// Copyright 2014 the V8 project authors. All rights reserved.
|
// Use of this source code is governed by a BSD-style license that can be
|
// found in the LICENSE file.
|
|
#include <iomanip>
|
|
#include "src/compiler/types.h"
|
|
#include "src/handles-inl.h"
|
#include "src/objects-inl.h"
|
#include "src/ostreams.h"
|
|
namespace v8 {
|
namespace internal {
|
namespace compiler {
|
|
// -----------------------------------------------------------------------------
|
// Range-related helper functions.
|
|
bool RangeType::Limits::IsEmpty() { return this->min > this->max; }
|
|
RangeType::Limits RangeType::Limits::Intersect(Limits lhs, Limits rhs) {
|
DisallowHeapAllocation no_allocation;
|
Limits result(lhs);
|
if (lhs.min < rhs.min) result.min = rhs.min;
|
if (lhs.max > rhs.max) result.max = rhs.max;
|
return result;
|
}
|
|
RangeType::Limits RangeType::Limits::Union(Limits lhs, Limits rhs) {
|
DisallowHeapAllocation no_allocation;
|
if (lhs.IsEmpty()) return rhs;
|
if (rhs.IsEmpty()) return lhs;
|
Limits result(lhs);
|
if (lhs.min > rhs.min) result.min = rhs.min;
|
if (lhs.max < rhs.max) result.max = rhs.max;
|
return result;
|
}
|
|
bool Type::Overlap(const RangeType* lhs, const RangeType* rhs) {
|
DisallowHeapAllocation no_allocation;
|
return !RangeType::Limits::Intersect(RangeType::Limits(lhs),
|
RangeType::Limits(rhs))
|
.IsEmpty();
|
}
|
|
bool Type::Contains(const RangeType* lhs, const RangeType* rhs) {
|
DisallowHeapAllocation no_allocation;
|
return lhs->Min() <= rhs->Min() && rhs->Max() <= lhs->Max();
|
}
|
|
// -----------------------------------------------------------------------------
|
// Min and Max computation.
|
|
double Type::Min() const {
|
DCHECK(this->Is(Number()));
|
DCHECK(!this->Is(NaN()));
|
if (this->IsBitset()) return BitsetType::Min(this->AsBitset());
|
if (this->IsUnion()) {
|
double min = +V8_INFINITY;
|
for (int i = 1, n = AsUnion()->Length(); i < n; ++i) {
|
min = std::min(min, AsUnion()->Get(i).Min());
|
}
|
Type bitset = AsUnion()->Get(0);
|
if (!bitset.Is(NaN())) min = std::min(min, bitset.Min());
|
return min;
|
}
|
if (this->IsRange()) return this->AsRange()->Min();
|
DCHECK(this->IsOtherNumberConstant());
|
return this->AsOtherNumberConstant()->Value();
|
}
|
|
double Type::Max() const {
|
DCHECK(this->Is(Number()));
|
DCHECK(!this->Is(NaN()));
|
if (this->IsBitset()) return BitsetType::Max(this->AsBitset());
|
if (this->IsUnion()) {
|
double max = -V8_INFINITY;
|
for (int i = 1, n = this->AsUnion()->Length(); i < n; ++i) {
|
max = std::max(max, this->AsUnion()->Get(i).Max());
|
}
|
Type bitset = this->AsUnion()->Get(0);
|
if (!bitset.Is(NaN())) max = std::max(max, bitset.Max());
|
return max;
|
}
|
if (this->IsRange()) return this->AsRange()->Max();
|
DCHECK(this->IsOtherNumberConstant());
|
return this->AsOtherNumberConstant()->Value();
|
}
|
|
// -----------------------------------------------------------------------------
|
// Glb and lub computation.
|
|
// The largest bitset subsumed by this type.
|
Type::bitset Type::BitsetGlb() const {
|
DisallowHeapAllocation no_allocation;
|
// Fast case.
|
if (IsBitset()) {
|
return AsBitset();
|
} else if (IsUnion()) {
|
SLOW_DCHECK(AsUnion()->Wellformed());
|
return AsUnion()->Get(0).BitsetGlb() |
|
AsUnion()->Get(1).BitsetGlb(); // Shortcut.
