);
|
|
// ===========================================================================
|
// Allocation tracking. ======================================================
|
// ===========================================================================
|
|
// Adds {new_space_observer} to new space and {observer} to any other space.
|
void AddAllocationObserversToAllSpaces(
|
AllocationObserver* observer, AllocationObserver* new_space_observer);
|
|
// Removes {new_space_observer} from new space and {observer} from any other
|
// space.
|
void RemoveAllocationObserversFromAllSpaces(
|
AllocationObserver* observer, AllocationObserver* new_space_observer);
|
|
bool allocation_step_in_progress() { return allocation_step_in_progress_; }
|
void set_allocation_step_in_progress(bool val) {
|
allocation_step_in_progress_ = val;
|
}
|
|
// ===========================================================================
|
// Heap object allocation tracking. ==========================================
|
// ===========================================================================
|
|
void AddHeapObjectAllocationTracker(HeapObjectAllocationTracker* tracker);
|
void RemoveHeapObjectAllocationTracker(HeapObjectAllocationTracker* tracker);
|
bool has_heap_object_allocation_tracker() const {
|
return !allocation_trackers_.empty();
|
}
|
|
// ===========================================================================
|
// Retaining path tracking. ==================================================
|
// ===========================================================================
|
|
// Adds the given object to the weak table of retaining path targets.
|
// On each GC if the marker discovers the object, it will print the retaining
|
// path. This requires --track-retaining-path flag.
|
void AddRetainingPathTarget(Handle<HeapObject> object,
|
RetainingPathOption option);
|
|
// ===========================================================================
|
// Stack frame support. ======================================================
|
// ===========================================================================
|
|
// Returns the Code object for a given interior pointer. Returns nullptr if
|
// {inner_pointer} is not contained within a Code object.
|
Code* GcSafeFindCodeForInnerPointer(Address inner_pointer);
|
|
// Returns true if {addr} is contained within {code} and false otherwise.
|
// Mostly useful for debugging.
|
bool GcSafeCodeContains(HeapObject* code, Address addr);
|
|
// =============================================================================
|
#ifdef VERIFY_HEAP
|
// Verify the heap is in its normal state before or after a GC.
|
void Verify();
|
void VerifyRememberedSetFor(HeapObject* object);
|
#endif
|
|
#ifdef V8_ENABLE_ALLOCATION_TIMEOUT
|
void set_allocation_timeout(int timeout) { allocation_timeout_ = timeout; }
|
#endif
|
|
#ifdef DEBUG
|
void VerifyCountersAfterSweeping();
|
void VerifyCountersBeforeConcurrentSweeping();
|
|
void Print();
|
void PrintHandles();
|
|
// Report code statistics.
|
void ReportCodeStatistics(const char* title);
|
#endif
|
void* GetRandomMmapAddr() {
|
void* result = v8::internal::GetRandomMmapAddr();
|
#if V8_TARGET_ARCH_X64
|
#if V8_OS_MACOSX
|
// The Darwin kernel [as of macOS 10.12.5] does not clean up page
|
// directory entries [PDE] created from mmap or mach_vm_allocate, even
|
// after the region is destroyed. Using a virtual address space that is
|
// too large causes a leak of about 1 wired [can never be paged out] page
|
// per call to mmap(). The page is only reclaimed when the process is
|
// killed. Confine the hint to a 32-bit section of the virtual address
|
// space. See crbug.com/700928.
|
uintptr_t offset =
|
reinterpret_cast<uintptr_t>(v8::internal::GetRandomMmapAddr()) &
|
kMmapRegionMask;
|
result = reinterpret_cast<void*>(mmap_region_base_ + offset);
|
#endif // V8_OS_MACOSX
|
#endif // V8_TARGET_ARCH_X64
|
return result;
|
}
|
|
static const char* GarbageCollectionReasonToString(
|
GarbageCollectionReason gc_reason);
|
|
// Calculates the nof entries for the full sized number to string cache.
|
inline int MaxNumberToStringCacheSize() const;
|
|
private:
|
class SkipStoreBufferScope;
|
|
typedef String* (*ExternalStringTableUpdaterCallback)(Heap* heap,
|
Object** pointer);
|
|
// External strings table is a place where all external strings are
|
// registered. We need to keep track of such strings to properly
|
// finalize them.
|
class ExternalStringTable {
|
public:
|
explicit ExternalStringTable(Heap* heap) : heap_(heap) {}
|
|
// Registers an external string.
|
inline void AddString(String* string);
|
bool Contains(HeapObject* obj);
|
|
void IterateAll(RootVisitor* v);
|
void IterateNewSpaceStrings(RootVisitor* v);
|
void PromoteAllNewSpaceStrings();
|
|
// Restores internal invariant and gets rid of collected strings. Must be
|
// called after each Iterate*() that modified the strings.
|
void CleanUpAll();
|
void CleanUpNewSpaceStrings();
|
|
// Finalize all registered external strings and clear tables.
|
void TearDown();
|
|
void UpdateNewSpaceReferences(
|
Heap::ExternalStringTableUpdaterCallback updater_func);
|
void UpdateReferences(
|
Heap::ExternalStringTableUpdaterCallback updater_func);
|
|
private:
|
void Verify();
|
void VerifyNewSpace();
|
|
Heap* const heap_;
|
|
// To speed up scavenge collections new space string are kept
|
// separate from old space strings.
