// Copyright 2012 the V8 project authors. All rights reserved.
|
// Use of this source code is governed by a BSD-style license that can be
|
// found in the LICENSE file.
|
|
#include "src/frames.h"
|
|
#include <memory>
|
#include <sstream>
|
|
#include "src/base/bits.h"
|
#include "src/deoptimizer.h"
|
#include "src/frames-inl.h"
|
#include "src/ic/ic-stats.h"
|
#include "src/register-configuration.h"
|
#include "src/safepoint-table.h"
|
#include "src/string-stream.h"
|
#include "src/visitors.h"
|
#include "src/vm-state-inl.h"
|
#include "src/wasm/wasm-code-manager.h"
|
#include "src/wasm/wasm-engine.h"
|
#include "src/wasm/wasm-objects-inl.h"
|
#include "src/zone/zone-containers.h"
|
|
namespace v8 {
|
namespace internal {
|
|
ReturnAddressLocationResolver StackFrame::return_address_location_resolver_ =
|
nullptr;
|
|
// Iterator that supports traversing the stack handlers of a
|
// particular frame. Needs to know the top of the handler chain.
|
class StackHandlerIterator BASE_EMBEDDED {
|
public:
|
StackHandlerIterator(const StackFrame* frame, StackHandler* handler)
|
: limit_(frame->fp()), handler_(handler) {
|
// Make sure the handler has already been unwound to this frame.
|
DCHECK(frame->sp() <= handler->address());
|
}
|
|
StackHandler* handler() const { return handler_; }
|
|
bool done() { return handler_ == nullptr || handler_->address() > limit_; }
|
void Advance() {
|
DCHECK(!done());
|
handler_ = handler_->next();
|
}
|
|
private:
|
const Address limit_;
|
StackHandler* handler_;
|
};
|
|
|
// -------------------------------------------------------------------------
|
|
|
#define INITIALIZE_SINGLETON(type, field) field##_(this),
|
StackFrameIteratorBase::StackFrameIteratorBase(Isolate* isolate,
|
bool can_access_heap_objects)
|
: isolate_(isolate),
|
STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON) frame_(nullptr),
|
handler_(nullptr),
|
can_access_heap_objects_(can_access_heap_objects) {}
|
#undef INITIALIZE_SINGLETON
|
|
StackFrameIterator::StackFrameIterator(Isolate* isolate)
|
: StackFrameIterator(isolate, isolate->thread_local_top()) {}
|
|
StackFrameIterator::StackFrameIterator(Isolate* isolate, ThreadLocalTop* t)
|
: StackFrameIteratorBase(isolate, true) {
|
Reset(t);
|
}
|
|
void StackFrameIterator::Advance() {
|
DCHECK(!done());
|
// Compute the state of the calling frame before restoring
|
// callee-saved registers and unwinding handlers. This allows the
|
// frame code that computes the caller state to access the top
|
// handler and the value of any callee-saved register if needed.
|
StackFrame::State state;
|
StackFrame::Type type = frame_->GetCallerState(&state);
|
|
// Unwind handlers corresponding to the current frame.
|
StackHandlerIterator it(frame_, handler_);
|
while (!it.done()) it.Advance();
|
handler_ = it.handler();
|
|
// Advance to the calling frame.
|
frame_ = SingletonFor(type, &state);
|
|
// When we're done iterating over the stack frames, the handler
|
// chain must have been completely unwound.
|
DCHECK(!done() || handler_ == nullptr);
|
}
|
|
|
void StackFrameIterator::Reset(ThreadLocalTop* top) {
|
StackFrame::State state;
|
StackFrame::Type type = ExitFrame::GetStateForFramePointer(
|
Isolate::c_entry_fp(top), &state);
|
handler_ = StackHandler::FromAddress(Isolate::handler(top));
|
frame_ = SingletonFor(type, &state);
|
}
|
|
|
StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type,
|
StackFrame::State* state) {
|
StackFrame* result = SingletonFor(type);
|
DCHECK((!result) == (type == StackFrame::NONE));
|
if (result) result->state_ = *state;
|
return result;
|
}
|
|
|
StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type) {
|
#define FRAME_TYPE_CASE(type, field) \
|
case StackFrame::type: \
|
return &field##_;
|
|
switch (type) {
|
case StackFrame::NONE:
|
return nullptr;
|
STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE)
|
default: break;
|
}
|
return nullptr;
|
|
#undef FRAME_TYPE_CASE
|
}
|
|
// -------------------------------------------------------------------------
|
|
void JavaScriptFrameIterator::Advance() {
|
do {
|
iterator_.Advance();
|
} while (!iterator_.done() && !iterator_.frame()->is_java_script());
|
}
|
|
// -------------------------------------------------------------------------
|
|
StackTraceFrameIterator::StackTraceFrameIterator(Isolate* isolate)
|
: iterator_(isolate) {
|
if (!done() && !IsValidFrame(iterator_.frame())) Advance();
|
}
|
|
StackTraceFrameIterator::StackTraceFrameIterator(Isolate* isolate,
|
StackFrame::Id id)
|
: StackTraceFrameIterator(isolate) {
|
while (!done() && frame()->id() != id) Advance();
|
}
|
|
void StackTraceFrameIterator::Advance() {
|
do {
|
iterator_.Advance();
|
} while (!done() && !IsValidFrame(iterator_.frame()));
|
}
|
|
bool StackTraceFrameIterator::IsValidFrame(StackFrame* frame) const {
|
if (frame->is_java_script()) {
|
JavaScriptFrame* jsFrame = static_cast<JavaScriptFrame*>(frame);
|
if (!jsFrame->function()->IsJSFunction()) return false;
|
return jsFrame->function()->shared()->IsSubjectToDebugging();
|
}
|
// apart from javascript, only wasm is valid
|
return frame->is_wasm();
|
}
|
|
// -------------------------------------------------------------------------
|
|
namespace {
|
|
bool IsInterpreterFramePc(Isolate* isolate, Address pc,
|
StackFrame::State* state) {
|
Code* interpreter_entry_trampoline =
|
isolate->builtins()->builtin(Builtins::kInterpreterEntryTrampoline);
|
Code* interpreter_bytecode_advance =
|
isolate->builtins()->builtin(Builtins::kInterpreterEnterBytecodeAdvance);
|
Code* interpreter_bytecode_dispatch =
|
isolate->builtins()->builtin(Builtins::kInterpreterEnterBytecodeDispatch);
|
|
if (interpreter_entry_trampoline->contains(pc) ||
|
interpreter_bytecode_advance->contains(pc) ||
|
interpreter_bytecode_dispatch->contains(pc)) {
|
return true;
|
} else if (FLAG_interpreted_frames_native_stack) {
|
intptr_t marker = Memory<intptr_t>(
|
state->fp + CommonFrameConstants::kContextOrFrameTypeOffset);
|
MSAN_MEMORY_IS_INITIALIZED(
|
state->fp + StandardFrameConstants::kFunctionOffset, kPointerSize);
|
Object* maybe_function =
|
Memory<Object*>(state->fp + StandardFrameConstants::kFunctionOffset);
|
// There's no need to run a full ContainsSlow if we know the frame can't be
|
// an InterpretedFrame, so we do these fast checks first
|
if (StackFrame::IsTypeMarker(marker) || maybe_function->IsSmi()) {
|
return false;
|
} else if (!isolate->heap()->code_space()->ContainsSlow(pc)) {
|
return false;
|
}
|
interpreter_entry_trampoline =
|
isolate->heap()->GcSafeFindCodeForInnerPointer(pc);
|
return interpreter_entry_trampoline->is_interpreter_trampoline_builtin();
|
} else {
|
return false;
|
}
|
}
|
|
DISABLE_ASAN Address ReadMemoryAt(Address address) {
|
return Memory<Address>(address);
|
}
|
|
} // namespace
|
|
SafeStackFrameIterator::SafeStackFrameIterator(
|
Isolate* isolate,
|
Address fp, Address sp, Address js_entry_sp)
|
: StackFrameIteratorBase(isolate, false),
|
low_bound_(sp),
|
high_bound_(js_entry_sp),
|
top_frame_type_(StackFrame::NONE),
|
external_callback_scope_(isolate->external_callback_scope()) {
|
StackFrame::State state;
|
StackFrame::Type type;
|
ThreadLocalTop* top = isolate->thread_local_top();
|
bool advance_frame = true;
|
if (IsValidTop(top)) {
|
type = ExitFrame::GetStateForFramePointer(Isolate::c_entry_fp(top), &state);
|
top_frame_type_ = type;
|
} else if (IsValidStackAddress(fp)) {
|
DCHECK_NE(fp, kNullAddress);
|
state.fp = fp;
|
state.sp = sp;
|
state.pc_address = StackFrame::ResolveReturnAddressLocation(
|
reinterpret_cast<Address*>(StandardFrame::ComputePCAddress(fp)));
|
|
// If the top of stack is a return address to the interpreter trampoline,
|
// then we are likely in a bytecode handler with elided frame. In that
|
// case, set the PC properly and make sure we do not drop the frame.
|
if (IsValidStackAddress(sp)) {
|
MSAN_MEMORY_IS_INITIALIZED(sp, kPointerSize);
|
Address tos = ReadMemoryAt(sp);
|
if (IsInterpreterFramePc(isolate, tos, &state)) {
|
state.pc_address = reinterpret_cast<Address*>(sp);
|
advance_frame = false;
|
}
|
}
|
|
// StackFrame::ComputeType will read both kContextOffset and kMarkerOffset,
|
// we check only that kMarkerOffset is within the stack bounds and do
|
// compile time check that kContextOffset slot is pushed on the stack before
|
// kMarkerOffset.
|
STATIC_ASSERT(StandardFrameConstants::kFunctionOffset <
|
StandardFrameConstants::kContextOffset);
|
Address frame_marker = fp + StandardFrameConstants::kFunctionOffset;
|
if (IsValidStackAddress(frame_marker)) {
|
type = StackFrame::ComputeType(this, &state);
|
top_frame_type_ = type;
|
// We only keep the top frame if we believe it to be interpreted frame.
|
if (type != StackFrame::INTERPRETED) {
|
advance_frame = true;
|
}
|
} else {
|
// Mark the frame as OPTIMIZED if we cannot determine its type.
|
// We chose OPTIMIZED rather than INTERPRETED because it's closer to
|
// the original value of StackFrame::JAVA_SCRIPT here, in that JAVA_SCRIPT
|
// referred to full-codegen frames (now removed from the tree), and
|
// OPTIMIZED refers to turbofan frames, both of which are generated
|
// code. INTERPRETED frames refer to bytecode.
|
// The frame anyways will be skipped.
|
type = StackFrame::OPTIMIZED;
|
// Top frame is incomplete so we cannot reliably determine its type.
|
top_frame_type_ = StackFrame::NONE;
|
}
|
} else {
|
return;
|
}
|
frame_ = SingletonFor(type, &state);
|
if (advance_frame && frame_) Advance();
|
}
|
|
|
bool SafeStackFrameIterator::IsValidTop(ThreadLocalTop* top) const {
|
Address c_entry_fp = Isolate::c_entry_fp(top);
|
if (!IsValidExitFrame(c_entry_fp)) return false;
|
// There should be at least one JS_ENTRY stack handler.