|
} else if (IsRange()) {
|
bitset glb = BitsetType::Glb(AsRange()->Min(), AsRange()->Max());
|
return glb;
|
} else {
|
return BitsetType::kNone;
|
}
|
}
|
|
// The smallest bitset subsuming this type, possibly not a proper one.
|
Type::bitset Type::BitsetLub() const {
|
DisallowHeapAllocation no_allocation;
|
if (IsBitset()) return AsBitset();
|
if (IsUnion()) {
|
// Take the representation from the first element, which is always
|
// a bitset.
|
int bitset = AsUnion()->Get(0).BitsetLub();
|
for (int i = 0, n = AsUnion()->Length(); i < n; ++i) {
|
// Other elements only contribute their semantic part.
|
bitset |= AsUnion()->Get(i).BitsetLub();
|
}
|
return bitset;
|
}
|
if (IsHeapConstant()) return AsHeapConstant()->Lub();
|
if (IsOtherNumberConstant()) {
|
return AsOtherNumberConstant()->Lub();
|
}
|
if (IsRange()) return AsRange()->Lub();
|
if (IsTuple()) return BitsetType::kOtherInternal;
|
UNREACHABLE();
|
}
|
|
Type::bitset BitsetType::Lub(HeapObjectType const& type) {
|
switch (type.instance_type()) {
|
case CONS_STRING_TYPE:
|
case CONS_ONE_BYTE_STRING_TYPE:
|
case THIN_STRING_TYPE:
|
case THIN_ONE_BYTE_STRING_TYPE:
|
case SLICED_STRING_TYPE:
|
case SLICED_ONE_BYTE_STRING_TYPE:
|
case EXTERNAL_STRING_TYPE:
|
case EXTERNAL_ONE_BYTE_STRING_TYPE:
|
case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
|
case SHORT_EXTERNAL_STRING_TYPE:
|
case SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE:
|
case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
|
case STRING_TYPE:
|
case ONE_BYTE_STRING_TYPE:
|
return kString;
|
case EXTERNAL_INTERNALIZED_STRING_TYPE:
|
case EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE:
|
case EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE:
|
case SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE:
|
case SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE:
|
case SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE:
|
case INTERNALIZED_STRING_TYPE:
|
case ONE_BYTE_INTERNALIZED_STRING_TYPE:
|
return kInternalizedString;
|
case SYMBOL_TYPE:
|
return kSymbol;
|
case BIGINT_TYPE:
|
return kBigInt;
|
case ODDBALL_TYPE:
|
switch (type.oddball_type()) {
|
case OddballType::kNone:
|
break;
|
case OddballType::kHole:
|
return kHole;
|
case OddballType::kBoolean:
|
return kBoolean;
|
case OddballType::kNull:
|
return kNull;
|
case OddballType::kUndefined:
|
return kUndefined;
|
case OddballType::kUninitialized:
|
case OddballType::kOther:
|
// TODO(neis): We should add a kOtherOddball type.
|
return kOtherInternal;
|
}
|
UNREACHABLE();
|
case HEAP_NUMBER_TYPE:
|
return kNumber;
|
case JS_OBJECT_TYPE:
|
case JS_ARGUMENTS_TYPE:
|
case JS_ERROR_TYPE:
|
case JS_GLOBAL_OBJECT_TYPE:
|
case JS_GLOBAL_PROXY_TYPE:
|
case JS_API_OBJECT_TYPE:
|
case JS_SPECIAL_API_OBJECT_TYPE:
|
if (type.is_undetectable()) {
|
// Currently we assume that every undetectable receiver is also
|
// callable, which is what we need to support document.all. We
|
// could add another Type bit to support other use cases in the
|
// future if necessary.