|
std::vector<Object*> new_space_strings_;
|
std::vector<Object*> old_space_strings_;
|
|
DISALLOW_COPY_AND_ASSIGN(ExternalStringTable);
|
};
|
|
struct StrongRootsList;
|
|
struct StringTypeTable {
|
InstanceType type;
|
int size;
|
RootListIndex index;
|
};
|
|
struct ConstantStringTable {
|
const char* contents;
|
RootListIndex index;
|
};
|
|
struct StructTable {
|
InstanceType type;
|
int size;
|
RootListIndex index;
|
};
|
|
struct GCCallbackTuple {
|
GCCallbackTuple(v8::Isolate::GCCallbackWithData callback, GCType gc_type,
|
void* data)
|
: callback(callback), gc_type(gc_type), data(data) {}
|
|
bool operator==(const GCCallbackTuple& other) const;
|
GCCallbackTuple& operator=(const GCCallbackTuple& other);
|
|
v8::Isolate::GCCallbackWithData callback;
|
GCType gc_type;
|
void* data;
|
};
|
|
static const int kInitialStringTableSize = StringTable::kMinCapacity;
|
static const int kInitialEvalCacheSize = 64;
|
static const int kInitialNumberStringCacheSize = 256;
|
|
static const int kRememberedUnmappedPages = 128;
|
|
static const StringTypeTable string_type_table[];
|
static const ConstantStringTable constant_string_table[];
|
static const StructTable struct_table[];
|
|
static const int kYoungSurvivalRateHighThreshold = 90;
|
static const int kYoungSurvivalRateAllowedDeviation = 15;
|
static const int kOldSurvivalRateLowThreshold = 10;
|
|
static const int kMaxMarkCompactsInIdleRound = 7;
|
static const int kIdleScavengeThreshold = 5;
|
|
static const int kInitialFeedbackCapacity = 256;
|
|
static const int kMaxScavengerTasks = 8;
|
|
Heap();
|
|
static String* UpdateNewSpaceReferenceInExternalStringTableEntry(
|
Heap* heap, Object** pointer);
|
|
// Selects the proper allocation space based on the pretenuring decision.
|
static AllocationSpace SelectSpace(PretenureFlag pretenure) {
|
switch (pretenure) {
|
case TENURED_READ_ONLY:
|
return RO_SPACE;
|
case TENURED:
|
return OLD_SPACE;
|
case NOT_TENURED:
|
return NEW_SPACE;
|
default:
|
UNREACHABLE();
|
}
|
}
|
|
static size_t DefaultGetExternallyAllocatedMemoryInBytesCallback() {
|
return 0;
|
}
|
|
#define ROOT_ACCESSOR(type, name, camel_name) \
|
inline void set_##name(type* value);
|
ROOT_LIST(ROOT_ACCESSOR)
|
#undef ROOT_ACCESSOR
|
|
StoreBuffer* store_buffer() { return store_buffer_; }
|
|
void set_current_gc_flags(int flags) {
|
current_gc_flags_ = flags;
|
DCHECK(!ShouldFinalizeIncrementalMarking() ||
|
!ShouldAbortIncrementalMarking());
|
}
|
|
inline bool ShouldReduceMemory() const {
|
return (current_gc_flags_ & kReduceMemoryFootprintMask) != 0;
|
}
|
|
inline bool ShouldAbortIncrementalMarking() const {
|
return (current_gc_flags_ & kAbortIncrementalMarkingMask) != 0;
|
}
|
|
inline bool ShouldFinalizeIncrementalMarking() const {
|
return (current_gc_flags_ & kFinalizeIncrementalMarkingMask) != 0;
|
}
|
|
int NumberOfScavengeTasks();
|
|
// Checks whether a global GC is necessary
|
GarbageCollector SelectGarbageCollector(AllocationSpace space,
|
const char** reason);
|
|
// Make sure there is a filler value behind the top of the new space
|
// so that the GC does not confuse some unintialized/stale memory
|
// with the allocation memento of the object at the top
|
void EnsureFillerObjectAtTop();
|
|
// Ensure that we have swept all spaces in such a way that we can iterate
|
// over all objects. May cause a GC.
|
void MakeHeapIterable();
|
|
// Performs garbage collection
|
// Returns whether there is a chance another major GC could
|
// collect more garbage.
|
bool PerformGarbageCollection(
|
GarbageCollector collector,
|
const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
|
|
inline void UpdateOldSpaceLimits();
|
|
bool CreateInitialMaps();
|
void CreateInternalAccessorInfoObjects();
|
void CreateInitialObjects();
|
|
// These five Create*EntryStub functions are here and forced to not be inlined
|
// because of a gcc-4.4 bug that assigns wrong vtable entries.
|
V8_NOINLINE void CreateJSEntryStub();
|
V8_NOINLINE void CreateJSConstructEntryStub();
|
V8_NOINLINE void CreateJSRunMicrotasksEntryStub();
|
|
void CreateFixedStubs();
|
|
// Commits from space if it is uncommitted.
|
void EnsureFromSpaceIsCommitted();
|
|
// Uncommit unused semi space.
|
bool UncommitFromSpace();
|
|
// Fill in bogus values in from space
|
void ZapFromSpace();
|
|
// Zaps the memory of a code object.
|
void ZapCodeObject(Address start_address, int size_in_bytes);
|
|
// Deopts all code that contains allocation instruction which are tenured or
|
// not tenured. Moreover it clears the pretenuring allocation site statistics.
|
void ResetAllAllocationSitesDependentCode(PretenureFlag flag);
|
|
// Evaluates local pretenuring for the old space and calls
|
// ResetAllTenuredAllocationSitesDependentCode if too many objects died in
|
// the old space.
|
void EvaluateOldSpaceLocalPretenuring(uint64_t size_of_objects_before_gc);
|
|
// Record statistics after garbage collection.
|
void ReportStatisticsAfterGC();
|
|
// Flush the number to string cache.