|
Address handler = Isolate::handler(top);
|
if (handler == kNullAddress) return false;
|
// Check that there are no js frames on top of the native frames.
|
return c_entry_fp < handler;
|
}
|
|
|
void SafeStackFrameIterator::AdvanceOneFrame() {
|
DCHECK(!done());
|
StackFrame* last_frame = frame_;
|
Address last_sp = last_frame->sp(), last_fp = last_frame->fp();
|
// Before advancing to the next stack frame, perform pointer validity tests.
|
if (!IsValidFrame(last_frame) || !IsValidCaller(last_frame)) {
|
frame_ = nullptr;
|
return;
|
}
|
|
// Advance to the previous frame.
|
StackFrame::State state;
|
StackFrame::Type type = frame_->GetCallerState(&state);
|
frame_ = SingletonFor(type, &state);
|
if (!frame_) return;
|
|
// Check that we have actually moved to the previous frame in the stack.
|
if (frame_->sp() <= last_sp || frame_->fp() <= last_fp) {
|
frame_ = nullptr;
|
}
|
}
|
|
|
bool SafeStackFrameIterator::IsValidFrame(StackFrame* frame) const {
|
return IsValidStackAddress(frame->sp()) && IsValidStackAddress(frame->fp());
|
}
|
|
|
bool SafeStackFrameIterator::IsValidCaller(StackFrame* frame) {
|
StackFrame::State state;
|
if (frame->is_entry() || frame->is_construct_entry()) {
|
// See EntryFrame::GetCallerState. It computes the caller FP address
|
// and calls ExitFrame::GetStateForFramePointer on it. We need to be
|
// sure that caller FP address is valid.
|
Address caller_fp =
|
Memory<Address>(frame->fp() + EntryFrameConstants::kCallerFPOffset);
|
if (!IsValidExitFrame(caller_fp)) return false;
|
} else if (frame->is_arguments_adaptor()) {
|
// See ArgumentsAdaptorFrame::GetCallerStackPointer. It assumes that
|
// the number of arguments is stored on stack as Smi. We need to check
|
// that it really an Smi.
|
Object* number_of_args = reinterpret_cast<ArgumentsAdaptorFrame*>(frame)->
|
GetExpression(0);
|
if (!number_of_args->IsSmi()) {
|
return false;
|
}
|
}
|
frame->ComputeCallerState(&state);
|
return IsValidStackAddress(state.sp) && IsValidStackAddress(state.fp) &&
|
SingletonFor(frame->GetCallerState(&state)) != nullptr;
|
}
|
|
|
bool SafeStackFrameIterator::IsValidExitFrame(Address fp) const {
|
if (!IsValidStackAddress(fp)) return false;
|
Address sp = ExitFrame::ComputeStackPointer(fp);
|
if (!IsValidStackAddress(sp)) return false;
|
StackFrame::State state;
|
ExitFrame::FillState(fp, sp, &state);
|
MSAN_MEMORY_IS_INITIALIZED(state.pc_address, sizeof(state.pc_address));
|
return *state.pc_address != kNullAddress;
|
}
|
|
|
void SafeStackFrameIterator::Advance() {
|
while (true) {
|
AdvanceOneFrame();
|
if (done()) break;
|
ExternalCallbackScope* last_callback_scope = nullptr;
|
while (external_callback_scope_ != nullptr &&
|
external_callback_scope_->scope_address() < frame_->fp()) {
|
// As long as the setup of a frame is not atomic, we may happen to be
|
// in an interval where an ExternalCallbackScope is already created,
|
// but the frame is not yet entered. So we are actually observing
|
// the previous frame.
|
// Skip all the ExternalCallbackScope's that are below the current fp.
|
last_callback_scope = external_callback_scope_;
|
external_callback_scope_ = external_callback_scope_->previous();
|
}
|
if (frame_->is_java_script() || frame_->is_wasm()) break;
|
if (frame_->is_exit() || frame_->is_builtin_exit()) {
|
// Some of the EXIT frames may have ExternalCallbackScope allocated on
|
// top of them. In that case the scope corresponds to the first EXIT
|
// frame beneath it. There may be other EXIT frames on top of the
|
// ExternalCallbackScope, just skip them as we cannot collect any useful
|
// information about them.
|
if (last_callback_scope) {
|
frame_->state_.pc_address =
|
last_callback_scope->callback_entrypoint_address();
|
}
|
break;
|
}
|
}
|
}
|
|
|
// -------------------------------------------------------------------------
|
|
namespace {
|
Code* GetContainingCode(Isolate* isolate, Address pc) {
|
return isolate->inner_pointer_to_code_cache()->GetCacheEntry(pc)->code;
|
}
|
} // namespace
|
|
Code* StackFrame::LookupCode() const {
|
Code* result = GetContainingCode(isolate(), pc());
|
DCHECK_GE(pc(), result->InstructionStart());
|
DCHECK_LT(pc(), result->InstructionEnd());
|
return result;
|
}
|
|
void StackFrame::IteratePc(RootVisitor* v, Address* pc_address,
|
Address* constant_pool_address, Code* holder) {
|
Address pc = *pc_address;
|
DCHECK(holder->GetHeap()->GcSafeCodeContains(holder, pc));
|
unsigned pc_offset = static_cast<unsigned>(pc - holder->InstructionStart());
|
Object* code = holder;
|
v->VisitRootPointer(Root::kTop, nullptr, &code);
|
if (code == holder) return;
|
holder = reinterpret_cast<Code*>(code);
|
pc = holder->InstructionStart() + pc_offset;
|
*pc_address = pc;
|
if (FLAG_enable_embedded_constant_pool && constant_pool_address) {
|
*constant_pool_address = holder->constant_pool();
|
}
|
}
|
|
|
void StackFrame::SetReturnAddressLocationResolver(
|
ReturnAddressLocationResolver resolver) {
|
DCHECK_NULL(return_address_location_resolver_);
|
return_address_location_resolver_ = resolver;
|
}
|
|
StackFrame::Type StackFrame::ComputeType(const StackFrameIteratorBase* iterator,
|
State* state) {
|
DCHECK_NE(state->fp, kNullAddress);
|
|
MSAN_MEMORY_IS_INITIALIZED(
|
state->fp + CommonFrameConstants::kContextOrFrameTypeOffset,
|
kPointerSize);
|
intptr_t marker = Memory<intptr_t>(
|
state->fp + CommonFrameConstants::kContextOrFrameTypeOffset);
|
if (!iterator->can_access_heap_objects_) {
|
// TODO(titzer): "can_access_heap_objects" is kind of bogus. It really
|
// means that we are being called from the profiler, which can interrupt
|
// the VM with a signal at any arbitrary instruction, with essentially
|
// anything on the stack. So basically none of these checks are 100%
|
// reliable.
|
MSAN_MEMORY_IS_INITIALIZED(
|
state->fp + StandardFrameConstants::kFunctionOffset, kPointerSize);
|
Object* maybe_function =
|
Memory<Object*>(state->fp + StandardFrameConstants::kFunctionOffset);
|
if (!StackFrame::IsTypeMarker(marker)) {
|
if (maybe_function->IsSmi()) {
|
return NATIVE;
|
} else if (IsInterpreterFramePc(iterator->isolate(), *(state->pc_address),
|
state)) {
|
return INTERPRETED;
|
} else {
|
return OPTIMIZED;
|
}
|
}
|
} else {
|
Address pc = *(state->pc_address);
|
// If the {pc} does not point into WebAssembly code we can rely on the
|
// returned {wasm_code} to be null and fall back to {GetContainingCode}.
|
wasm::WasmCode* wasm_code =
|
iterator->isolate()->wasm_engine()->code_manager()->LookupCode(pc);
|
if (wasm_code != nullptr) {
|
switch (wasm_code->kind()) {
|
case wasm::WasmCode::kFunction:
|
return WASM_COMPILED;
|
case wasm::WasmCode::kWasmToJsWrapper:
|
return WASM_TO_JS;
|
case wasm::WasmCode::kLazyStub:
|
return WASM_COMPILE_LAZY;
|
case wasm::WasmCode::kRuntimeStub:
|
return STUB;
|
case wasm::WasmCode::kInterpreterEntry:
|
return WASM_INTERPRETER_ENTRY;
|
default:
|
UNREACHABLE();
|
}
|
} else {
|
// Look up the code object to figure out the type of the stack frame.
|
Code* code_obj = GetContainingCode(iterator->isolate(), pc);
|
if (code_obj != nullptr) {
|
switch (code_obj->kind()) {
|
case Code::BUILTIN:
|
if (StackFrame::IsTypeMarker(marker)) break;
|
if (code_obj->is_interpreter_trampoline_builtin()) {
|
return INTERPRETED;
|
}
|
if (code_obj->is_turbofanned()) {
|
// TODO(bmeurer): We treat frames for BUILTIN Code objects as
|
// OptimizedFrame for now (all the builtins with JavaScript
|
// linkage are actually generated with TurboFan currently, so
|
// this is sound).
|
return OPTIMIZED;
|
}
|
return BUILTIN;
|
case Code::OPTIMIZED_FUNCTION:
|
return OPTIMIZED;
|
case Code::WASM_FUNCTION:
|
return WASM_COMPILED;
|
case Code::WASM_TO_JS_FUNCTION:
|
return WASM_TO_JS;
|
case Code::JS_TO_WASM_FUNCTION:
|
return JS_TO_WASM;
|
case Code::WASM_INTERPRETER_ENTRY:
|
return WASM_INTERPRETER_ENTRY;
|
case Code::C_WASM_ENTRY:
|
return C_WASM_ENTRY;
|
default:
|
// All other types should have an explicit marker
|
break;
|
}
|
} else {
|
return NATIVE;
|
}
|
}
|
}
|
DCHECK(StackFrame::IsTypeMarker(marker));
|
StackFrame::Type candidate = StackFrame::MarkerToType(marker);
|
switch (candidate) {
|
case ENTRY:
|
case CONSTRUCT_ENTRY:
|
case EXIT:
|
case BUILTIN_CONTINUATION:
|
case JAVA_SCRIPT_BUILTIN_CONTINUATION:
|
case JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH:
|
case BUILTIN_EXIT:
|
case STUB:
|
case INTERNAL:
|
case CONSTRUCT:
|
case ARGUMENTS_ADAPTOR:
|
case WASM_TO_JS:
|
case WASM_COMPILED:
|
return candidate;
|
case JS_TO_WASM:
|
case OPTIMIZED:
|
case INTERPRETED:
|
default:
|
// Unoptimized and optimized JavaScript frames, including
|
// interpreted frames, should never have a StackFrame::Type
|
// marker. If we find one, we're likely being called from the
|
// profiler in a bogus stack frame.