|
DCHECK(type.is_callable());
|
return kOtherUndetectable;
|
}
|
if (type.is_callable()) {
|
return kOtherCallable;
|
}
|
return kOtherObject;
|
case JS_ARRAY_TYPE:
|
return kArray;
|
case JS_VALUE_TYPE:
|
case JS_MESSAGE_OBJECT_TYPE:
|
case JS_DATE_TYPE:
|
#ifdef V8_INTL_SUPPORT
|
case JS_INTL_COLLATOR_TYPE:
|
case JS_INTL_LIST_FORMAT_TYPE:
|
case JS_INTL_LOCALE_TYPE:
|
case JS_INTL_PLURAL_RULES_TYPE:
|
case JS_INTL_RELATIVE_TIME_FORMAT_TYPE:
|
#endif // V8_INTL_SUPPORT
|
case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
|
case JS_GENERATOR_OBJECT_TYPE:
|
case JS_ASYNC_GENERATOR_OBJECT_TYPE:
|
case JS_MODULE_NAMESPACE_TYPE:
|
case JS_ARRAY_BUFFER_TYPE:
|
case JS_ARRAY_ITERATOR_TYPE:
|
case JS_REGEXP_TYPE: // TODO(rossberg): there should be a RegExp type.
|
case JS_REGEXP_STRING_ITERATOR_TYPE:
|
case JS_TYPED_ARRAY_TYPE:
|
case JS_DATA_VIEW_TYPE:
|
case JS_SET_TYPE:
|
case JS_MAP_TYPE:
|
case JS_SET_KEY_VALUE_ITERATOR_TYPE:
|
case JS_SET_VALUE_ITERATOR_TYPE:
|
case JS_MAP_KEY_ITERATOR_TYPE:
|
case JS_MAP_KEY_VALUE_ITERATOR_TYPE:
|
case JS_MAP_VALUE_ITERATOR_TYPE:
|
case JS_STRING_ITERATOR_TYPE:
|
case JS_ASYNC_FROM_SYNC_ITERATOR_TYPE:
|
case JS_WEAK_MAP_TYPE:
|
case JS_WEAK_SET_TYPE:
|
case JS_PROMISE_TYPE:
|
case WASM_MODULE_TYPE:
|
case WASM_GLOBAL_TYPE:
|
case WASM_INSTANCE_TYPE:
|
case WASM_MEMORY_TYPE:
|
case WASM_TABLE_TYPE:
|
DCHECK(!type.is_callable());
|
DCHECK(!type.is_undetectable());
|
return kOtherObject;
|
case JS_BOUND_FUNCTION_TYPE:
|
DCHECK(!type.is_undetectable());
|
return kBoundFunction;
|
case JS_FUNCTION_TYPE:
|
DCHECK(!type.is_undetectable());
|
return kFunction;
|
case JS_PROXY_TYPE:
|
DCHECK(!type.is_undetectable());
|
if (type.is_callable()) return kCallableProxy;
|
return kOtherProxy;
|
case MAP_TYPE:
|
case ALLOCATION_SITE_TYPE:
|
case ACCESSOR_INFO_TYPE:
|
case SHARED_FUNCTION_INFO_TYPE:
|
case FUNCTION_TEMPLATE_INFO_TYPE:
|
case ACCESSOR_PAIR_TYPE:
|
case FIXED_ARRAY_TYPE:
|
case HASH_TABLE_TYPE:
|
case ORDERED_HASH_MAP_TYPE:
|
case ORDERED_HASH_SET_TYPE:
|
case NAME_DICTIONARY_TYPE:
|
case GLOBAL_DICTIONARY_TYPE:
|
case NUMBER_DICTIONARY_TYPE:
|
case SIMPLE_NUMBER_DICTIONARY_TYPE:
|
case STRING_TABLE_TYPE:
|
case EPHEMERON_HASH_TABLE_TYPE:
|
case WEAK_FIXED_ARRAY_TYPE:
|
case WEAK_ARRAY_LIST_TYPE:
|
case FIXED_DOUBLE_ARRAY_TYPE:
|
case FEEDBACK_METADATA_TYPE:
|
case BYTE_ARRAY_TYPE:
|
case BYTECODE_ARRAY_TYPE:
|
case OBJECT_BOILERPLATE_DESCRIPTION_TYPE:
|
case ARRAY_BOILERPLATE_DESCRIPTION_TYPE:
|
case DESCRIPTOR_ARRAY_TYPE:
|
case TRANSITION_ARRAY_TYPE:
|
case FEEDBACK_CELL_TYPE:
|
case FEEDBACK_VECTOR_TYPE:
|
case PROPERTY_ARRAY_TYPE:
|
case FOREIGN_TYPE:
|
case SCOPE_INFO_TYPE:
|
case SCRIPT_CONTEXT_TABLE_TYPE:
|
case BLOCK_CONTEXT_TYPE:
|
case CATCH_CONTEXT_TYPE:
|
case DEBUG_EVALUATE_CONTEXT_TYPE:
|
case EVAL_CONTEXT_TYPE:
|
case FUNCTION_CONTEXT_TYPE:
|
case MODULE_CONTEXT_TYPE:
|
case NATIVE_CONTEXT_TYPE:
|
case SCRIPT_CONTEXT_TYPE:
|
case WITH_CONTEXT_TYPE:
|
case SCRIPT_TYPE:
|
case CODE_TYPE:
|
case PROPERTY_CELL_TYPE:
|
case MODULE_TYPE:
|
case MODULE_INFO_ENTRY_TYPE:
|
case CELL_TYPE:
|
case PRE_PARSED_SCOPE_DATA_TYPE:
|
case UNCOMPILED_DATA_WITHOUT_PRE_PARSED_SCOPE_TYPE:
|
case UNCOMPILED_DATA_WITH_PRE_PARSED_SCOPE_TYPE:
|
return kOtherInternal;
|
|
// Remaining instance types are unsupported for now. If any of them do
|
// require bit set types, they should get kOtherInternal.
|
case MUTABLE_HEAP_NUMBER_TYPE:
|
case FREE_SPACE_TYPE:
|
#define FIXED_TYPED_ARRAY_CASE(Type, type, TYPE, ctype) \
|
case FIXED_##TYPE##_ARRAY_TYPE:
|
|
TYPED_ARRAYS(FIXED_TYPED_ARRAY_CASE)
|
#undef FIXED_TYPED_ARRAY_CASE
|
case FILLER_TYPE:
|
case ACCESS_CHECK_INFO_TYPE:
|
case CALL_HANDLER_INFO_TYPE:
|
case INTERCEPTOR_INFO_TYPE:
|
case OBJECT_TEMPLATE_INFO_TYPE:
|
case ALLOCATION_MEMENTO_TYPE:
|
case ALIASED_ARGUMENTS_ENTRY_TYPE:
|
case PROMISE_CAPABILITY_TYPE:
|
case PROMISE_REACTION_TYPE:
|
case DEBUG_INFO_TYPE:
|
case STACK_FRAME_INFO_TYPE:
|
case SMALL_ORDERED_HASH_MAP_TYPE:
|
case SMALL_ORDERED_HASH_SET_TYPE:
|
case PROTOTYPE_INFO_TYPE:
|
case INTERPRETER_DATA_TYPE:
|
case TUPLE2_TYPE:
|
case TUPLE3_TYPE:
|
case WASM_DEBUG_INFO_TYPE:
|
case WASM_EXPORTED_FUNCTION_DATA_TYPE:
|
case LOAD_HANDLER_TYPE:
|
case STORE_HANDLER_TYPE:
|
case ASYNC_GENERATOR_REQUEST_TYPE:
|
case CODE_DATA_CONTAINER_TYPE:
|
case CALLBACK_TASK_TYPE:
|
case CALLABLE_TASK_TYPE:
|
case PROMISE_FULFILL_REACTION_JOB_TASK_TYPE:
|
case PROMISE_REJECT_REACTION_JOB_TASK_TYPE:
|
case PROMISE_RESOLVE_THENABLE_JOB_TASK_TYPE:
|
UNREACHABLE();
|
}
|
UNREACHABLE();
|
}
|
|
Type::bitset BitsetType::Lub(double value) {
|
DisallowHeapAllocation no_allocation;
|
if (IsMinusZero(value)) return kMinusZero;
|
if (std::isnan(value)) return kNaN;
|
if (IsUint32Double(value) || IsInt32Double(value)) return Lub(value, value);
|
return kOtherNumber;
|
}
|
|
// Minimum values of plain numeric bitsets.