|
void FlushNumberStringCache();
|
|
void ConfigureInitialOldGenerationSize();
|
|
bool HasLowYoungGenerationAllocationRate();
|
bool HasLowOldGenerationAllocationRate();
|
double YoungGenerationMutatorUtilization();
|
double OldGenerationMutatorUtilization();
|
|
void ReduceNewSpaceSize();
|
|
GCIdleTimeHeapState ComputeHeapState();
|
|
bool PerformIdleTimeAction(GCIdleTimeAction action,
|
GCIdleTimeHeapState heap_state,
|
double deadline_in_ms);
|
|
void IdleNotificationEpilogue(GCIdleTimeAction action,
|
GCIdleTimeHeapState heap_state, double start_ms,
|
double deadline_in_ms);
|
|
int NextAllocationTimeout(int current_timeout = 0);
|
inline void UpdateAllocationsHash(HeapObject* object);
|
inline void UpdateAllocationsHash(uint32_t value);
|
void PrintAllocationsHash();
|
|
void PrintMaxMarkingLimitReached();
|
void PrintMaxNewSpaceSizeReached();
|
|
int NextStressMarkingLimit();
|
|
void AddToRingBuffer(const char* string);
|
void GetFromRingBuffer(char* buffer);
|
|
void CompactRetainedMaps(WeakArrayList* retained_maps);
|
|
void CollectGarbageOnMemoryPressure();
|
|
bool InvokeNearHeapLimitCallback();
|
|
void ComputeFastPromotionMode();
|
|
// Attempt to over-approximate the weak closure by marking object groups and
|
// implicit references from global handles, but don't atomically complete
|
// marking. If we continue to mark incrementally, we might have marked
|
// objects that die later.
|
void FinalizeIncrementalMarkingIncrementally(
|
GarbageCollectionReason gc_reason);
|
|
// Returns the timer used for a given GC type.
|
// - GCScavenger: young generation GC
|
// - GCCompactor: full GC
|
// - GCFinalzeMC: finalization of incremental full GC
|
// - GCFinalizeMCReduceMemory: finalization of incremental full GC with
|
// memory reduction
|
HistogramTimer* GCTypeTimer(GarbageCollector collector);
|
HistogramTimer* GCTypePriorityTimer(GarbageCollector collector);
|
|
// ===========================================================================
|
// Pretenuring. ==============================================================
|
// ===========================================================================
|
|
// Pretenuring decisions are made based on feedback collected during new space
|
// evacuation. Note that between feedback collection and calling this method
|
// object in old space must not move.
|
void ProcessPretenuringFeedback();
|
|
// Removes an entry from the global pretenuring storage.
|
void RemoveAllocationSitePretenuringFeedback(AllocationSite* site);
|
|
// ===========================================================================
|
// Actual GC. ================================================================
|
// ===========================================================================
|
|
// Code that should be run before and after each GC. Includes some
|
// reporting/verification activities when compiled with DEBUG set.
|
void GarbageCollectionPrologue();
|
void GarbageCollectionEpilogue();
|
|
// Performs a major collection in the whole heap.
|
void MarkCompact();
|
// Performs a minor collection of just the young generation.
|
void MinorMarkCompact();
|
|
// Code to be run before and after mark-compact.
|
void MarkCompactPrologue();
|
void MarkCompactEpilogue();
|
|
// Performs a minor collection in new generation.
|
void Scavenge();
|
void EvacuateYoungGeneration();
|
|
void UpdateNewSpaceReferencesInExternalStringTable(
|
ExternalStringTableUpdaterCallback updater_func);
|
|
void UpdateReferencesInExternalStringTable(
|
ExternalStringTableUpdaterCallback updater_func);
|
|
void ProcessAllWeakReferences(WeakObjectRetainer* retainer);
|
void ProcessYoungWeakReferences(WeakObjectRetainer* retainer);
|
void ProcessNativeContexts(WeakObjectRetainer* retainer);
|
void ProcessAllocationSites(WeakObjectRetainer* retainer);
|
void ProcessWeakListRoots(WeakObjectRetainer* retainer);
|
|
// ===========================================================================
|
// GC statistics. ============================================================
|
// ===========================================================================
|
|
inline size_t OldGenerationSpaceAvailable() {
|
if (old_generation_allocation_limit_ <=
|
OldGenerationObjectsAndPromotedExternalMemorySize())
|
return 0;
|
return old_generation_allocation_limit_ -
|
static_cast<size_t>(
|
OldGenerationObjectsAndPromotedExternalMemorySize());
|
}
|
|
// We allow incremental marking to overshoot the allocation limit for
|
// performace reasons. If the overshoot is too large then we are more
|
// eager to finalize incremental marking.
|
inline bool AllocationLimitOvershotByLargeMargin() {
|
// This guards against too eager finalization in small heaps.
|
// The number is chosen based on v8.browsing_mobile on Nexus 7v2.
|
size_t kMarginForSmallHeaps = 32u * MB;
|
if (old_generation_allocation_limit_ >=
|
OldGenerationObjectsAndPromotedExternalMemorySize())
|
return false;
|
uint64_t overshoot = OldGenerationObjectsAndPromotedExternalMemorySize() -
|
old_generation_allocation_limit_;
|
// Overshoot margin is 50% of allocation limit or half-way to the max heap
|
// with special handling of small heaps.
