// Copyright 2012 the V8 project authors. All rights reserved.
|
// Use of this source code is governed by a BSD-style license that can be
|
// found in the LICENSE file.
|
|
#ifndef V8_HEAP_HEAP_INL_H_
|
#define V8_HEAP_HEAP_INL_H_
|
|
#include <cmath>
|
|
// Clients of this interface shouldn't depend on lots of heap internals.
|
// Do not include anything from src/heap other than src/heap/heap.h and its
|
// write barrier here!
|
#include "src/heap/heap-write-barrier.h"
|
#include "src/heap/heap.h"
|
|
#include "src/base/platform/platform.h"
|
#include "src/counters-inl.h"
|
#include "src/feedback-vector.h"
|
|
// TODO(mstarzinger): There is one more include to remove in order to no longer
|
// leak heap internals to users of this interface!
|
#include "src/heap/spaces-inl.h"
|
#include "src/isolate.h"
|
#include "src/log.h"
|
#include "src/msan.h"
|
#include "src/objects-inl.h"
|
#include "src/objects/api-callbacks-inl.h"
|
#include "src/objects/descriptor-array.h"
|
#include "src/objects/literal-objects.h"
|
#include "src/objects/scope-info.h"
|
#include "src/objects/script-inl.h"
|
#include "src/profiler/heap-profiler.h"
|
#include "src/string-hasher.h"
|
#include "src/zone/zone-list-inl.h"
|
|
// The following header includes the write barrier essentials that can also be
|
// used stand-alone without including heap-inl.h.
|
// TODO(mlippautz): Remove once users of object-macros.h include this file on
|
// their own.
|
#include "src/heap/heap-write-barrier-inl.h"
|
|
namespace v8 {
|
namespace internal {
|
|
AllocationSpace AllocationResult::RetrySpace() {
|
DCHECK(IsRetry());
|
return static_cast<AllocationSpace>(Smi::ToInt(object_));
|
}
|
|
HeapObject* AllocationResult::ToObjectChecked() {
|
CHECK(!IsRetry());
|
return HeapObject::cast(object_);
|
}
|
|
#define ROOT_ACCESSOR(type, name, camel_name) \
|
type* Heap::name() { return type::cast(roots_[k##camel_name##RootIndex]); }
|
MUTABLE_ROOT_LIST(ROOT_ACCESSOR)
|
#undef ROOT_ACCESSOR
|
|
#define DATA_HANDLER_MAP_ACCESSOR(NAME, Name, Size, name) \
|
Map* Heap::name##_map() { \
|
return Map::cast(roots_[k##Name##Size##MapRootIndex]); \
|
}
|
DATA_HANDLER_LIST(DATA_HANDLER_MAP_ACCESSOR)
|
#undef DATA_HANDLER_MAP_ACCESSOR
|
|
#define ACCESSOR_INFO_ACCESSOR(accessor_name, AccessorName) \
|
AccessorInfo* Heap::accessor_name##_accessor() { \
|
return AccessorInfo::cast(roots_[k##AccessorName##AccessorRootIndex]); \
|
}
|
ACCESSOR_INFO_LIST(ACCESSOR_INFO_ACCESSOR)
|
#undef ACCESSOR_INFO_ACCESSOR
|
|
#define ROOT_ACCESSOR(type, name, camel_name) \
|
void Heap::set_##name(type* value) { \
|
/* The deserializer makes use of the fact that these common roots are */ \
|
/* never in new space and never on a page that is being compacted. */ \
|
DCHECK(!deserialization_complete() || \
|
RootCanBeWrittenAfterInitialization(k##camel_name##RootIndex)); \
|
DCHECK(k##camel_name##RootIndex >= kOldSpaceRoots || !InNewSpace(value)); \
|
roots_[k##camel_name##RootIndex] = value; \
|
}
|
ROOT_LIST(ROOT_ACCESSOR)
|
#undef ROOT_ACCESSOR
|
|