|
return NATIVE;
|
}
|
}
|
|
|
#ifdef DEBUG
|
bool StackFrame::can_access_heap_objects() const {
|
return iterator_->can_access_heap_objects_;
|
}
|
#endif
|
|
|
StackFrame::Type StackFrame::GetCallerState(State* state) const {
|
ComputeCallerState(state);
|
return ComputeType(iterator_, state);
|
}
|
|
|
Address StackFrame::UnpaddedFP() const {
|
return fp();
|
}
|
|
void NativeFrame::ComputeCallerState(State* state) const {
|
state->sp = caller_sp();
|
state->fp = Memory<Address>(fp() + CommonFrameConstants::kCallerFPOffset);
|
state->pc_address = ResolveReturnAddressLocation(
|
reinterpret_cast<Address*>(fp() + CommonFrameConstants::kCallerPCOffset));
|
state->callee_pc_address = nullptr;
|
state->constant_pool_address = nullptr;
|
}
|
|
Code* EntryFrame::unchecked_code() const {
|
return isolate()->heap()->js_entry_code();
|
}
|
|
|
void EntryFrame::ComputeCallerState(State* state) const {
|
GetCallerState(state);
|
}
|
|
|
StackFrame::Type EntryFrame::GetCallerState(State* state) const {
|
const int offset = EntryFrameConstants::kCallerFPOffset;
|
Address fp = Memory<Address>(this->fp() + offset);
|
return ExitFrame::GetStateForFramePointer(fp, state);
|
}
|
|
Code* ConstructEntryFrame::unchecked_code() const {
|
return isolate()->heap()->js_construct_entry_code();
|
}
|
|
|
Object*& ExitFrame::code_slot() const {
|
const int offset = ExitFrameConstants::kCodeOffset;
|
return Memory<Object*>(fp() + offset);
|
}
|
|
Code* ExitFrame::unchecked_code() const {
|
return reinterpret_cast<Code*>(code_slot());
|
}
|
|
|
void ExitFrame::ComputeCallerState(State* state) const {
|
// Set up the caller state.
|
state->sp = caller_sp();
|
state->fp = Memory<Address>(fp() + ExitFrameConstants::kCallerFPOffset);
|
state->pc_address = ResolveReturnAddressLocation(
|
reinterpret_cast<Address*>(fp() + ExitFrameConstants::kCallerPCOffset));
|
state->callee_pc_address = nullptr;
|
if (FLAG_enable_embedded_constant_pool) {
|
state->constant_pool_address = reinterpret_cast<Address*>(
|
fp() + ExitFrameConstants::kConstantPoolOffset);
|
}
|
}
|
|
|
void ExitFrame::Iterate(RootVisitor* v) const {
|
// The arguments are traversed as part of the expression stack of
|
// the calling frame.
|
IteratePc(v, pc_address(), constant_pool_address(), LookupCode());
|
v->VisitRootPointer(Root::kTop, nullptr, &code_slot());
|
}
|
|
|
Address ExitFrame::GetCallerStackPointer() const {
|
return fp() + ExitFrameConstants::kCallerSPOffset;
|
}
|
|
|
StackFrame::Type ExitFrame::GetStateForFramePointer(Address fp, State* state) {
|
if (fp == 0) return NONE;
|
Address sp = ComputeStackPointer(fp);
|
FillState(fp, sp, state);
|
DCHECK_NE(*state->pc_address, kNullAddress);
|
|
return ComputeFrameType(fp);
|
}
|
|
StackFrame::Type ExitFrame::ComputeFrameType(Address fp) {
|
// Distinguish between between regular and builtin exit frames.
|
// Default to EXIT in all hairy cases (e.g., when called from profiler).
|
const int offset = ExitFrameConstants::kFrameTypeOffset;
|
Object* marker = Memory<Object*>(fp + offset);
|
|
if (!marker->IsSmi()) {
|
return EXIT;
|
}
|
|
intptr_t marker_int = bit_cast<intptr_t>(marker);
|
|
StackFrame::Type frame_type = static_cast<StackFrame::Type>(marker_int >> 1);
|
if (frame_type == EXIT || frame_type == BUILTIN_EXIT) {
|
return frame_type;
|
}
|
|
return EXIT;
|
}
|
|
Address ExitFrame::ComputeStackPointer(Address fp) {
|
MSAN_MEMORY_IS_INITIALIZED(fp + ExitFrameConstants::kSPOffset, kPointerSize);
|
return Memory<Address>(fp + ExitFrameConstants::kSPOffset);
|
}
|
|
void ExitFrame::FillState(Address fp, Address sp, State* state) {
|
state->sp = sp;
|
state->fp = fp;
|
state->pc_address = ResolveReturnAddressLocation(
|
reinterpret_cast<Address*>(sp - 1 * kPCOnStackSize));
|
state->callee_pc_address = nullptr;
|
// The constant pool recorded in the exit frame is not associated
|
// with the pc in this state (the return address into a C entry
|
// stub). ComputeCallerState will retrieve the constant pool
|
// together with the associated caller pc.
|
state->constant_pool_address = nullptr;
|
}
|
|
JSFunction* BuiltinExitFrame::function() const {
|
return JSFunction::cast(target_slot_object());
|
}
|
|
Object* BuiltinExitFrame::receiver() const { return receiver_slot_object(); }
|
|
bool BuiltinExitFrame::IsConstructor() const {
|
return !new_target_slot_object()->IsUndefined(isolate());
|
}
|
|
Object* BuiltinExitFrame::GetParameter(int i) const {
|
DCHECK(i >= 0 && i < ComputeParametersCount());
|
int offset =
|
BuiltinExitFrameConstants::kFirstArgumentOffset + i * kPointerSize;
|
return Memory<Object*>(fp() + offset);
|
}
|
|
int BuiltinExitFrame::ComputeParametersCount() const {
|
Object* argc_slot = argc_slot_object();
|
DCHECK(argc_slot->IsSmi());
|
// Argc also counts the receiver, target, new target, and argc itself as args,
|
// therefore the real argument count is argc - 4.
|
int argc = Smi::ToInt(argc_slot) - 4;
|
DCHECK_GE(argc, 0);
|
return argc;
|
}
|
|
namespace {
|
void PrintIndex(StringStream* accumulator, StackFrame::PrintMode mode,
|
int index) {
|
accumulator->Add((mode == StackFrame::OVERVIEW) ? "%5d: " : "[%d]: ", index);
|
}
|
|
const char* StringForStackFrameType(StackFrame::Type type) {
|
switch (type) {
|
#define CASE(value, name) \
|
case StackFrame::value: \
|
return #name;
|
STACK_FRAME_TYPE_LIST(CASE)
|
#undef CASE
|
default:
|
UNREACHABLE();
|
}
|
}
|
} // namespace
|
|
void StackFrame::Print(StringStream* accumulator, PrintMode mode,
|
int index) const {
|
DisallowHeapAllocation no_gc;
|
PrintIndex(accumulator, mode, index);
|
accumulator->Add(StringForStackFrameType(type()));
|
accumulator->Add(" [pc: %p]\n", reinterpret_cast<void*>(pc()));
|
}
|
|
void BuiltinExitFrame::Print(StringStream* accumulator, PrintMode mode,
|
int index) const {
|
DisallowHeapAllocation no_gc;
|
Object* receiver = this->receiver();
|
JSFunction* function = this->function();
|
|
accumulator->PrintSecurityTokenIfChanged(function);
|
PrintIndex(accumulator, mode, index);
|
accumulator->Add("builtin exit frame: ");
|
Code* code = nullptr;
|
if (IsConstructor()) accumulator->Add("new ");
|
accumulator->PrintFunction(function, receiver, &code);
|
|
accumulator->Add("(this=%o", receiver);
|
|
// Print the parameters.
|
int parameters_count = ComputeParametersCount();
|
for (int i = 0; i < parameters_count; i++) {
|
accumulator->Add(",%o", GetParameter(i));
|
}
|
|
accumulator->Add(")\n\n");
|
}
|
|
Address StandardFrame::GetExpressionAddress(int n) const {
|
const int offset = StandardFrameConstants::kExpressionsOffset;
|
return fp() + offset - n * kPointerSize;
|
}
|
|
Address InterpretedFrame::GetExpressionAddress(int n) const {
|
const int offset = InterpreterFrameConstants::kExpressionsOffset;
|
return fp() + offset - n * kPointerSize;
|
}
|
|
Script* StandardFrame::script() const {
|
// This should only be called on frames which override this method.
|
DCHECK(false);
|
return nullptr;
|
}
|
|
Object* StandardFrame::receiver() const {
|
return ReadOnlyRoots(isolate()).undefined_value();
|
}
|
|
Object* StandardFrame::context() const {
|
return ReadOnlyRoots(isolate()).undefined_value();
|
}
|
|
int StandardFrame::position() const {
|
AbstractCode* code = AbstractCode::cast(LookupCode());
|
int code_offset = static_cast<int>(pc() - code->InstructionStart());
|
return code->SourcePosition(code_offset);
|
}
|
|
int StandardFrame::ComputeExpressionsCount() const {
|
Address base = GetExpressionAddress(0);
|
Address limit = sp() - kPointerSize;
|
DCHECK(base >= limit); // stack grows downwards
|
// Include register-allocated locals in number of expressions.
|
return static_cast<int>((base - limit) / kPointerSize);
|
}
|
|
Object* StandardFrame::GetParameter(int index) const {
|
// StandardFrame does not define any parameters.
|
UNREACHABLE();
|
}
|
|
int StandardFrame::ComputeParametersCount() const { return 0; }
|
|
void StandardFrame::ComputeCallerState(State* state) const {
|
state->sp = caller_sp();
|
state->fp = caller_fp();
|
state->pc_address = ResolveReturnAddressLocation(
|
reinterpret_cast<Address*>(ComputePCAddress(fp())));
|
state->callee_pc_address = pc_address();
|
state->constant_pool_address =
|
reinterpret_cast<Address*>(ComputeConstantPoolAddress(fp()));
|
}
|
|
|
bool StandardFrame::IsConstructor() const { return false; }
|
|
void StandardFrame::Summarize(std::vector<FrameSummary>* functions) const {
|
// This should only be called on frames which override this method.
|
UNREACHABLE();
|
}
|
|
void StandardFrame::IterateCompiledFrame(RootVisitor* v) const {
|
// Make sure that we're not doing "safe" stack frame iteration. We cannot
|
// possibly find pointers in optimized frames in that state.
|
DCHECK(can_access_heap_objects());
|
|
// Find the code and compute the safepoint information.