|
uint64_t margin =
|
Min(Max(old_generation_allocation_limit_ / 2, kMarginForSmallHeaps),
|
(max_old_generation_size_ - old_generation_allocation_limit_) / 2);
|
return overshoot >= margin;
|
}
|
|
void UpdateTotalGCTime(double duration);
|
|
bool MaximumSizeScavenge() { return maximum_size_scavenges_ > 0; }
|
|
bool IsIneffectiveMarkCompact(size_t old_generation_size,
|
double mutator_utilization);
|
void CheckIneffectiveMarkCompact(size_t old_generation_size,
|
double mutator_utilization);
|
|
// ===========================================================================
|
// Growing strategy. =========================================================
|
// ===========================================================================
|
|
HeapController* heap_controller() { return heap_controller_; }
|
MemoryReducer* memory_reducer() { return memory_reducer_; }
|
|
// For some webpages RAIL mode does not switch from PERFORMANCE_LOAD.
|
// This constant limits the effect of load RAIL mode on GC.
|
// The value is arbitrary and chosen as the largest load time observed in
|
// v8 browsing benchmarks.
|
static const int kMaxLoadTimeMs = 7000;
|
|
bool ShouldOptimizeForLoadTime();
|
|
size_t old_generation_allocation_limit() const {
|
return old_generation_allocation_limit_;
|
}
|
|
bool always_allocate() { return always_allocate_scope_count_ != 0; }
|
|
bool CanExpandOldGeneration(size_t size);
|
|
bool ShouldExpandOldGenerationOnSlowAllocation();
|
|
enum class HeapGrowingMode { kSlow, kConservative, kMinimal, kDefault };
|
|
HeapGrowingMode CurrentHeapGrowingMode();
|
|
enum class IncrementalMarkingLimit { kNoLimit, kSoftLimit, kHardLimit };
|
IncrementalMarkingLimit IncrementalMarkingLimitReached();
|
|
// ===========================================================================
|
// Idle notification. ========================================================
|
// ===========================================================================
|
|
bool RecentIdleNotificationHappened();
|
void ScheduleIdleScavengeIfNeeded(int bytes_allocated);
|
|
// ===========================================================================
|
// HeapIterator helpers. =====================================================
|
// ===========================================================================
|
|
void heap_iterator_start() { heap_iterator_depth_++; }
|
|
void heap_iterator_end() { heap_iterator_depth_--; }
|
|
bool in_heap_iterator() { return heap_iterator_depth_ > 0; }
|
|
// ===========================================================================
|
// Allocation methods. =======================================================
|
// ===========================================================================
|
|
// Allocates a JS Map in the heap.
|
V8_WARN_UNUSED_RESULT AllocationResult
|
AllocateMap(InstanceType instance_type, int instance_size,
|
ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
|
int inobject_properties = 0);
|
|
// Allocate an uninitialized object. The memory is non-executable if the
|
// hardware and OS allow. This is the single choke-point for allocations
|
// performed by the runtime and should not be bypassed (to extend this to
|
// inlined allocations, use the Heap::DisableInlineAllocation() support).
|
V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRaw(
|
int size_in_bytes, AllocationSpace space,
|
AllocationAlignment aligment = kWordAligned);
|
|
// This method will try to perform an allocation of a given size in a given
|
// space. If the allocation fails, a regular full garbage collection is
|
// triggered and the allocation is retried. This is performed multiple times.
|
// If after that retry procedure the allocation still fails nullptr is
|
// returned.
|
HeapObject* AllocateRawWithLightRetry(
|
int size, AllocationSpace space,
|
AllocationAlignment alignment = kWordAligned);
|
|
// This method will try to perform an allocation of a given size in a given
|
// space. If the allocation fails, a regular full garbage collection is
|
// triggered and the allocation is retried. This is performed multiple times.
|
// If after that retry procedure the allocation still fails a "hammer"
|
// garbage collection is triggered which tries to significantly reduce memory.
|
// If the allocation still fails after that a fatal error is thrown.
|
HeapObject* AllocateRawWithRetryOrFail(
|
int size, AllocationSpace space,
|
AllocationAlignment alignment = kWordAligned);
|
HeapObject* AllocateRawCodeInLargeObjectSpace(int size);
|
|
// Allocates a heap object based on the map.
|
V8_WARN_UNUSED_RESULT AllocationResult Allocate(Map* map,
|
AllocationSpace space);
|
|
// Takes a code object and checks if it is on memory which is not subject to
|
// compaction. This method will return a new code object on an immovable
|
// memory location if the original code object was movable.
|
HeapObject* EnsureImmovableCode(HeapObject* heap_object, int object_size);
|
|
// Allocates a partial map for bootstrapping.
|
V8_WARN_UNUSED_RESULT AllocationResult
|
AllocatePartialMap(InstanceType instance_type, int instance_size);
|
|
void FinalizePartialMap(Map* map);
|
|
// Allocate empty fixed typed array of given type.
|
V8_WARN_UNUSED_RESULT AllocationResult
|
AllocateEmptyFixedTypedArray(ExternalArrayType array_type);
|
|
void set_force_oom(bool value) { force_oom_ = value; }
|
|
// ===========================================================================
|
// Retaining path tracing ====================================================
|
// ===========================================================================
|
|
void AddRetainer(HeapObject* retainer, HeapObject* object);
|
void AddEphemeronRetainer(HeapObject* retainer, HeapObject* object);
|
void AddRetainingRoot(Root root, HeapObject* object);
|
// Returns true if the given object is a target of retaining path tracking.
|
// Stores the option corresponding to the object in the provided *option.
|
bool IsRetainingPathTarget(HeapObject* object, RetainingPathOption* option);
|
void PrintRetainingPath(HeapObject* object, RetainingPathOption option);
|
|
// The amount of external memory registered through the API.
|
int64_t external_memory_;
|
|
// The limit when to trigger memory pressure from the API.
|
int64_t external_memory_limit_;
|
|
// Caches the amount of external memory registered at the last MC.