PagedSpace* Heap::paged_space(int idx) {
|
DCHECK_NE(idx, LO_SPACE);
|
DCHECK_NE(idx, NEW_SPACE);
|
return static_cast<PagedSpace*>(space_[idx]);
|
}
|
|
Space* Heap::space(int idx) { return space_[idx]; }
|
|
Address* Heap::NewSpaceAllocationTopAddress() {
|
return new_space_->allocation_top_address();
|
}
|
|
Address* Heap::NewSpaceAllocationLimitAddress() {
|
return new_space_->allocation_limit_address();
|
}
|
|
Address* Heap::OldSpaceAllocationTopAddress() {
|
return old_space_->allocation_top_address();
|
}
|
|
Address* Heap::OldSpaceAllocationLimitAddress() {
|
return old_space_->allocation_limit_address();
|
}
|
|
void Heap::UpdateNewSpaceAllocationCounter() {
|
new_space_allocation_counter_ = NewSpaceAllocationCounter();
|
}
|
|
size_t Heap::NewSpaceAllocationCounter() {
|
return new_space_allocation_counter_ + new_space()->AllocatedSinceLastGC();
|
}
|
|
AllocationResult Heap::AllocateRaw(int size_in_bytes, AllocationSpace space,
|
AllocationAlignment alignment) {
|
DCHECK(AllowHandleAllocation::IsAllowed());
|
DCHECK(AllowHeapAllocation::IsAllowed());
|
DCHECK(gc_state_ == NOT_IN_GC);
|
#ifdef V8_ENABLE_ALLOCATION_TIMEOUT
|
if (FLAG_random_gc_interval > 0 || FLAG_gc_interval >= 0) {
|
if (!always_allocate() && Heap::allocation_timeout_-- <= 0) {
|
return AllocationResult::Retry(space);
|
}
|
}
|
#endif
|
#ifdef DEBUG
|
isolate_->counters()->objs_since_last_full()->Increment();
|
isolate_->counters()->objs_since_last_young()->Increment();
|
#endif
|
|
bool large_object = size_in_bytes > kMaxRegularHeapObjectSize;
|
bool new_large_object = FLAG_young_generation_large_objects &&
|
size_in_bytes > kMaxNewSpaceHeapObjectSize;
|
HeapObject* object = nullptr;
|
AllocationResult allocation;
|
if (NEW_SPACE == space) {
|
if (large_object) {
|
space = LO_SPACE;
|
} else {
|
if (new_large_object) {
|
allocation = new_lo_space_->AllocateRaw(size_in_bytes);
|
} else {
|
allocation = new_space_->AllocateRaw(size_in_bytes, alignment);
|
}
|
if (allocation.To(&object)) {
|
OnAllocationEvent(object, size_in_bytes);
|
}
|
return allocation;
|
}
|
}
|
|
// Here we only allocate in the old generation.
|
if (OLD_SPACE == space) {
|
if (large_object) {
|
allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
|
} else {
|
allocation = old_space_->AllocateRaw(size_in_bytes, alignment);
|
}
|
} else if (CODE_SPACE == space) {
|
if (size_in_bytes <= code_space()->AreaSize()) {
|
allocation = code_space_->AllocateRawUnaligned(size_in_bytes);
|
} else {
|
allocation = lo_space_->AllocateRaw(size_in_bytes, EXECUTABLE);
|
}
|
} else if (LO_SPACE == space) {
|
DCHECK(large_object);
|
allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
|
} else if (MAP_SPACE == space) {
|
allocation = map_space_->AllocateRawUnaligned(size_in_bytes);
|
} else if (RO_SPACE == space) {
|
#ifdef V8_USE_SNAPSHOT
|
DCHECK(isolate_->serializer_enabled());
|
#endif
|
DCHECK(!large_object);
|
DCHECK(CanAllocateInReadOnlySpace());
|
allocation = read_only_space_->AllocateRaw(size_in_bytes, alignment);
|
} else {
|
// NEW_SPACE is not allowed here.