|
Address inner_pointer = pc();
|
const wasm::WasmCode* wasm_code =
|
isolate()->wasm_engine()->code_manager()->LookupCode(inner_pointer);
|
SafepointEntry safepoint_entry;
|
uint32_t stack_slots;
|
Code* code = nullptr;
|
bool has_tagged_params = false;
|
if (wasm_code != nullptr) {
|
SafepointTable table(wasm_code->instruction_start(),
|
wasm_code->safepoint_table_offset(),
|
wasm_code->stack_slots());
|
safepoint_entry = table.FindEntry(inner_pointer);
|
stack_slots = wasm_code->stack_slots();
|
has_tagged_params = wasm_code->kind() != wasm::WasmCode::kFunction;
|
} else {
|
InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry =
|
isolate()->inner_pointer_to_code_cache()->GetCacheEntry(inner_pointer);
|
if (!entry->safepoint_entry.is_valid()) {
|
entry->safepoint_entry = entry->code->GetSafepointEntry(inner_pointer);
|
DCHECK(entry->safepoint_entry.is_valid());
|
} else {
|
DCHECK(entry->safepoint_entry.Equals(
|
entry->code->GetSafepointEntry(inner_pointer)));
|
}
|
|
code = entry->code;
|
safepoint_entry = entry->safepoint_entry;
|
stack_slots = code->stack_slots();
|
has_tagged_params = code->has_tagged_params();
|
}
|
uint32_t slot_space = stack_slots * kPointerSize;
|
|
// Determine the fixed header and spill slot area size.
|
int frame_header_size = StandardFrameConstants::kFixedFrameSizeFromFp;
|
intptr_t marker =
|
Memory<intptr_t>(fp() + CommonFrameConstants::kContextOrFrameTypeOffset);
|
if (StackFrame::IsTypeMarker(marker)) {
|
StackFrame::Type candidate = StackFrame::MarkerToType(marker);
|
switch (candidate) {
|
case ENTRY:
|
case CONSTRUCT_ENTRY:
|
case EXIT:
|
case BUILTIN_CONTINUATION:
|
case JAVA_SCRIPT_BUILTIN_CONTINUATION:
|
case JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH:
|
case BUILTIN_EXIT:
|
case ARGUMENTS_ADAPTOR:
|
case STUB:
|
case INTERNAL:
|
case CONSTRUCT:
|
case JS_TO_WASM:
|
case C_WASM_ENTRY:
|
frame_header_size = TypedFrameConstants::kFixedFrameSizeFromFp;
|
break;
|
case WASM_TO_JS:
|
case WASM_COMPILED:
|
case WASM_INTERPRETER_ENTRY:
|
case WASM_COMPILE_LAZY:
|
frame_header_size = WasmCompiledFrameConstants::kFixedFrameSizeFromFp;
|
break;
|
case OPTIMIZED:
|
case INTERPRETED:
|
case BUILTIN:
|
// These frame types have a context, but they are actually stored
|
// in the place on the stack that one finds the frame type.
|
UNREACHABLE();
|
break;
|
case NATIVE:
|
case NONE:
|
case NUMBER_OF_TYPES:
|
case MANUAL:
|
UNREACHABLE();
|
break;
|
}
|
}
|
slot_space -=
|
(frame_header_size + StandardFrameConstants::kFixedFrameSizeAboveFp);
|
|
Object** frame_header_base = &Memory<Object*>(fp() - frame_header_size);
|
Object** frame_header_limit =
|
&Memory<Object*>(fp() - StandardFrameConstants::kCPSlotSize);
|
Object** parameters_base = &Memory<Object*>(sp());
|
Object** parameters_limit = frame_header_base - slot_space / kPointerSize;
|
|
// Visit the parameters that may be on top of the saved registers.
|
if (safepoint_entry.argument_count() > 0) {
|
v->VisitRootPointers(Root::kTop, nullptr, parameters_base,
|
parameters_base + safepoint_entry.argument_count());
|
parameters_base += safepoint_entry.argument_count();
|
}
|
|
// Skip saved double registers.
|
if (safepoint_entry.has_doubles()) {
|
// Number of doubles not known at snapshot time.
|
DCHECK(!isolate()->serializer_enabled());
|
parameters_base +=
|
RegisterConfiguration::Default()->num_allocatable_double_registers() *
|
kDoubleSize / kPointerSize;
|
}
|
|
// Visit the registers that contain pointers if any.
|
if (safepoint_entry.HasRegisters()) {
|
for (int i = kNumSafepointRegisters - 1; i >=0; i--) {
|
if (safepoint_entry.HasRegisterAt(i)) {
|
int reg_stack_index = MacroAssembler::SafepointRegisterStackIndex(i);
|
v->VisitRootPointer(Root::kTop, nullptr,
|
parameters_base + reg_stack_index);
|
}
|
}
|
// Skip the words containing the register values.
|
parameters_base += kNumSafepointRegisters;
|
}
|
|
// We're done dealing with the register bits.
|
uint8_t* safepoint_bits = safepoint_entry.bits();
|
safepoint_bits += kNumSafepointRegisters >> kBitsPerByteLog2;
|
|
// Visit the rest of the parameters if they are tagged.
|
if (has_tagged_params) {
|
v->VisitRootPointers(Root::kTop, nullptr, parameters_base,
|
parameters_limit);
|
}
|
|
// Visit pointer spill slots and locals.
|
for (unsigned index = 0; index < stack_slots; index++) {
|
int byte_index = index >> kBitsPerByteLog2;
|
int bit_index = index & (kBitsPerByte - 1);
|
if ((safepoint_bits[byte_index] & (1U << bit_index)) != 0) {
|
v->VisitRootPointer(Root::kTop, nullptr, parameters_limit + index);
|
}
|
}
|
|
// For the off-heap code cases, we can skip this.
|
if (code != nullptr) {
|
// Visit the return address in the callee and incoming arguments.
|
IteratePc(v, pc_address(), constant_pool_address(), code);
|
}
|
|
// If this frame has JavaScript ABI, visit the context (in stub and JS
|
// frames) and the function (in JS frames). If it has WebAssembly ABI, visit
|
// the instance object.
|
v->VisitRootPointers(Root::kTop, nullptr, frame_header_base,
|
frame_header_limit);
|
}
|
|
void StubFrame::Iterate(RootVisitor* v) const { IterateCompiledFrame(v); }
|
|
Code* StubFrame::unchecked_code() const {
|
return isolate()->FindCodeObject(pc());
|
}
|
|
|
Address StubFrame::GetCallerStackPointer() const {
|
return fp() + ExitFrameConstants::kCallerSPOffset;
|
}
|
|
|
int StubFrame::GetNumberOfIncomingArguments() const {
|
return 0;
|
}
|
|
int StubFrame::LookupExceptionHandlerInTable(int* stack_slots) {
|
Code* code = LookupCode();
|
DCHECK(code->is_turbofanned());
|
DCHECK_EQ(code->kind(), Code::BUILTIN);
|
HandlerTable table(code);
|
int pc_offset = static_cast<int>(pc() - code->InstructionStart());
|
*stack_slots = code->stack_slots();
|
return table.LookupReturn(pc_offset);
|
}
|
|
void OptimizedFrame::Iterate(RootVisitor* v) const { IterateCompiledFrame(v); }
|
|
void JavaScriptFrame::SetParameterValue(int index, Object* value) const {
|
Memory<Object*>(GetParameterSlot(index)) = value;
|
}
|
|
|
bool JavaScriptFrame::IsConstructor() const {
|
Address fp = caller_fp();
|
if (has_adapted_arguments()) {
|
// Skip the arguments adaptor frame and look at the real caller.
|
fp = Memory<Address>(fp + StandardFrameConstants::kCallerFPOffset);
|
}
|
return IsConstructFrame(fp);
|
}
|
|
|
bool JavaScriptFrame::HasInlinedFrames() const {
|
std::vector<SharedFunctionInfo*> functions;
|
GetFunctions(&functions);
|
return functions.size() > 1;
|
}
|
|
|
Code* JavaScriptFrame::unchecked_code() const {
|
return function()->code();
|
}
|
|
|
int JavaScriptFrame::GetNumberOfIncomingArguments() const {
|
DCHECK(can_access_heap_objects() &&
|
isolate()->heap()->gc_state() == Heap::NOT_IN_GC);
|
return function()->shared()->internal_formal_parameter_count();
|
}
|
|
int OptimizedFrame::GetNumberOfIncomingArguments() const {
|
Code* code = LookupCode();
|
if (code->kind() == Code::BUILTIN) {
|
return static_cast<int>(
|
Memory<intptr_t>(fp() + OptimizedBuiltinFrameConstants::kArgCOffset));
|
} else {
|
return JavaScriptFrame::GetNumberOfIncomingArguments();
|
}
|
}
|
|
Address JavaScriptFrame::GetCallerStackPointer() const {
|
return fp() + StandardFrameConstants::kCallerSPOffset;
|
}
|
|
void JavaScriptFrame::GetFunctions(
|
std::vector<SharedFunctionInfo*>* functions) const {
|
DCHECK(functions->empty());
|
functions->push_back(function()->shared());
|
}
|
|
void JavaScriptFrame::GetFunctions(
|
std::vector<Handle<SharedFunctionInfo>>* functions) const {
|
DCHECK(functions->empty());
|
std::vector<SharedFunctionInfo*> raw_functions;
|
GetFunctions(&raw_functions);
|
for (const auto& raw_function : raw_functions) {
|
functions->push_back(
|
Handle<SharedFunctionInfo>(raw_function, function()->GetIsolate()));
|
}
|
}
|
|
void JavaScriptFrame::Summarize(std::vector<FrameSummary>* functions) const {
|
DCHECK(functions->empty());
|
Code* code = LookupCode();
|
int offset = static_cast<int>(pc() - code->InstructionStart());
|
AbstractCode* abstract_code = AbstractCode::cast(code);
|
FrameSummary::JavaScriptFrameSummary summary(isolate(), receiver(),
|
function(), abstract_code,
|
offset, IsConstructor());
|
functions->push_back(summary);
|
}
|
|
JSFunction* JavaScriptFrame::function() const {
|
return JSFunction::cast(function_slot_object());
|
}
|
|
Object* JavaScriptFrame::unchecked_function() const {
|
// During deoptimization of an optimized function, we may have yet to
|
// materialize some closures on the stack. The arguments marker object
|
// marks this case.