|
int64_t external_memory_at_last_mark_compact_;
|
|
// The amount of memory that has been freed concurrently.
|
std::atomic<intptr_t> external_memory_concurrently_freed_;
|
|
// This can be calculated directly from a pointer to the heap; however, it is
|
// more expedient to get at the isolate directly from within Heap methods.
|
Isolate* isolate_;
|
|
Object* roots_[kRootListLength];
|
|
// This table is accessed from builtin code compiled into the snapshot, and
|
// thus its offset from roots_ must remain static. This is verified in
|
// Isolate::Init() using runtime checks.
|
static constexpr int kRootsExternalReferenceTableOffset =
|
kRootListLength * kPointerSize;
|
ExternalReferenceTable external_reference_table_;
|
|
// As external references above, builtins are accessed through an offset from
|
// the roots register. Its offset from roots_ must remain static. This is
|
// verified in Isolate::Init() using runtime checks.
|
static constexpr int kRootsBuiltinsOffset =
|
kRootsExternalReferenceTableOffset +
|
ExternalReferenceTable::SizeInBytes();
|
Object* builtins_[Builtins::builtin_count];
|
|
// kRootRegister may be used to address any location that starts at the
|
// Isolate and ends at this point. Fields past this point are not guaranteed
|
// to live at a static offset from kRootRegister.
|
static constexpr int kRootRegisterAddressableEndOffset =
|
kRootsBuiltinsOffset + Builtins::builtin_count * kPointerSize;
|
|
size_t code_range_size_;
|
size_t max_semi_space_size_;
|
size_t initial_semispace_size_;
|
size_t max_old_generation_size_;
|
size_t initial_max_old_generation_size_;
|
size_t initial_old_generation_size_;
|
bool old_generation_size_configured_;
|
size_t maximum_committed_;
|
|
// For keeping track of how much data has survived
|
// scavenge since last new space expansion.
|
size_t survived_since_last_expansion_;
|
|
// ... and since the last scavenge.
|
size_t survived_last_scavenge_;
|
|
// This is not the depth of nested AlwaysAllocateScope's but rather a single
|
// count, as scopes can be acquired from multiple tasks (read: threads).
|
std::atomic<size_t> always_allocate_scope_count_;
|
|
// Stores the memory pressure level that set by MemoryPressureNotification
|
// and reset by a mark-compact garbage collection.
|
std::atomic<MemoryPressureLevel> memory_pressure_level_;
|
|
std::vector<std::pair<v8::NearHeapLimitCallback, void*> >
|
near_heap_limit_callbacks_;
|
|
// For keeping track of context disposals.
|
int contexts_disposed_;
|
|
// The length of the retained_maps array at the time of context disposal.
|
// This separates maps in the retained_maps array that were created before
|
// and after context disposal.
|
int number_of_disposed_maps_;
|
|
NewSpace* new_space_;
|
OldSpace* old_space_;
|
CodeSpace* code_space_;
|
MapSpace* map_space_;
|
LargeObjectSpace* lo_space_;
|
NewLargeObjectSpace* new_lo_space_;
|
ReadOnlySpace* read_only_space_;
|
// Map from the space id to the space.
|
Space* space_[LAST_SPACE + 1];
|
|
// Determines whether code space is write-protected. This is essentially a
|
// race-free copy of the {FLAG_write_protect_code_memory} flag.
|
bool write_protect_code_memory_;
|
|
// Holds the number of open CodeSpaceMemoryModificationScopes.
|
uintptr_t code_space_memory_modification_scope_depth_;
|
|
HeapState gc_state_;
|
int gc_post_processing_depth_;
|
|
// Returns the amount of external memory registered since last global gc.
|
uint64_t PromotedExternalMemorySize();
|
|
// How many "runtime allocations" happened.
|
uint32_t allocations_count_;
|
|
// Running hash over allocations performed.
|
uint32_t raw_allocations_hash_;
|
|
// Starts marking when stress_marking_percentage_% of the marking start limit
|
// is reached.
|
int stress_marking_percentage_;
|
|
// Observer that causes more frequent checks for reached incremental marking
|
// limit.
|
AllocationObserver* stress_marking_observer_;
|
|
// Observer that can cause early scavenge start.
|
StressScavengeObserver* stress_scavenge_observer_;
|
|
bool allocation_step_in_progress_;
|
|
// The maximum percent of the marking limit reached wihout causing marking.
|
// This is tracked when specyfing --fuzzer-gc-analysis.
|
double max_marking_limit_reached_;
|
|
// How many mark-sweep collections happened.
|
unsigned int ms_count_;
|
|
// How many gc happened.
|
unsigned int gc_count_;
|
|
// The number of Mark-Compact garbage collections that are considered as
|
// ineffective. See IsIneffectiveMarkCompact() predicate.
|
int consecutive_ineffective_mark_compacts_;
|
|
static const uintptr_t kMmapRegionMask = 0xFFFFFFFFu;
|
uintptr_t mmap_region_base_;
|
|
// For post mortem debugging.
|
int remembered_unmapped_pages_index_;
|
Address remembered_unmapped_pages_[kRememberedUnmappedPages];
|
|
// Limit that triggers a global GC on the next (normally caused) GC. This
|
// is checked when we have already decided to do a GC to help determine
|
// which collector to invoke, before expanding a paged space in the old
|
// generation and on every allocation in large object space.
|
size_t old_generation_allocation_limit_;
|
|
// Indicates that inline bump-pointer allocation has been globally disabled
|
// for all spaces. This is used to disable allocations in generated code.
|
bool inline_allocation_disabled_;
|
|
// Weak list heads, threaded through the objects.