|
UNREACHABLE();
|
}
|
|
if (allocation.To(&object)) {
|
if (space == CODE_SPACE) {
|
// Unprotect the memory chunk of the object if it was not unprotected
|
// already.
|
UnprotectAndRegisterMemoryChunk(object);
|
ZapCodeObject(object->address(), size_in_bytes);
|
}
|
OnAllocationEvent(object, size_in_bytes);
|
}
|
|
return allocation;
|
}
|
|
void Heap::OnAllocationEvent(HeapObject* object, int size_in_bytes) {
|
for (auto& tracker : allocation_trackers_) {
|
tracker->AllocationEvent(object->address(), size_in_bytes);
|
}
|
|
if (FLAG_verify_predictable) {
|
++allocations_count_;
|
// Advance synthetic time by making a time request.
|
MonotonicallyIncreasingTimeInMs();
|
|
UpdateAllocationsHash(object);
|
UpdateAllocationsHash(size_in_bytes);
|
|
if (allocations_count_ % FLAG_dump_allocations_digest_at_alloc == 0) {
|
PrintAllocationsHash();
|
}
|
} else if (FLAG_fuzzer_gc_analysis) {
|
++allocations_count_;
|
} else if (FLAG_trace_allocation_stack_interval > 0) {
|
++allocations_count_;
|
if (allocations_count_ % FLAG_trace_allocation_stack_interval == 0) {
|
isolate()->PrintStack(stdout, Isolate::kPrintStackConcise);
|
}
|
}
|
}
|
|
|
void Heap::OnMoveEvent(HeapObject* target, HeapObject* source,
|
int size_in_bytes) {
|
HeapProfiler* heap_profiler = isolate_->heap_profiler();
|
if (heap_profiler->is_tracking_object_moves()) {
|
heap_profiler->ObjectMoveEvent(source->address(), target->address(),
|
size_in_bytes);
|
}
|
for (auto& tracker : allocation_trackers_) {
|
tracker->MoveEvent(source->address(), target->address(), size_in_bytes);
|
}
|
if (target->IsSharedFunctionInfo()) {
|
LOG_CODE_EVENT(isolate_, SharedFunctionInfoMoveEvent(source->address(),
|
target->address()));
|
}
|
|
if (FLAG_verify_predictable) {
|
++allocations_count_;
|
// Advance synthetic time by making a time request.
|
MonotonicallyIncreasingTimeInMs();
|
|
UpdateAllocationsHash(source);
|
UpdateAllocationsHash(target);
|
UpdateAllocationsHash(size_in_bytes);
|
|
if (allocations_count_ % FLAG_dump_allocations_digest_at_alloc == 0) {
|
PrintAllocationsHash();
|
}
|
} else if (FLAG_fuzzer_gc_analysis) {
|
++allocations_count_;
|
}
|
}
|
|
bool Heap::CanAllocateInReadOnlySpace() {
|
return !deserialization_complete_ &&
|
(isolate()->serializer_enabled() ||
|
!isolate()->initialized_from_snapshot());
|
}
|
|
void Heap::UpdateAllocationsHash(HeapObject* object) {
|
Address object_address = object->address();
|
MemoryChunk* memory_chunk = MemoryChunk::FromAddress(object_address);
|
AllocationSpace allocation_space = memory_chunk->owner()->identity();
|
|
STATIC_ASSERT(kSpaceTagSize + kPageSizeBits <= 32);
|
uint32_t value =
|
static_cast<uint32_t>(object_address - memory_chunk->address()) |
|
(static_cast<uint32_t>(allocation_space) << kPageSizeBits);
|
|
UpdateAllocationsHash(value);
|
}
|
|
|
void Heap::UpdateAllocationsHash(uint32_t value) {
|
uint16_t c1 = static_cast<uint16_t>(value);
|
uint16_t c2 = static_cast<uint16_t>(value >> 16);
|
raw_allocations_hash_ =
|
StringHasher::AddCharacterCore(raw_allocations_hash_, c1);
|
raw_allocations_hash_ =
|
StringHasher::AddCharacterCore(raw_allocations_hash_, c2);
|
}
|
|
|
void Heap::RegisterExternalString(String* string) {