|
DCHECK(function_slot_object()->IsJSFunction() ||
|
ReadOnlyRoots(isolate()).arguments_marker() == function_slot_object());
|
return function_slot_object();
|
}
|
|
Object* JavaScriptFrame::receiver() const { return GetParameter(-1); }
|
|
Object* JavaScriptFrame::context() const {
|
const int offset = StandardFrameConstants::kContextOffset;
|
Object* maybe_result = Memory<Object*>(fp() + offset);
|
DCHECK(!maybe_result->IsSmi());
|
return maybe_result;
|
}
|
|
Script* JavaScriptFrame::script() const {
|
return Script::cast(function()->shared()->script());
|
}
|
|
int JavaScriptFrame::LookupExceptionHandlerInTable(
|
int* stack_depth, HandlerTable::CatchPrediction* prediction) {
|
DCHECK_EQ(0, LookupCode()->handler_table_offset());
|
DCHECK(!LookupCode()->is_optimized_code());
|
return -1;
|
}
|
|
void JavaScriptFrame::PrintFunctionAndOffset(JSFunction* function,
|
AbstractCode* code,
|
int code_offset, FILE* file,
|
bool print_line_number) {
|
PrintF(file, "%s", function->IsOptimized() ? "*" : "~");
|
function->PrintName(file);
|
PrintF(file, "+%d", code_offset);
|
if (print_line_number) {
|
SharedFunctionInfo* shared = function->shared();
|
int source_pos = code->SourcePosition(code_offset);
|
Object* maybe_script = shared->script();
|
if (maybe_script->IsScript()) {
|
Script* script = Script::cast(maybe_script);
|
int line = script->GetLineNumber(source_pos) + 1;
|
Object* script_name_raw = script->name();
|
if (script_name_raw->IsString()) {
|
String* script_name = String::cast(script->name());
|
std::unique_ptr<char[]> c_script_name =
|
script_name->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
|
PrintF(file, " at %s:%d", c_script_name.get(), line);
|
} else {
|
PrintF(file, " at <unknown>:%d", line);
|
}
|
} else {
|
PrintF(file, " at <unknown>:<unknown>");
|
}
|
}
|
}
|
|
void JavaScriptFrame::PrintTop(Isolate* isolate, FILE* file, bool print_args,
|
bool print_line_number) {
|
// constructor calls
|
DisallowHeapAllocation no_allocation;
|
JavaScriptFrameIterator it(isolate);
|
while (!it.done()) {
|
if (it.frame()->is_java_script()) {
|
JavaScriptFrame* frame = it.frame();
|
if (frame->IsConstructor()) PrintF(file, "new ");
|
JSFunction* function = frame->function();
|
int code_offset = 0;
|
if (frame->is_interpreted()) {
|
InterpretedFrame* iframe = reinterpret_cast<InterpretedFrame*>(frame);
|
code_offset = iframe->GetBytecodeOffset();
|
} else {
|
Code* code = frame->unchecked_code();
|
code_offset = static_cast<int>(frame->pc() - code->InstructionStart());
|
}
|
PrintFunctionAndOffset(function, function->abstract_code(), code_offset,
|
file, print_line_number);
|
if (print_args) {
|
// function arguments
|
// (we are intentionally only printing the actually
|
// supplied parameters, not all parameters required)
|
PrintF(file, "(this=");
|
frame->receiver()->ShortPrint(file);
|
const int length = frame->ComputeParametersCount();
|
for (int i = 0; i < length; i++) {
|
PrintF(file, ", ");
|
frame->GetParameter(i)->ShortPrint(file);
|
}
|
PrintF(file, ")");
|
}
|
break;
|
}
|
it.Advance();
|
}
|
}
|
|
void JavaScriptFrame::CollectFunctionAndOffsetForICStats(JSFunction* function,
|
AbstractCode* code,
|
int code_offset) {
|
auto ic_stats = ICStats::instance();
|
ICInfo& ic_info = ic_stats->Current();
|
SharedFunctionInfo* shared = function->shared();
|
|
ic_info.function_name = ic_stats->GetOrCacheFunctionName(function);
|
ic_info.script_offset = code_offset;
|
|
int source_pos = code->SourcePosition(code_offset);
|
Object* maybe_script = shared->script();
|
if (maybe_script->IsScript()) {
|
Script* script = Script::cast(maybe_script);
|
ic_info.line_num = script->GetLineNumber(source_pos) + 1;
|
ic_info.script_name = ic_stats->GetOrCacheScriptName(script);
|
}
|
}
|
|
void JavaScriptFrame::CollectTopFrameForICStats(Isolate* isolate) {
|
// constructor calls
|
DisallowHeapAllocation no_allocation;
|
JavaScriptFrameIterator it(isolate);
|
ICInfo& ic_info = ICStats::instance()->Current();
|
while (!it.done()) {
|
if (it.frame()->is_java_script()) {
|
JavaScriptFrame* frame = it.frame();
|
if (frame->IsConstructor()) ic_info.is_constructor = true;
|
JSFunction* function = frame->function();
|
int code_offset = 0;
|
if (frame->is_interpreted()) {
|
InterpretedFrame* iframe = reinterpret_cast<InterpretedFrame*>(frame);
|
code_offset = iframe->GetBytecodeOffset();
|
} else {
|
Code* code = frame->unchecked_code();
|
code_offset = static_cast<int>(frame->pc() - code->InstructionStart());
|
}
|
CollectFunctionAndOffsetForICStats(function, function->abstract_code(),
|
code_offset);
|
return;
|
}
|
it.Advance();
|
}
|
}
|
|
Object* JavaScriptFrame::GetParameter(int index) const {
|
return Memory<Object*>(GetParameterSlot(index));
|
}
|
|
int JavaScriptFrame::ComputeParametersCount() const {
|
return GetNumberOfIncomingArguments();
|
}
|
|
int JavaScriptBuiltinContinuationFrame::ComputeParametersCount() const {
|
// Assert that the first allocatable register is also the argument count
|
// register.
|
DCHECK_EQ(RegisterConfiguration::Default()->GetAllocatableGeneralCode(0),
|
kJavaScriptCallArgCountRegister.code());
|
Object* argc_object =
|
Memory<Object*>(fp() + BuiltinContinuationFrameConstants::kArgCOffset);
|
return Smi::ToInt(argc_object);
|
}
|
|
intptr_t JavaScriptBuiltinContinuationFrame::GetSPToFPDelta() const {
|
Address height_slot =
|
fp() + BuiltinContinuationFrameConstants::kFrameSPtoFPDeltaAtDeoptimize;
|
intptr_t height = Smi::ToInt(*reinterpret_cast<Smi**>(height_slot));
|
return height;
|
}
|
|
Object* JavaScriptBuiltinContinuationFrame::context() const {
|
return Memory<Object*>(
|
fp() + BuiltinContinuationFrameConstants::kBuiltinContextOffset);
|
}
|
|
void JavaScriptBuiltinContinuationWithCatchFrame::SetException(
|
Object* exception) {
|
Address exception_argument_slot =
|
fp() + JavaScriptFrameConstants::kLastParameterOffset +
|
kPointerSize; // Skip over return value slot.
|
|
// Only allow setting exception if previous value was the hole.
|
CHECK_EQ(ReadOnlyRoots(isolate()).the_hole_value(),
|
Memory<Object*>(exception_argument_slot));
|
Memory<Object*>(exception_argument_slot) = exception;
|
}
|
|
FrameSummary::JavaScriptFrameSummary::JavaScriptFrameSummary(
|
Isolate* isolate, Object* receiver, JSFunction* function,
|
AbstractCode* abstract_code, int code_offset, bool is_constructor)
|
: FrameSummaryBase(isolate, FrameSummary::JAVA_SCRIPT),
|
receiver_(receiver, isolate),
|
function_(function, isolate),
|
abstract_code_(abstract_code, isolate),
|
code_offset_(code_offset),
|
is_constructor_(is_constructor) {
|
DCHECK(abstract_code->IsBytecodeArray() ||
|
Code::cast(abstract_code)->kind() != Code::OPTIMIZED_FUNCTION);
|
}
|
|
bool FrameSummary::JavaScriptFrameSummary::is_subject_to_debugging() const {
|
return function()->shared()->IsSubjectToDebugging();
|
}
|
|
int FrameSummary::JavaScriptFrameSummary::SourcePosition() const {
|
return abstract_code()->SourcePosition(code_offset());
|
}
|
|
int FrameSummary::JavaScriptFrameSummary::SourceStatementPosition() const {
|
return abstract_code()->SourceStatementPosition(code_offset());
|
}
|
|
Handle<Object> FrameSummary::JavaScriptFrameSummary::script() const {
|
return handle(function_->shared()->script(), isolate());
|
}
|
|
Handle<String> FrameSummary::JavaScriptFrameSummary::FunctionName() const {
|
return JSFunction::GetDebugName(function_);
|
}
|
|
Handle<Context> FrameSummary::JavaScriptFrameSummary::native_context() const {
|
return handle(function_->context()->native_context(), isolate());
|
}
|
|
FrameSummary::WasmFrameSummary::WasmFrameSummary(
|
Isolate* isolate, FrameSummary::Kind kind,
|
Handle<WasmInstanceObject> instance, bool at_to_number_conversion)
|
: FrameSummaryBase(isolate, kind),
|
wasm_instance_(instance),
|
at_to_number_conversion_(at_to_number_conversion) {}
|
|
Handle<Object> FrameSummary::WasmFrameSummary::receiver() const {
|
return wasm_instance_->GetIsolate()->global_proxy();
|
}
|
|
#define WASM_SUMMARY_DISPATCH(type, name) \
|
type FrameSummary::WasmFrameSummary::name() const { \
|
DCHECK(kind() == Kind::WASM_COMPILED || kind() == Kind::WASM_INTERPRETED); \
|
return kind() == Kind::WASM_COMPILED \
|
? static_cast<const WasmCompiledFrameSummary*>(this)->name() \
|
: static_cast<const WasmInterpretedFrameSummary*>(this) \
|
->name(); \
|
}
|
|
WASM_SUMMARY_DISPATCH(uint32_t, function_index)
|
WASM_SUMMARY_DISPATCH(int, byte_offset)
|
|
#undef WASM_SUMMARY_DISPATCH
|
|
int FrameSummary::WasmFrameSummary::SourcePosition() const {
|
Handle<WasmModuleObject> module_object(wasm_instance()->module_object(),
|
isolate());
|
return WasmModuleObject::GetSourcePosition(module_object, function_index(),
|
byte_offset(),
|
at_to_number_conversion());
|
}
|
|
Handle<Script> FrameSummary::WasmFrameSummary::script() const {
|
return handle(wasm_instance()->module_object()->script(),
|
wasm_instance()->GetIsolate());
|
}
|
|
Handle<String> FrameSummary::WasmFrameSummary::FunctionName() const {
|
Handle<WasmModuleObject> module_object(wasm_instance()->module_object(),
|
isolate());
|
return WasmModuleObject::GetFunctionName(isolate(), module_object,
|
function_index());
|
}
|
|
Handle<Context> FrameSummary::WasmFrameSummary::native_context() const {
|
return handle(wasm_instance()->native_context(), isolate());
|
}
|
|
FrameSummary::WasmCompiledFrameSummary::WasmCompiledFrameSummary(
|
Isolate* isolate, Handle<WasmInstanceObject> instance, wasm::WasmCode* code,
|
int code_offset, bool at_to_number_conversion)
|
: WasmFrameSummary(isolate, WASM_COMPILED, instance,
|
at_to_number_conversion),
|
code_(code),
|
code_offset_(code_offset) {}
|
|
uint32_t FrameSummary::WasmCompiledFrameSummary::function_index() const {
|
return code()->index();
|
}
|
|
int FrameSummary::WasmCompiledFrameSummary::GetWasmSourcePosition(
|
const wasm::WasmCode* code, int offset) {
|
int position = 0;
|
// Subtract one because the current PC is one instruction after the call site.