|
// List heads are initialized lazily and contain the undefined_value at start.
|
Object* native_contexts_list_;
|
Object* allocation_sites_list_;
|
|
std::vector<GCCallbackTuple> gc_epilogue_callbacks_;
|
std::vector<GCCallbackTuple> gc_prologue_callbacks_;
|
|
GetExternallyAllocatedMemoryInBytesCallback external_memory_callback_;
|
|
int deferred_counters_[v8::Isolate::kUseCounterFeatureCount];
|
|
GCTracer* tracer_;
|
|
size_t promoted_objects_size_;
|
double promotion_ratio_;
|
double promotion_rate_;
|
size_t semi_space_copied_object_size_;
|
size_t previous_semi_space_copied_object_size_;
|
double semi_space_copied_rate_;
|
int nodes_died_in_new_space_;
|
int nodes_copied_in_new_space_;
|
int nodes_promoted_;
|
|
// This is the pretenuring trigger for allocation sites that are in maybe
|
// tenure state. When we switched to the maximum new space size we deoptimize
|
// the code that belongs to the allocation site and derive the lifetime
|
// of the allocation site.
|
unsigned int maximum_size_scavenges_;
|
|
// Total time spent in GC.
|
double total_gc_time_ms_;
|
|
// Last time an idle notification happened.
|
double last_idle_notification_time_;
|
|
// Last time a garbage collection happened.
|
double last_gc_time_;
|
|
MarkCompactCollector* mark_compact_collector_;
|
MinorMarkCompactCollector* minor_mark_compact_collector_;
|
|
ArrayBufferCollector* array_buffer_collector_;
|
|
MemoryAllocator* memory_allocator_;
|
|
StoreBuffer* store_buffer_;
|
|
HeapController* heap_controller_;
|
|
IncrementalMarking* incremental_marking_;
|
ConcurrentMarking* concurrent_marking_;
|
|
GCIdleTimeHandler* gc_idle_time_handler_;
|
|
MemoryReducer* memory_reducer_;
|
|
ObjectStats* live_object_stats_;
|
ObjectStats* dead_object_stats_;
|
|
ScavengeJob* scavenge_job_;
|
base::Semaphore parallel_scavenge_semaphore_;
|
|
AllocationObserver* idle_scavenge_observer_;
|
|
// This counter is increased before each GC and never reset.
|
// To account for the bytes allocated since the last GC, use the
|
// NewSpaceAllocationCounter() function.
|
size_t new_space_allocation_counter_;
|
|
// This counter is increased before each GC and never reset. To
|
// account for the bytes allocated since the last GC, use the
|
// OldGenerationAllocationCounter() function.
|
size_t old_generation_allocation_counter_at_last_gc_;
|
|
// The size of objects in old generation after the last MarkCompact GC.
|
size_t old_generation_size_at_last_gc_;
|
|
// The feedback storage is used to store allocation sites (keys) and how often
|
// they have been visited (values) by finding a memento behind an object. The
|
// storage is only alive temporary during a GC. The invariant is that all
|
// pointers in this map are already fixed, i.e., they do not point to
|
// forwarding pointers.
|
PretenuringFeedbackMap global_pretenuring_feedback_;
|
|
char trace_ring_buffer_[kTraceRingBufferSize];
|
|
// Used as boolean.
|
uint8_t is_marking_flag_;
|
|
// If it's not full then the data is from 0 to ring_buffer_end_. If it's
|
// full then the data is from ring_buffer_end_ to the end of the buffer and
|
// from 0 to ring_buffer_end_.
|
bool ring_buffer_full_;
|
size_t ring_buffer_end_;
|
|
// Flag is set when the heap has been configured. The heap can be repeatedly
|
// configured through the API until it is set up.
|
bool configured_;
|
|
// Currently set GC flags that are respected by all GC components.
|
int current_gc_flags_;
|
|
// Currently set GC callback flags that are used to pass information between
|
// the embedder and V8's GC.
|
GCCallbackFlags current_gc_callback_flags_;
|
|
ExternalStringTable external_string_table_;
|
|
base::Mutex relocation_mutex_;
|
|
int gc_callbacks_depth_;
|
|
bool deserialization_complete_;
|
|
StrongRootsList* strong_roots_list_;
|
|
// The depth of HeapIterator nestings.
|
int heap_iterator_depth_;
|
|
LocalEmbedderHeapTracer* local_embedder_heap_tracer_;
|
|
bool fast_promotion_mode_;
|
|
// Used for testing purposes.
|
bool force_oom_;
|
bool delay_sweeper_tasks_for_testing_;
|
|
HeapObject* pending_layout_change_object_;
|
|
base::Mutex unprotected_memory_chunks_mutex_;
|
std::unordered_set<MemoryChunk*> unprotected_memory_chunks_;
|
bool unprotected_memory_chunks_registry_enabled_;
|
|
#ifdef V8_ENABLE_ALLOCATION_TIMEOUT
|
// If the --gc-interval flag is set to a positive value, this
|
// variable holds the value indicating the number of allocations
|
// remain until the next failure and garbage collection.
|
int allocation_timeout_;
|
#endif // V8_ENABLE_ALLOCATION_TIMEOUT
|
|
std::map<HeapObject*, HeapObject*> retainer_;
|
std::map<HeapObject*, Root> retaining_root_;
|
// If an object is retained by an ephemeron, then the retaining key of the
|
// ephemeron is stored in this map.
|
std::map<HeapObject*, HeapObject*> ephemeron_retainer_;
|
// For each index inthe retaining_path_targets_ array this map
|
// stores the option of the corresponding target.