|
DCHECK(string->IsExternalString());
|
DCHECK(!string->IsThinString());
|
external_string_table_.AddString(string);
|
}
|
|
void Heap::UpdateExternalString(String* string, size_t old_payload,
|
size_t new_payload) {
|
DCHECK(string->IsExternalString());
|
Page* page = Page::FromHeapObject(string);
|
|
if (old_payload > new_payload)
|
page->DecrementExternalBackingStoreBytes(
|
ExternalBackingStoreType::kExternalString, old_payload - new_payload);
|
else
|
page->IncrementExternalBackingStoreBytes(
|
ExternalBackingStoreType::kExternalString, new_payload - old_payload);
|
}
|
|
void Heap::FinalizeExternalString(String* string) {
|
DCHECK(string->IsExternalString());
|
Page* page = Page::FromHeapObject(string);
|
ExternalString* ext_string = ExternalString::cast(string);
|
|
page->DecrementExternalBackingStoreBytes(
|
ExternalBackingStoreType::kExternalString,
|
ext_string->ExternalPayloadSize());
|
|
v8::String::ExternalStringResourceBase** resource_addr =
|
reinterpret_cast<v8::String::ExternalStringResourceBase**>(
|
reinterpret_cast<byte*>(string) + ExternalString::kResourceOffset -
|
kHeapObjectTag);
|
|
// Dispose of the C++ object if it has not already been disposed.
|
if (*resource_addr != nullptr) {
|
(*resource_addr)->Dispose();
|
*resource_addr = nullptr;
|
}
|
}
|
|
Address Heap::NewSpaceTop() { return new_space_->top(); }
|
|
// static
|
bool Heap::InNewSpace(Object* object) {
|
DCHECK(!HasWeakHeapObjectTag(object));
|
return object->IsHeapObject() && InNewSpace(HeapObject::cast(object));
|
}
|
|
// static
|
bool Heap::InNewSpace(MaybeObject* object) {
|
HeapObject* heap_object;
|
return object->ToStrongOrWeakHeapObject(&heap_object) &&
|
InNewSpace(heap_object);
|
}
|
|
// static
|
bool Heap::InNewSpace(HeapObject* heap_object) {
|
// Inlined check from NewSpace::Contains.
|
bool result = MemoryChunk::FromHeapObject(heap_object)->InNewSpace();
|
#ifdef DEBUG
|
// If in NEW_SPACE, then check we're either not in the middle of GC or the
|
// object is in to-space.
|
if (result) {
|
// If the object is in NEW_SPACE, then it's not in RO_SPACE so this is safe.
|
Heap* heap = Heap::FromWritableHeapObject(heap_object);
|
DCHECK(heap->gc_state_ != NOT_IN_GC || InToSpace(heap_object));
|
}
|
#endif
|
return result;
|
}
|
|
// static
|
bool Heap::InFromSpace(Object* object) {
|
DCHECK(!HasWeakHeapObjectTag(object));
|
return object->IsHeapObject() && InFromSpace(HeapObject::cast(object));
|
}
|
|
// static
|
bool Heap::InFromSpace(MaybeObject* object) {
|
HeapObject* heap_object;
|
return object->ToStrongOrWeakHeapObject(&heap_object) &&
|
InFromSpace(heap_object);
|
}
|
|
// static
|
bool Heap::InFromSpace(HeapObject* heap_object) {
|
return MemoryChunk::FromHeapObject(heap_object)
|
->IsFlagSet(Page::IN_FROM_SPACE);
|
}
|
|
// static
|
bool Heap::InToSpace(Object* object) {
|
DCHECK(!HasWeakHeapObjectTag(object));
|
return object->IsHeapObject() && InToSpace(HeapObject::cast(object));
|
}
|
|
// static
|
bool Heap::InToSpace(MaybeObject* object) {
|
HeapObject* heap_object;
|
return object->ToStrongOrWeakHeapObject(&heap_object) &&
|
InToSpace(heap_object);
|
}
|
|
// static
|
bool Heap::InToSpace(HeapObject* heap_object) {