|
offset--;
|
for (SourcePositionTableIterator iterator(code->source_positions());
|
!iterator.done() && iterator.code_offset() <= offset;
|
iterator.Advance()) {
|
position = iterator.source_position().ScriptOffset();
|
}
|
return position;
|
}
|
|
int FrameSummary::WasmCompiledFrameSummary::byte_offset() const {
|
return GetWasmSourcePosition(code_, code_offset());
|
}
|
|
FrameSummary::WasmInterpretedFrameSummary::WasmInterpretedFrameSummary(
|
Isolate* isolate, Handle<WasmInstanceObject> instance,
|
uint32_t function_index, int byte_offset)
|
: WasmFrameSummary(isolate, WASM_INTERPRETED, instance, false),
|
function_index_(function_index),
|
byte_offset_(byte_offset) {}
|
|
FrameSummary::~FrameSummary() {
|
#define FRAME_SUMMARY_DESTR(kind, type, field, desc) \
|
case kind: \
|
field.~type(); \
|
break;
|
switch (base_.kind()) {
|
FRAME_SUMMARY_VARIANTS(FRAME_SUMMARY_DESTR)
|
default:
|
UNREACHABLE();
|
}
|
#undef FRAME_SUMMARY_DESTR
|
}
|
|
FrameSummary FrameSummary::GetTop(const StandardFrame* frame) {
|
std::vector<FrameSummary> frames;
|
frame->Summarize(&frames);
|
DCHECK_LT(0, frames.size());
|
return frames.back();
|
}
|
|
FrameSummary FrameSummary::GetBottom(const StandardFrame* frame) {
|
return Get(frame, 0);
|
}
|
|
FrameSummary FrameSummary::GetSingle(const StandardFrame* frame) {
|
std::vector<FrameSummary> frames;
|
frame->Summarize(&frames);
|
DCHECK_EQ(1, frames.size());
|
return frames.front();
|
}
|
|
FrameSummary FrameSummary::Get(const StandardFrame* frame, int index) {
|
DCHECK_LE(0, index);
|
std::vector<FrameSummary> frames;
|
frame->Summarize(&frames);
|
DCHECK_GT(frames.size(), index);
|
return frames[index];
|
}
|
|
#define FRAME_SUMMARY_DISPATCH(ret, name) \
|
ret FrameSummary::name() const { \
|
switch (base_.kind()) { \
|
case JAVA_SCRIPT: \
|
return java_script_summary_.name(); \
|
case WASM_COMPILED: \
|
return wasm_compiled_summary_.name(); \
|
case WASM_INTERPRETED: \
|
return wasm_interpreted_summary_.name(); \
|
default: \
|
UNREACHABLE(); \
|
return ret{}; \
|
} \
|
}
|
|
FRAME_SUMMARY_DISPATCH(Handle<Object>, receiver)
|
FRAME_SUMMARY_DISPATCH(int, code_offset)
|
FRAME_SUMMARY_DISPATCH(bool, is_constructor)
|
FRAME_SUMMARY_DISPATCH(bool, is_subject_to_debugging)
|
FRAME_SUMMARY_DISPATCH(Handle<Object>, script)
|
FRAME_SUMMARY_DISPATCH(int, SourcePosition)
|
FRAME_SUMMARY_DISPATCH(int, SourceStatementPosition)
|
FRAME_SUMMARY_DISPATCH(Handle<String>, FunctionName)
|
FRAME_SUMMARY_DISPATCH(Handle<Context>, native_context)
|
|
#undef FRAME_SUMMARY_DISPATCH
|
|
void OptimizedFrame::Summarize(std::vector<FrameSummary>* frames) const {
|
DCHECK(frames->empty());
|
DCHECK(is_optimized());
|
|
// Delegate to JS frame in absence of turbofan deoptimization.
|
// TODO(turbofan): Revisit once we support deoptimization across the board.
|
Code* code = LookupCode();
|
if (code->kind() == Code::BUILTIN) {
|
return JavaScriptFrame::Summarize(frames);
|
}
|
|
int deopt_index = Safepoint::kNoDeoptimizationIndex;
|
DeoptimizationData* const data = GetDeoptimizationData(&deopt_index);
|
if (deopt_index == Safepoint::kNoDeoptimizationIndex) {
|
CHECK_NULL(data);
|
FATAL("Missing deoptimization information for OptimizedFrame::Summarize.");
|
}
|
|
// Prepare iteration over translation. Note that the below iteration might
|
// materialize objects without storing them back to the Isolate, this will
|
// lead to objects being re-materialized again for each summary.
|
TranslatedState translated(this);
|
translated.Prepare(fp());
|
|
// We create the summary in reverse order because the frames
|
// in the deoptimization translation are ordered bottom-to-top.
|
bool is_constructor = IsConstructor();
|
for (auto it = translated.begin(); it != translated.end(); it++) {
|
if (it->kind() == TranslatedFrame::kInterpretedFunction ||
|
it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuation ||
|
it->kind() ==
|
TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch) {
|
Handle<SharedFunctionInfo> shared_info = it->shared_info();
|
|
// The translation commands are ordered and the function is always
|
// at the first position, and the receiver is next.
|
TranslatedFrame::iterator translated_values = it->begin();
|
|
// Get or materialize the correct function in the optimized frame.
|
Handle<JSFunction> function =
|
Handle<JSFunction>::cast(translated_values->GetValue());
|
translated_values++;
|
|
// Get or materialize the correct receiver in the optimized frame.
|
Handle<Object> receiver = translated_values->GetValue();
|
translated_values++;
|
|
// Determine the underlying code object and the position within it from
|
// the translation corresponding to the frame type in question.
|
Handle<AbstractCode> abstract_code;
|
unsigned code_offset;
|
if (it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuation ||
|
it->kind() ==
|
TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch) {
|
code_offset = 0;
|
abstract_code =
|
handle(AbstractCode::cast(isolate()->builtins()->builtin(
|
Builtins::GetBuiltinFromBailoutId(it->node_id()))),
|
isolate());
|
} else {
|
DCHECK_EQ(it->kind(), TranslatedFrame::kInterpretedFunction);
|
code_offset = it->node_id().ToInt(); // Points to current bytecode.
|
abstract_code = handle(shared_info->abstract_code(), isolate());
|
}
|
|
// Append full summary of the encountered JS frame.
|
FrameSummary::JavaScriptFrameSummary summary(isolate(), *receiver,
|
*function, *abstract_code,
|
code_offset, is_constructor);
|
frames->push_back(summary);
|
is_constructor = false;
|
} else if (it->kind() == TranslatedFrame::kConstructStub) {
|
// The next encountered JS frame will be marked as a constructor call.
|
DCHECK(!is_constructor);
|
is_constructor = true;
|
}
|
}
|
}
|
|
|
int OptimizedFrame::LookupExceptionHandlerInTable(
|
int* stack_slots, HandlerTable::CatchPrediction* prediction) {
|
// We cannot perform exception prediction on optimized code. Instead, we need
|
// to use FrameSummary to find the corresponding code offset in unoptimized
|
// code to perform prediction there.
|
DCHECK_NULL(prediction);
|
Code* code = LookupCode();
|
HandlerTable table(code);
|
int pc_offset = static_cast<int>(pc() - code->InstructionStart());
|
if (stack_slots) *stack_slots = code->stack_slots();
|
|
// When the return pc has been replaced by a trampoline there won't be
|
// a handler for this trampoline. Thus we need to use the return pc that
|
// _used to be_ on the stack to get the right ExceptionHandler.
|
if (code->kind() == Code::OPTIMIZED_FUNCTION &&
|
code->marked_for_deoptimization()) {
|
SafepointTable safepoints(code);
|
pc_offset = safepoints.find_return_pc(pc_offset);
|
}
|
return table.LookupReturn(pc_offset);
|
}
|
|
DeoptimizationData* OptimizedFrame::GetDeoptimizationData(
|
int* deopt_index) const {
|
DCHECK(is_optimized());
|
|
JSFunction* opt_function = function();
|
Code* code = opt_function->code();
|
|
// The code object may have been replaced by lazy deoptimization. Fall
|
// back to a slow search in this case to find the original optimized
|
// code object.
|
if (!code->contains(pc())) {
|
code = isolate()->heap()->GcSafeFindCodeForInnerPointer(pc());
|
}
|
DCHECK_NOT_NULL(code);
|
DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
|
|
SafepointEntry safepoint_entry = code->GetSafepointEntry(pc());
|
*deopt_index = safepoint_entry.deoptimization_index();
|
if (*deopt_index != Safepoint::kNoDeoptimizationIndex) {
|
return DeoptimizationData::cast(code->deoptimization_data());
|
}
|
return nullptr;
|
}
|
|
Object* OptimizedFrame::receiver() const {
|
Code* code = LookupCode();
|
if (code->kind() == Code::BUILTIN) {
|
Address argc_ptr = fp() + OptimizedBuiltinFrameConstants::kArgCOffset;
|
intptr_t argc = *reinterpret_cast<intptr_t*>(argc_ptr);
|
intptr_t args_size =
|
(StandardFrameConstants::kFixedSlotCountAboveFp + argc) * kPointerSize;
|
Address receiver_ptr = fp() + args_size;
|
return *reinterpret_cast<Object**>(receiver_ptr);
|
} else {
|
return JavaScriptFrame::receiver();
|
}
|
}
|
|
void OptimizedFrame::GetFunctions(
|
std::vector<SharedFunctionInfo*>* functions) const {
|
DCHECK(functions->empty());
|
DCHECK(is_optimized());
|
|
// Delegate to JS frame in absence of turbofan deoptimization.
|
// TODO(turbofan): Revisit once we support deoptimization across the board.
|
Code* code = LookupCode();
|
if (code->kind() == Code::BUILTIN) {
|
return JavaScriptFrame::GetFunctions(functions);
|
}
|
|
DisallowHeapAllocation no_gc;
|
int deopt_index = Safepoint::kNoDeoptimizationIndex;
|
DeoptimizationData* const data = GetDeoptimizationData(&deopt_index);
|
DCHECK_NOT_NULL(data);
|
DCHECK_NE(Safepoint::kNoDeoptimizationIndex, deopt_index);
|
FixedArray* const literal_array = data->LiteralArray();
|
|
TranslationIterator it(data->TranslationByteArray(),
|
data->TranslationIndex(deopt_index)->value());
|
Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
|
DCHECK_EQ(Translation::BEGIN, opcode);
|
it.Next(); // Skip frame count.
|
int jsframe_count = it.Next();
|
it.Next(); // Skip update feedback count.
|
|
// We insert the frames in reverse order because the frames
|
// in the deoptimization translation are ordered bottom-to-top.
|
while (jsframe_count != 0) {
|
opcode = static_cast<Translation::Opcode>(it.Next());
|
if (opcode == Translation::INTERPRETED_FRAME ||
|
opcode == Translation::JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME ||
|
opcode ==
|
Translation::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH_FRAME) {
|
it.Next(); // Skip bailout id.
|
jsframe_count--;
|
|
// The second operand of the frame points to the function.
|
Object* shared = literal_array->get(it.Next());
|
functions->push_back(SharedFunctionInfo::cast(shared));
|
|
// Skip over remaining operands to advance to the next opcode.