|
std::map<int, RetainingPathOption> retaining_path_target_option_;
|
|
std::vector<HeapObjectAllocationTracker*> allocation_trackers_;
|
|
// Classes in "heap" can be friends.
|
friend class AlwaysAllocateScope;
|
friend class ConcurrentMarking;
|
friend class EphemeronHashTableMarkingTask;
|
friend class GCCallbacksScope;
|
friend class GCTracer;
|
friend class MemoryController;
|
friend class HeapIterator;
|
friend class IdleScavengeObserver;
|
friend class IncrementalMarking;
|
friend class IncrementalMarkingJob;
|
friend class LargeObjectSpace;
|
template <FixedArrayVisitationMode fixed_array_mode,
|
TraceRetainingPathMode retaining_path_mode, typename MarkingState>
|
friend class MarkingVisitor;
|
friend class MarkCompactCollector;
|
friend class MarkCompactCollectorBase;
|
friend class MinorMarkCompactCollector;
|
friend class NewSpace;
|
friend class ObjectStatsCollector;
|
friend class Page;
|
friend class PagedSpace;
|
friend class Scavenger;
|
friend class StoreBuffer;
|
friend class Sweeper;
|
friend class heap::TestMemoryAllocatorScope;
|
|
// The allocator interface.
|
friend class Factory;
|
|
// The Isolate constructs us.
|
friend class Isolate;
|
|
// Used in cctest.
|
friend class heap::HeapTester;
|
|
FRIEND_TEST(HeapControllerTest, OldGenerationAllocationLimit);
|
|
DISALLOW_COPY_AND_ASSIGN(Heap);
|
};
|
|
|
class HeapStats {
|
public:
|
static const int kStartMarker = 0xDECADE00;
|
static const int kEndMarker = 0xDECADE01;
|
|
intptr_t* start_marker; // 0
|
size_t* ro_space_size; // 1
|
size_t* ro_space_capacity; // 2
|
size_t* new_space_size; // 3
|
size_t* new_space_capacity; // 4
|
size_t* old_space_size; // 5
|
size_t* old_space_capacity; // 6
|
size_t* code_space_size; // 7
|
size_t* code_space_capacity; // 8
|
size_t* map_space_size; // 9
|
size_t* map_space_capacity; // 10
|
size_t* lo_space_size; // 11
|
size_t* global_handle_count; // 12
|
size_t* weak_global_handle_count; // 13
|
size_t* pending_global_handle_count; // 14
|
size_t* near_death_global_handle_count; // 15
|
size_t* free_global_handle_count; // 16
|
size_t* memory_allocator_size; // 17
|
size_t* memory_allocator_capacity; // 18
|
size_t* malloced_memory; // 19
|
size_t* malloced_peak_memory; // 20
|
size_t* objects_per_type; // 21
|
size_t* size_per_type; // 22
|
int* os_error; // 23
|
char* last_few_messages; // 24
|
char* js_stacktrace; // 25
|
intptr_t* end_marker; // 26
|
};
|
|
|
class AlwaysAllocateScope {
|
public:
|
explicit inline AlwaysAllocateScope(Isolate* isolate);
|
inline ~AlwaysAllocateScope();
|
|
private:
|
Heap* heap_;
|
};
|
|
// The CodeSpaceMemoryModificationScope can only be used by the main thread.
|
class CodeSpaceMemoryModificationScope {
|
public:
|
explicit inline CodeSpaceMemoryModificationScope(Heap* heap);
|
inline ~CodeSpaceMemoryModificationScope();
|
|
private:
|
Heap* heap_;
|
};
|
|
// The CodePageCollectionMemoryModificationScope can only be used by the main
|
// thread. It will not be enabled if a CodeSpaceMemoryModificationScope is
|
// already active.
|
class CodePageCollectionMemoryModificationScope {
|
public:
|
explicit inline CodePageCollectionMemoryModificationScope(Heap* heap);
|
inline ~CodePageCollectionMemoryModificationScope();
|
|
private:
|
Heap* heap_;
|
};
|
|
// The CodePageMemoryModificationScope does not check if tansitions to
|
// writeable and back to executable are actually allowed, i.e. the MemoryChunk
|
// was registered to be executable. It can be used by concurrent threads.
|
class CodePageMemoryModificationScope {
|
public:
|
explicit inline CodePageMemoryModificationScope(MemoryChunk* chunk);
|
inline ~CodePageMemoryModificationScope();
|
|
private:
|
MemoryChunk* chunk_;
|
bool scope_active_;
|
|
// Disallow any GCs inside this scope, as a relocation of the underlying
|
// object would change the {MemoryChunk} that this scope targets.
|
DisallowHeapAllocation no_heap_allocation_;
|
};
|
|
// Visitor class to verify interior pointers in spaces that do not contain
|
// or care about intergenerational references. All heap object pointers have to
|
// point into the heap to a location that has a map pointer at its first word.
|
// Caveat: Heap::Contains is an approximation because it can return true for
|
// objects in a heap space but above the allocation pointer.
|
class VerifyPointersVisitor : public ObjectVisitor, public RootVisitor {
|
public:
|
explicit VerifyPointersVisitor(Heap* heap) : heap_(heap) {}
|
void VisitPointers(HeapObject* host, Object** start, Object** end) override;
|
void VisitPointers(HeapObject* host, MaybeObject** start,
|
MaybeObject** end) override;
|
void VisitRootPointers(Root root, const char* description, Object** start,
|
Object** end) override;
|
|
protected:
|
virtual void VerifyPointers(HeapObject* host, MaybeObject** start,
|
MaybeObject** end);
|
|
Heap* heap_;
|
};
|
|
|
// Verify that all objects are Smis.