|
return MemoryChunk::FromHeapObject(heap_object)->IsFlagSet(Page::IN_TO_SPACE);
|
}
|
|
bool Heap::InOldSpace(Object* object) { return old_space_->Contains(object); }
|
|
bool Heap::InReadOnlySpace(Object* object) {
|
return read_only_space_->Contains(object);
|
}
|
|
bool Heap::InNewSpaceSlow(Address address) {
|
return new_space_->ContainsSlow(address);
|
}
|
|
bool Heap::InOldSpaceSlow(Address address) {
|
return old_space_->ContainsSlow(address);
|
}
|
|
// static
|
Heap* Heap::FromWritableHeapObject(const HeapObject* obj) {
|
MemoryChunk* chunk = MemoryChunk::FromHeapObject(obj);
|
// RO_SPACE can be shared between heaps, so we can't use RO_SPACE objects to
|
// find a heap. The exception is when the ReadOnlySpace is writeable, during
|
// bootstrapping, so explicitly allow this case.
|
SLOW_DCHECK(chunk->owner()->identity() != RO_SPACE ||
|
static_cast<ReadOnlySpace*>(chunk->owner())->writable());
|
Heap* heap = chunk->heap();
|
SLOW_DCHECK(heap != nullptr);
|
return heap;
|
}
|
|
bool Heap::ShouldBePromoted(Address old_address) {
|
Page* page = Page::FromAddress(old_address);
|
Address age_mark = new_space_->age_mark();
|
return page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
|
(!page->ContainsLimit(age_mark) || old_address < age_mark);
|
}
|
|
void Heap::CopyBlock(Address dst, Address src, int byte_size) {
|
CopyWords(reinterpret_cast<Object**>(dst), reinterpret_cast<Object**>(src),
|
static_cast<size_t>(byte_size / kPointerSize));
|
}
|
|
template <Heap::FindMementoMode mode>
|
AllocationMemento* Heap::FindAllocationMemento(Map* map, HeapObject* object) {
|
Address object_address = object->address();
|
Address memento_address = object_address + object->SizeFromMap(map);
|
Address last_memento_word_address = memento_address + kPointerSize;
|
// If the memento would be on another page, bail out immediately.
|
if (!Page::OnSamePage(object_address, last_memento_word_address)) {
|
return nullptr;
|
}
|
HeapObject* candidate = HeapObject::FromAddress(memento_address);
|
Map* candidate_map = candidate->map();
|
// This fast check may peek at an uninitialized word. However, the slow check
|
// below (memento_address == top) ensures that this is safe. Mark the word as
|
// initialized to silence MemorySanitizer warnings.
|
MSAN_MEMORY_IS_INITIALIZED(&candidate_map, sizeof(candidate_map));
|
if (candidate_map != ReadOnlyRoots(this).allocation_memento_map()) {
|
return nullptr;
|
}
|
|
// Bail out if the memento is below the age mark, which can happen when
|
// mementos survived because a page got moved within new space.
|
Page* object_page = Page::FromAddress(object_address);
|
if (object_page->IsFlagSet(Page::NEW_SPACE_BELOW_AGE_MARK)) {
|
Address age_mark =
|
reinterpret_cast<SemiSpace*>(object_page->owner())->age_mark();
|
if (!object_page->Contains(age_mark)) {
|
return nullptr;
|
}
|
// Do an exact check in the case where the age mark is on the same page.
|
if (object_address < age_mark) {
|
return nullptr;
|
}
|
}
|
|
AllocationMemento* memento_candidate = AllocationMemento::cast(candidate);
|
|
// Depending on what the memento is used for, we might need to perform
|
// additional checks.