|
it.Skip(Translation::NumberOfOperandsFor(opcode) - 2);
|
} else {
|
// Skip over operands to advance to the next opcode.
|
it.Skip(Translation::NumberOfOperandsFor(opcode));
|
}
|
}
|
}
|
|
|
int OptimizedFrame::StackSlotOffsetRelativeToFp(int slot_index) {
|
return StandardFrameConstants::kCallerSPOffset -
|
((slot_index + 1) * kPointerSize);
|
}
|
|
|
Object* OptimizedFrame::StackSlotAt(int index) const {
|
return Memory<Object*>(fp() + StackSlotOffsetRelativeToFp(index));
|
}
|
|
int InterpretedFrame::position() const {
|
AbstractCode* code = AbstractCode::cast(GetBytecodeArray());
|
int code_offset = GetBytecodeOffset();
|
return code->SourcePosition(code_offset);
|
}
|
|
int InterpretedFrame::LookupExceptionHandlerInTable(
|
int* context_register, HandlerTable::CatchPrediction* prediction) {
|
HandlerTable table(function()->shared()->GetBytecodeArray());
|
return table.LookupRange(GetBytecodeOffset(), context_register, prediction);
|
}
|
|
int InterpretedFrame::GetBytecodeOffset() const {
|
const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex;
|
DCHECK_EQ(
|
InterpreterFrameConstants::kBytecodeOffsetFromFp,
|
InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
|
int raw_offset = Smi::ToInt(GetExpression(index));
|
return raw_offset - BytecodeArray::kHeaderSize + kHeapObjectTag;
|
}
|
|
int InterpretedFrame::GetBytecodeOffset(Address fp) {
|
const int offset = InterpreterFrameConstants::kExpressionsOffset;
|
const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex;
|
DCHECK_EQ(
|
InterpreterFrameConstants::kBytecodeOffsetFromFp,
|
InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
|
Address expression_offset = fp + offset - index * kPointerSize;
|
int raw_offset = Smi::ToInt(Memory<Object*>(expression_offset));
|
return raw_offset - BytecodeArray::kHeaderSize + kHeapObjectTag;
|
}
|
|
void InterpretedFrame::PatchBytecodeOffset(int new_offset) {
|
const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex;
|
DCHECK_EQ(
|
InterpreterFrameConstants::kBytecodeOffsetFromFp,
|
InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
|
int raw_offset = new_offset + BytecodeArray::kHeaderSize - kHeapObjectTag;
|
SetExpression(index, Smi::FromInt(raw_offset));
|
}
|
|
BytecodeArray* InterpretedFrame::GetBytecodeArray() const {
|
const int index = InterpreterFrameConstants::kBytecodeArrayExpressionIndex;
|
DCHECK_EQ(
|
InterpreterFrameConstants::kBytecodeArrayFromFp,
|
InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
|
return BytecodeArray::cast(GetExpression(index));
|
}
|
|
void InterpretedFrame::PatchBytecodeArray(BytecodeArray* bytecode_array) {
|
const int index = InterpreterFrameConstants::kBytecodeArrayExpressionIndex;
|
DCHECK_EQ(
|
InterpreterFrameConstants::kBytecodeArrayFromFp,
|
InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
|
SetExpression(index, bytecode_array);
|
}
|
|
Object* InterpretedFrame::ReadInterpreterRegister(int register_index) const {
|
const int index = InterpreterFrameConstants::kRegisterFileExpressionIndex;
|
DCHECK_EQ(
|
InterpreterFrameConstants::kRegisterFileFromFp,
|
InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
|
return GetExpression(index + register_index);
|
}
|
|
void InterpretedFrame::WriteInterpreterRegister(int register_index,
|
Object* value) {
|
const int index = InterpreterFrameConstants::kRegisterFileExpressionIndex;
|
DCHECK_EQ(
|
InterpreterFrameConstants::kRegisterFileFromFp,
|
InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
|
return SetExpression(index + register_index, value);
|
}
|
|
void InterpretedFrame::Summarize(std::vector<FrameSummary>* functions) const {
|
DCHECK(functions->empty());
|
AbstractCode* abstract_code =
|
AbstractCode::cast(function()->shared()->GetBytecodeArray());
|
FrameSummary::JavaScriptFrameSummary summary(
|
isolate(), receiver(), function(), abstract_code, GetBytecodeOffset(),
|
IsConstructor());
|
functions->push_back(summary);
|
}
|
|
int ArgumentsAdaptorFrame::GetNumberOfIncomingArguments() const {
|
return Smi::ToInt(GetExpression(0));
|
}
|
|
Code* ArgumentsAdaptorFrame::unchecked_code() const {
|
return isolate()->builtins()->builtin(
|
Builtins::kArgumentsAdaptorTrampoline);
|
}
|
|
int BuiltinFrame::GetNumberOfIncomingArguments() const {
|
return Smi::ToInt(GetExpression(0));
|
}
|
|
void BuiltinFrame::PrintFrameKind(StringStream* accumulator) const {
|
accumulator->Add("builtin frame: ");
|
}
|
|
Address InternalFrame::GetCallerStackPointer() const {
|
// Internal frames have no arguments. The stack pointer of the
|
// caller is at a fixed offset from the frame pointer.
|
return fp() + StandardFrameConstants::kCallerSPOffset;
|
}
|
|
Code* InternalFrame::unchecked_code() const { UNREACHABLE(); }
|
|
void WasmCompiledFrame::Print(StringStream* accumulator, PrintMode mode,
|
int index) const {
|
PrintIndex(accumulator, mode, index);
|
accumulator->Add("WASM [");
|
accumulator->PrintName(script()->name());
|
Address instruction_start = isolate()
|
->wasm_engine()
|
->code_manager()
|
->LookupCode(pc())
|
->instruction_start();
|
Vector<const uint8_t> raw_func_name =
|
module_object()->GetRawFunctionName(function_index());
|
const int kMaxPrintedFunctionName = 64;
|
char func_name[kMaxPrintedFunctionName + 1];
|
int func_name_len = std::min(kMaxPrintedFunctionName, raw_func_name.length());
|
memcpy(func_name, raw_func_name.start(), func_name_len);
|
func_name[func_name_len] = '\0';
|
int pos = position();
|
const wasm::WasmModule* module = wasm_instance()->module_object()->module();
|
int func_index = function_index();
|
int func_code_offset = module->functions[func_index].code.offset();
|
accumulator->Add("], function #%u ('%s'), pc=%p (+0x%x), pos=%d (+%d)\n",
|
func_index, func_name, reinterpret_cast<void*>(pc()),
|
static_cast<int>(pc() - instruction_start), pos,
|
pos - func_code_offset);
|
if (mode != OVERVIEW) accumulator->Add("\n");
|
}
|
|
Code* WasmCompiledFrame::unchecked_code() const {
|
return isolate()->FindCodeObject(pc());
|
}
|
|
void WasmCompiledFrame::Iterate(RootVisitor* v) const {
|
IterateCompiledFrame(v);
|
}
|
|
Address WasmCompiledFrame::GetCallerStackPointer() const {
|
return fp() + ExitFrameConstants::kCallerSPOffset;
|
}
|
|
wasm::WasmCode* WasmCompiledFrame::wasm_code() const {
|
return isolate()->wasm_engine()->code_manager()->LookupCode(pc());
|
}
|
|
WasmInstanceObject* WasmCompiledFrame::wasm_instance() const {
|
const int offset = WasmCompiledFrameConstants::kWasmInstanceOffset;
|
Object* instance = Memory<Object*>(fp() + offset);
|
return WasmInstanceObject::cast(instance);
|
}
|
|
WasmModuleObject* WasmCompiledFrame::module_object() const {
|
return wasm_instance()->module_object();
|
}
|
|
uint32_t WasmCompiledFrame::function_index() const {
|
return FrameSummary::GetSingle(this).AsWasmCompiled().function_index();
|
}
|
|
Script* WasmCompiledFrame::script() const { return module_object()->script(); }
|
|
int WasmCompiledFrame::position() const {
|
return FrameSummary::GetSingle(this).SourcePosition();
|
}
|
|
void WasmCompiledFrame::Summarize(std::vector<FrameSummary>* functions) const {
|
DCHECK(functions->empty());
|
wasm::WasmCode* code = wasm_code();
|
int offset = static_cast<int>(pc() - code->instruction_start());
|
Handle<WasmInstanceObject> instance(wasm_instance(), isolate());
|
FrameSummary::WasmCompiledFrameSummary summary(
|
isolate(), instance, code, offset, at_to_number_conversion());
|
functions->push_back(summary);
|
}
|
|
bool WasmCompiledFrame::at_to_number_conversion() const {
|
// Check whether our callee is a WASM_TO_JS frame, and this frame is at the
|
// ToNumber conversion call.
|
wasm::WasmCode* code =
|
callee_pc() != kNullAddress
|
? isolate()->wasm_engine()->code_manager()->LookupCode(callee_pc())
|
: nullptr;
|
if (!code || code->kind() != wasm::WasmCode::kWasmToJsWrapper) return false;
|
int offset = static_cast<int>(callee_pc() - code->instruction_start());
|
int pos = FrameSummary::WasmCompiledFrameSummary::GetWasmSourcePosition(
|
code, offset);
|
DCHECK(pos == 0 || pos == 1);
|
// The imported call has position 0, ToNumber has position 1.