|
class VerifySmisVisitor : public RootVisitor {
|
public:
|
void VisitRootPointers(Root root, const char* description, Object** start,
|
Object** end) override;
|
};
|
|
// Space iterator for iterating over all the paged spaces of the heap: Map
|
// space, old space, code space and optionally read only space. Returns each
|
// space in turn, and null when it is done.
|
class V8_EXPORT_PRIVATE PagedSpaces BASE_EMBEDDED {
|
public:
|
enum class SpacesSpecifier { kSweepablePagedSpaces, kAllPagedSpaces };
|
|
explicit PagedSpaces(Heap* heap, SpacesSpecifier specifier =
|
SpacesSpecifier::kSweepablePagedSpaces)
|
: heap_(heap),
|
counter_(specifier == SpacesSpecifier::kAllPagedSpaces ? RO_SPACE
|
: OLD_SPACE) {}
|
PagedSpace* next();
|
|
private:
|
Heap* heap_;
|
int counter_;
|
};
|
|
|
class SpaceIterator : public Malloced {
|
public:
|
explicit SpaceIterator(Heap* heap);
|
virtual ~SpaceIterator();
|
|
bool has_next();
|
Space* next();
|
|
private:
|
Heap* heap_;
|
int current_space_; // from enum AllocationSpace.
|
};
|
|
|
// A HeapIterator provides iteration over the whole heap. It
|
// aggregates the specific iterators for the different spaces as
|
// these can only iterate over one space only.
|
//
|
// HeapIterator ensures there is no allocation during its lifetime
|
// (using an embedded DisallowHeapAllocation instance).
|
//
|
// HeapIterator can skip free list nodes (that is, de-allocated heap
|
// objects that still remain in the heap). As implementation of free
|
// nodes filtering uses GC marks, it can't be used during MS/MC GC
|
// phases. Also, it is forbidden to interrupt iteration in this mode,
|
// as this will leave heap objects marked (and thus, unusable).
|
class HeapIterator BASE_EMBEDDED {
|
public:
|
enum HeapObjectsFiltering { kNoFiltering, kFilterUnreachable };
|
|
explicit HeapIterator(Heap* heap,
|
HeapObjectsFiltering filtering = kNoFiltering);
|
~HeapIterator();
|
|
HeapObject* next();
|
|
private:
|
HeapObject* NextObject();
|
|
DisallowHeapAllocation no_heap_allocation_;
|
|
Heap* heap_;
|
HeapObjectsFiltering filtering_;
|
HeapObjectsFilter* filter_;
|
// Space iterator for iterating all the spaces.
|
SpaceIterator* space_iterator_;
|
// Object iterator for the space currently being iterated.
|
std::unique_ptr<ObjectIterator> object_iterator_;
|
};
|
|
// Abstract base class for checking whether a weak object should be retained.
|
class WeakObjectRetainer {
|
public:
|
virtual ~WeakObjectRetainer() {}
|
|
// Return whether this object should be retained. If nullptr is returned the
|
// object has no references. Otherwise the address of the retained object
|
// should be returned as in some GC situations the object has been moved.
|
virtual Object* RetainAs(Object* object) = 0;
|
};
|
|
// -----------------------------------------------------------------------------
|
// Allows observation of allocations.
|
class AllocationObserver {
|
public:
|
explicit AllocationObserver(intptr_t step_size)
|
: step_size_(step_size), bytes_to_next_step_(step_size) {
|
DCHECK_LE(kPointerSize, step_size);
|
}
|
virtual ~AllocationObserver() {}
|
|
// Called each time the observed space does an allocation step. This may be
|
// more frequently than the step_size we are monitoring (e.g. when there are
|
// multiple observers, or when page or space boundary is encountered.)
|
void AllocationStep(int bytes_allocated, Address soon_object, size_t size);
|
|
protected:
|
intptr_t step_size() const { return step_size_; }
|
intptr_t bytes_to_next_step() const { return bytes_to_next_step_; }
|
|
// Pure virtual method provided by the subclasses that gets called when at
|
// least step_size bytes have been allocated. soon_object is the address just
|
// allocated (but not yet initialized.) size is the size of the object as
|
// requested (i.e. w/o the alignment fillers). Some complexities to be aware
|
// of:
|
// 1) soon_object will be nullptr in cases where we end up observing an
|
// allocation that happens to be a filler space (e.g. page boundaries.)
|
// 2) size is the requested size at the time of allocation. Right-trimming
|
// may change the object size dynamically.
|
// 3) soon_object may actually be the first object in an allocation-folding
|
// group. In such a case size is the size of the group rather than the
|
// first object.
|
virtual void Step(int bytes_allocated, Address soon_object, size_t size) = 0;
|
|
// Subclasses can override this method to make step size dynamic.
|
virtual intptr_t GetNextStepSize() { return step_size_; }
|
|
intptr_t step_size_;
|
intptr_t bytes_to_next_step_;
|
|
private:
|
friend class Space;
|
DISALLOW_COPY_AND_ASSIGN(AllocationObserver);
|
};
|
|
V8_EXPORT_PRIVATE const char* AllocationSpaceName(AllocationSpace space);
|
|
// -----------------------------------------------------------------------------
|
// Allows observation of heap object allocations.
|
class HeapObjectAllocationTracker {
|
public:
|
virtual void AllocationEvent(Address addr, int size) = 0;
|
virtual void MoveEvent(Address from, Address to, int size) {}
|
virtual void UpdateObjectSizeEvent(Address addr, int size) {}
|
virtual ~HeapObjectAllocationTracker() = default;
|
};
|
|
} // namespace internal
|
} // namespace v8
|
|
#endif // V8_HEAP_HEAP_H_
|