|
Address top;
|
switch (mode) {
|
case Heap::kForGC:
|
return memento_candidate;
|
case Heap::kForRuntime:
|
if (memento_candidate == nullptr) return nullptr;
|
// Either the object is the last object in the new space, or there is
|
// another object of at least word size (the header map word) following
|
// it, so suffices to compare ptr and top here.
|
top = NewSpaceTop();
|
DCHECK(memento_address == top ||
|
memento_address + HeapObject::kHeaderSize <= top ||
|
!Page::OnSamePage(memento_address, top - 1));
|
if ((memento_address != top) && memento_candidate->IsValid()) {
|
return memento_candidate;
|
}
|
return nullptr;
|
default:
|
UNREACHABLE();
|
}
|
UNREACHABLE();
|
}
|
|
void Heap::UpdateAllocationSite(Map* map, HeapObject* object,
|
PretenuringFeedbackMap* pretenuring_feedback) {
|
DCHECK_NE(pretenuring_feedback, &global_pretenuring_feedback_);
|
DCHECK(
|
InFromSpace(object) ||
|
(InToSpace(object) && Page::FromAddress(object->address())
|
->IsFlagSet(Page::PAGE_NEW_NEW_PROMOTION)) ||
|
(!InNewSpace(object) && Page::FromAddress(object->address())
|
->IsFlagSet(Page::PAGE_NEW_OLD_PROMOTION)));
|
if (!FLAG_allocation_site_pretenuring ||
|
!AllocationSite::CanTrack(map->instance_type()))
|
return;
|
AllocationMemento* memento_candidate =
|
FindAllocationMemento<kForGC>(map, object);
|
if (memento_candidate == nullptr) return;
|
|
// Entering cached feedback is used in the parallel case. We are not allowed
|
// to dereference the allocation site and rather have to postpone all checks
|
// till actually merging the data.
|
Address key = memento_candidate->GetAllocationSiteUnchecked();
|
(*pretenuring_feedback)[reinterpret_cast<AllocationSite*>(key)]++;
|
}
|
|
Isolate* Heap::isolate() {
|
return reinterpret_cast<Isolate*>(
|
reinterpret_cast<intptr_t>(this) -
|
reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(16)->heap()) + 16);
|
}
|
|
void Heap::ExternalStringTable::AddString(String* string) {
|
DCHECK(string->IsExternalString());
|
DCHECK(!Contains(string));
|
|
if (InNewSpace(string)) {
|
new_space_strings_.push_back(string);
|
} else {
|
old_space_strings_.push_back(string);
|
}
|
}
|
|
Oddball* Heap::ToBoolean(bool condition) {
|
ReadOnlyRoots roots(this);
|
return condition ? roots.true_value() : roots.false_value();
|
}
|
|
uint64_t Heap::HashSeed() {
|
uint64_t seed;
|
hash_seed()->copy_out(0, reinterpret_cast<byte*>(&seed), kInt64Size);
|
DCHECK(FLAG_randomize_hashes || seed == 0);
|
return seed;
|
}
|
|
int Heap::NextScriptId() {
|
int last_id = last_script_id()->value();
|
if (last_id == Smi::kMaxValue) last_id = v8::UnboundScript::kNoScriptId;
|
last_id++;
|
set_last_script_id(Smi::FromInt(last_id));
|
return last_id;
|
}
|
|
int Heap::NextDebuggingId() {
|
int last_id = last_debugging_id()->value();
|
if (last_id == DebugInfo::DebuggingIdBits::kMax) {
|
last_id = DebugInfo::kNoDebuggingId;
|
}
|
last_id++;
|
set_last_debugging_id(Smi::FromInt(last_id));
|
return last_id;
|
}
|
|
int Heap::GetNextTemplateSerialNumber() {
|
int next_serial_number = next_template_serial_number()->value() + 1;
|
set_next_template_serial_number(Smi::FromInt(next_serial_number));
|
return next_serial_number;
|
}
|
|
int Heap::MaxNumberToStringCacheSize() const {
|
// Compute the size of the number string cache based on the max newspace size.