|
return !!pos;
|
}
|
|
int WasmCompiledFrame::LookupExceptionHandlerInTable(int* stack_slots) {
|
DCHECK_NOT_NULL(stack_slots);
|
wasm::WasmCode* code =
|
isolate()->wasm_engine()->code_manager()->LookupCode(pc());
|
if (!code->IsAnonymous() && code->handler_table_offset() > 0) {
|
HandlerTable table(code->instruction_start(), code->handler_table_offset());
|
int pc_offset = static_cast<int>(pc() - code->instruction_start());
|
*stack_slots = static_cast<int>(code->stack_slots());
|
return table.LookupReturn(pc_offset);
|
}
|
return -1;
|
}
|
|
void WasmInterpreterEntryFrame::Iterate(RootVisitor* v) const {
|
IterateCompiledFrame(v);
|
}
|
|
void WasmInterpreterEntryFrame::Print(StringStream* accumulator, PrintMode mode,
|
int index) const {
|
PrintIndex(accumulator, mode, index);
|
accumulator->Add("WASM INTERPRETER ENTRY [");
|
Script* script = this->script();
|
accumulator->PrintName(script->name());
|
accumulator->Add("]");
|
if (mode != OVERVIEW) accumulator->Add("\n");
|
}
|
|
void WasmInterpreterEntryFrame::Summarize(
|
std::vector<FrameSummary>* functions) const {
|
Handle<WasmInstanceObject> instance(wasm_instance(), isolate());
|
std::vector<std::pair<uint32_t, int>> interpreted_stack =
|
instance->debug_info()->GetInterpretedStack(fp());
|
|
for (auto& e : interpreted_stack) {
|
FrameSummary::WasmInterpretedFrameSummary summary(isolate(), instance,
|
e.first, e.second);
|
functions->push_back(summary);
|
}
|
}
|
|
Code* WasmInterpreterEntryFrame::unchecked_code() const { UNREACHABLE(); }
|
|
WasmInstanceObject* WasmInterpreterEntryFrame::wasm_instance() const {
|
const int offset = WasmCompiledFrameConstants::kWasmInstanceOffset;
|
Object* instance = Memory<Object*>(fp() + offset);
|
return WasmInstanceObject::cast(instance);
|
}
|
|
WasmDebugInfo* WasmInterpreterEntryFrame::debug_info() const {
|
return wasm_instance()->debug_info();
|
}
|
|
WasmModuleObject* WasmInterpreterEntryFrame::module_object() const {
|
return wasm_instance()->module_object();
|
}
|
|
Script* WasmInterpreterEntryFrame::script() const {
|
return module_object()->script();
|
}
|
|
int WasmInterpreterEntryFrame::position() const {
|
return FrameSummary::GetBottom(this).AsWasmInterpreted().SourcePosition();
|
}
|
|
Object* WasmInterpreterEntryFrame::context() const {
|
return wasm_instance()->native_context();
|
}
|
|
Address WasmInterpreterEntryFrame::GetCallerStackPointer() const {
|
return fp() + ExitFrameConstants::kCallerSPOffset;
|
}
|
|
WasmInstanceObject* WasmCompileLazyFrame::wasm_instance() const {
|
return WasmInstanceObject::cast(*wasm_instance_slot());
|
}
|
|
Object** WasmCompileLazyFrame::wasm_instance_slot() const {
|
const int offset = WasmCompileLazyFrameConstants::kWasmInstanceOffset;
|
return &Memory<Object*>(fp() + offset);
|
}
|
|
void WasmCompileLazyFrame::Iterate(RootVisitor* v) const {
|
const int header_size = WasmCompileLazyFrameConstants::kFixedFrameSizeFromFp;
|
Object** base = &Memory<Object*>(sp());
|
Object** limit = &Memory<Object*>(fp() - header_size);
|
v->VisitRootPointers(Root::kTop, nullptr, base, limit);
|
v->VisitRootPointer(Root::kTop, nullptr, wasm_instance_slot());
|
}
|
|
Address WasmCompileLazyFrame::GetCallerStackPointer() const {
|
return fp() + WasmCompileLazyFrameConstants::kCallerSPOffset;
|
}
|
|
namespace {
|
|
|
void PrintFunctionSource(StringStream* accumulator, SharedFunctionInfo* shared,
|
Code* code) {
|
if (FLAG_max_stack_trace_source_length != 0 && code != nullptr) {
|
std::ostringstream os;
|
os << "--------- s o u r c e c o d e ---------\n"
|
<< SourceCodeOf(shared, FLAG_max_stack_trace_source_length)
|
<< "\n-----------------------------------------\n";
|
accumulator->Add(os.str().c_str());
|
}
|
}
|
|
|
} // namespace
|
|
|
void JavaScriptFrame::Print(StringStream* accumulator,
|
PrintMode mode,
|
int index) const {
|
DisallowHeapAllocation no_gc;
|
Object* receiver = this->receiver();
|
JSFunction* function = this->function();
|
|
accumulator->PrintSecurityTokenIfChanged(function);
|
PrintIndex(accumulator, mode, index);
|
PrintFrameKind(accumulator);
|
Code* code = nullptr;
|
if (IsConstructor()) accumulator->Add("new ");
|
accumulator->PrintFunction(function, receiver, &code);
|
accumulator->Add(" [%p]", function);
|
|
// Get scope information for nicer output, if possible. If code is nullptr, or
|
// doesn't contain scope info, scope_info will return 0 for the number of
|
// parameters, stack local variables, context local variables, stack slots,
|
// or context slots.
|
SharedFunctionInfo* shared = function->shared();
|
ScopeInfo* scope_info = shared->scope_info();
|
Object* script_obj = shared->script();
|
if (script_obj->IsScript()) {
|
Script* script = Script::cast(script_obj);
|
accumulator->Add(" [");
|
accumulator->PrintName(script->name());
|
|
if (is_interpreted()) {
|
const InterpretedFrame* iframe =
|
reinterpret_cast<const InterpretedFrame*>(this);
|
BytecodeArray* bytecodes = iframe->GetBytecodeArray();
|
int offset = iframe->GetBytecodeOffset();
|
int source_pos = AbstractCode::cast(bytecodes)->SourcePosition(offset);
|
int line = script->GetLineNumber(source_pos) + 1;
|
accumulator->Add(":%d] [bytecode=%p offset=%d]", line, bytecodes, offset);
|
} else {
|
int function_start_pos = shared->StartPosition();
|
int line = script->GetLineNumber(function_start_pos) + 1;
|
accumulator->Add(":~%d] [pc=%p]", line, reinterpret_cast<void*>(pc()));
|
}
|
}
|
|
accumulator->Add("(this=%o", receiver);
|
|
// Print the parameters.
|
int parameters_count = ComputeParametersCount();
|
for (int i = 0; i < parameters_count; i++) {
|
accumulator->Add(",");
|
accumulator->Add("%o", GetParameter(i));
|
}
|
|
accumulator->Add(")");
|
if (mode == OVERVIEW) {
|
accumulator->Add("\n");
|
return;
|
}
|
if (is_optimized()) {
|
accumulator->Add(" {\n// optimized frame\n");
|
PrintFunctionSource(accumulator, shared, code);
|
accumulator->Add("}\n");
|
return;
|
}
|
accumulator->Add(" {\n");
|
|
// Compute the number of locals and expression stack elements.
|
int heap_locals_count = scope_info->ContextLocalCount();
|
int expressions_count = ComputeExpressionsCount();
|
|
// Try to get hold of the context of this frame.
|
Context* context = nullptr;
|
if (this->context() != nullptr && this->context()->IsContext()) {
|
context = Context::cast(this->context());
|
while (context->IsWithContext()) {
|
context = context->previous();
|
DCHECK_NOT_NULL(context);
|
}
|
}
|
|
// Print heap-allocated local variables.
|
if (heap_locals_count > 0) {
|
accumulator->Add(" // heap-allocated locals\n");
|
}
|
for (int i = 0; i < heap_locals_count; i++) {
|
accumulator->Add(" var ");
|
accumulator->PrintName(scope_info->ContextLocalName(i));
|
accumulator->Add(" = ");
|
if (context != nullptr) {
|
int index = Context::MIN_CONTEXT_SLOTS + i;
|
if (index < context->length()) {
|
accumulator->Add("%o", context->get(index));
|
} else {
|
accumulator->Add(
|
"// warning: missing context slot - inconsistent frame?");
|
}
|
} else {
|
accumulator->Add("// warning: no context found - inconsistent frame?");
|
}
|
accumulator->Add("\n");
|
}
|
|
// Print the expression stack.
|
if (0 < expressions_count) {
|
accumulator->Add(" // expression stack (top to bottom)\n");
|
}
|
for (int i = expressions_count - 1; i >= 0; i--) {
|
accumulator->Add(" [%02d] : %o\n", i, GetExpression(i));
|
}
|
|
PrintFunctionSource(accumulator, shared, code);
|
|
accumulator->Add("}\n\n");
|
}
|
|
|
void ArgumentsAdaptorFrame::Print(StringStream* accumulator,
|
PrintMode mode,
|
int index) const {
|
int actual = ComputeParametersCount();
|
int expected = -1;
|
JSFunction* function = this->function();
|
expected = function->shared()->internal_formal_parameter_count();
|
|
PrintIndex(accumulator, mode, index);
|
accumulator->Add("arguments adaptor frame: %d->%d", actual, expected);
|
if (mode == OVERVIEW) {
|
accumulator->Add("\n");
|
return;
|
}
|
accumulator->Add(" {\n");
|
|
// Print actual arguments.
|
if (actual > 0) accumulator->Add(" // actual arguments\n");
|
for (int i = 0; i < actual; i++) {
|
accumulator->Add(" [%02d] : %o", i, GetParameter(i));
|
if (expected != -1 && i >= expected) {
|
accumulator->Add(" // not passed to callee");
|
}
|
accumulator->Add("\n");
|
}
|
|
accumulator->Add("}\n\n");
|
}
|
|
void EntryFrame::Iterate(RootVisitor* v) const {
|
IteratePc(v, pc_address(), constant_pool_address(), LookupCode());
|
}
|
|
void StandardFrame::IterateExpressions(RootVisitor* v) const {
|
const int offset = StandardFrameConstants::kLastObjectOffset;
|
Object** base = &Memory<Object*>(sp());
|
Object** limit = &Memory<Object*>(fp() + offset) + 1;
|
v->VisitRootPointers(Root::kTop, nullptr, base, limit);
|
}
|
|
void JavaScriptFrame::Iterate(RootVisitor* v) const {
|
IterateExpressions(v);
|
IteratePc(v, pc_address(), constant_pool_address(), LookupCode());
|
}
|
|
void InternalFrame::Iterate(RootVisitor* v) const {
|
Code* code = LookupCode();
|
IteratePc(v, pc_address(), constant_pool_address(), code);
|
// Internal frames typically do not receive any arguments, hence their stack
|
// only contains tagged pointers.
|
// We are misusing the has_tagged_params flag here to tell us whether
|
// the full stack frame contains only tagged pointers or only raw values.
|
// This is used for the WasmCompileLazy builtin, where we actually pass
|
// untagged arguments and also store untagged values on the stack.
|
if (code->has_tagged_params()) IterateExpressions(v);
|
}
|
|
// -------------------------------------------------------------------------
|
|
InnerPointerToCodeCache::InnerPointerToCodeCacheEntry*
|
InnerPointerToCodeCache::GetCacheEntry(Address inner_pointer) {
|
isolate_->counters()->pc_to_code()->Increment();
|
DCHECK(base::bits::IsPowerOfTwo(kInnerPointerToCodeCacheSize));
|
uint32_t hash = ComputeIntegerHash(
|
ObjectAddressForHashing(reinterpret_cast<void*>(inner_pointer)));
|
uint32_t index = hash & (kInnerPointerToCodeCacheSize - 1);
|
InnerPointerToCodeCacheEntry* entry = cache(index);
|
if (entry->inner_pointer == inner_pointer) {
|
isolate_->counters()->pc_to_code_cached()->Increment();
|
DCHECK(entry->code ==
|
isolate_->heap()->GcSafeFindCodeForInnerPointer(inner_pointer));
|
} else {
|
// Because this code may be interrupted by a profiling signal that
|
// also queries the cache, we cannot update inner_pointer before the code
|
// has been set. Otherwise, we risk trying to use a cache entry before
|
// the code has been computed.
|
entry->code =
|
isolate_->heap()->GcSafeFindCodeForInnerPointer(inner_pointer);
|
entry->safepoint_entry.Reset();
|
entry->inner_pointer = inner_pointer;
|
}
|
return entry;
|
}
|
} // namespace internal
|
} // namespace v8
|