|
// The number string cache has a minimum size based on twice the initial cache
|
// size to ensure that it is bigger after being made 'full size'.
|
size_t number_string_cache_size = max_semi_space_size_ / 512;
|
number_string_cache_size =
|
Max(static_cast<size_t>(kInitialNumberStringCacheSize * 2),
|
Min<size_t>(0x4000u, number_string_cache_size));
|
// There is a string and a number per entry so the length is twice the number
|
// of entries.
|
return static_cast<int>(number_string_cache_size * 2);
|
}
|
AlwaysAllocateScope::AlwaysAllocateScope(Isolate* isolate)
|
: heap_(isolate->heap()) {
|
heap_->always_allocate_scope_count_++;
|
}
|
|
AlwaysAllocateScope::~AlwaysAllocateScope() {
|
heap_->always_allocate_scope_count_--;
|
}
|
|
CodeSpaceMemoryModificationScope::CodeSpaceMemoryModificationScope(Heap* heap)
|
: heap_(heap) {
|
if (heap_->write_protect_code_memory()) {
|
heap_->increment_code_space_memory_modification_scope_depth();
|
heap_->code_space()->SetReadAndWritable();
|
LargePage* page = heap_->lo_space()->first_page();
|
while (page != nullptr) {
|
if (page->IsFlagSet(MemoryChunk::IS_EXECUTABLE)) {
|
CHECK(heap_->memory_allocator()->IsMemoryChunkExecutable(page));
|
page->SetReadAndWritable();
|
}
|
page = page->next_page();
|
}
|
}
|
}
|
|
CodeSpaceMemoryModificationScope::~CodeSpaceMemoryModificationScope() {
|
if (heap_->write_protect_code_memory()) {
|
heap_->decrement_code_space_memory_modification_scope_depth();
|
heap_->code_space()->SetReadAndExecutable();
|
LargePage* page = heap_->lo_space()->first_page();
|
while (page != nullptr) {
|
if (page->IsFlagSet(MemoryChunk::IS_EXECUTABLE)) {
|
CHECK(heap_->memory_allocator()->IsMemoryChunkExecutable(page));
|
page->SetReadAndExecutable();
|
}
|
page = page->next_page();
|
}
|
}
|
}
|
|
CodePageCollectionMemoryModificationScope::
|
CodePageCollectionMemoryModificationScope(Heap* heap)
|
: heap_(heap) {
|
if (heap_->write_protect_code_memory() &&
|
!heap_->code_space_memory_modification_scope_depth()) {
|
heap_->EnableUnprotectedMemoryChunksRegistry();
|
}
|
}
|
|
CodePageCollectionMemoryModificationScope::
|
~CodePageCollectionMemoryModificationScope() {
|
if (heap_->write_protect_code_memory() &&
|
!heap_->code_space_memory_modification_scope_depth()) {
|
heap_->ProtectUnprotectedMemoryChunks();
|
heap_->DisableUnprotectedMemoryChunksRegistry();
|
}
|
}
|
|
CodePageMemoryModificationScope::CodePageMemoryModificationScope(
|
MemoryChunk* chunk)
|
: chunk_(chunk),
|
scope_active_(chunk_->heap()->write_protect_code_memory() &&
|
chunk_->IsFlagSet(MemoryChunk::IS_EXECUTABLE)) {
|
if (scope_active_) {
|
DCHECK(chunk_->owner()->identity() == CODE_SPACE ||
|
(chunk_->owner()->identity() == LO_SPACE &&
|
chunk_->IsFlagSet(MemoryChunk::IS_EXECUTABLE)));
|
chunk_->SetReadAndWritable();
|
}
|
}
|
|
CodePageMemoryModificationScope::~CodePageMemoryModificationScope() {
|
if (scope_active_) {
|
chunk_->SetReadAndExecutable();
|
}
|
}
|
|
} // namespace internal
|
} // namespace v8
|
|
#endif // V8_HEAP_HEAP_INL_H_
|