|
const BitsetType::Boundary BitsetType::BoundariesArray[] = {
|
{kOtherNumber, kPlainNumber, -V8_INFINITY},
|
{kOtherSigned32, kNegative32, kMinInt},
|
{kNegative31, kNegative31, -0x40000000},
|
{kUnsigned30, kUnsigned30, 0},
|
{kOtherUnsigned31, kUnsigned31, 0x40000000},
|
{kOtherUnsigned32, kUnsigned32, 0x80000000},
|
{kOtherNumber, kPlainNumber, static_cast<double>(kMaxUInt32) + 1}};
|
|
const BitsetType::Boundary* BitsetType::Boundaries() { return BoundariesArray; }
|
|
size_t BitsetType::BoundariesSize() {
|
// Windows doesn't like arraysize here.
|
// return arraysize(BoundariesArray);
|
return 7;
|
}
|
|
Type::bitset BitsetType::ExpandInternals(Type::bitset bits) {
|
DCHECK_IMPLIES(bits & kOtherString, (bits & kString) == kString);
|
DisallowHeapAllocation no_allocation;
|
if (!(bits & kPlainNumber)) return bits; // Shortcut.
|
const Boundary* boundaries = Boundaries();
|
for (size_t i = 0; i < BoundariesSize(); ++i) {
|
DCHECK(BitsetType::Is(boundaries[i].internal, boundaries[i].external));
|
if (bits & boundaries[i].internal) bits |= boundaries[i].external;
|
}
|
return bits;
|
}
|
|
Type::bitset BitsetType::Lub(double min, double max) {
|
DisallowHeapAllocation no_allocation;
|
int lub = kNone;
|
const Boundary* mins = Boundaries();
|
|
for (size_t i = 1; i < BoundariesSize(); ++i) {
|
if (min < mins[i].min) {
|
lub |= mins[i - 1].internal;
|
if (max < mins[i].min) return lub;
|
}
|
}
|
return lub | mins[BoundariesSize() - 1].internal;
|
}
|
|
Type::bitset BitsetType::NumberBits(bitset bits) { return bits & kPlainNumber; }
|
|
Type::bitset BitsetType::Glb(double min, double max) {
|
DisallowHeapAllocation no_allocation;
|
int glb = kNone;
|
const Boundary* mins = Boundaries();
|
|
// If the range does not touch 0, the bound is empty.
|
if (max < -1 || min > 0) return glb;
|
|
for (size_t i = 1; i + 1 < BoundariesSize(); ++i) {
|
if (min <= mins[i].min) {
|
if (max + 1 < mins[i + 1].min) break;
|
glb |= mins[i].external;
|
}
|
}
|
// OtherNumber also contains float numbers, so it can never be
|
// in the greatest lower bound.
|
return glb & ~(kOtherNumber);
|
}
|
|
double BitsetType::Min(bitset bits) {
|
DisallowHeapAllocation no_allocation;
|
DCHECK(Is(bits, kNumber));
|
DCHECK(!Is(bits, kNaN));
|
const Boundary* mins = Boundaries();
|
bool mz = bits & kMinusZero;
|
for (size_t i = 0; i < BoundariesSize(); ++i) {
|
if (Is(mins[i].internal, bits)) {
|
return mz ? std::min(0.0, mins[i].min) : mins[i].min;
|
}
|
}
|
DCHECK(mz);
|
return 0;
|
}
|
|
double BitsetType::Max(bitset bits) {
|
DisallowHeapAllocation no_allocation;
|
DCHECK(Is(bits, kNumber));
|
DCHECK(!Is(bits, kNaN));
|
const Boundary* mins = Boundaries();
|
bool mz = bits & kMinusZero;
|
if (BitsetType::Is(mins[BoundariesSize() - 1].internal, bits)) {
|
return +V8_INFINITY;
|
}
|
for (size_t i = BoundariesSize() - 1; i-- > 0;) {
|
if (Is(mins[i].internal, bits)) {
|
return mz ? std::max(0.0, mins[i + 1].min - 1) : mins[i + 1].min - 1;
|
}
|
}
|
DCHECK(mz);
|
return 0;
|
}
|
|
// static
|
bool OtherNumberConstantType::IsOtherNumberConstant(double value) {
|
// Not an integer, not NaN, and not -0.
|
return !std::isnan(value) && !RangeType::IsInteger(value) &&
|
!IsMinusZero(value);
|
}
|
|
HeapConstantType::HeapConstantType(BitsetType::bitset bitset,
|
const HeapObjectRef& heap_ref)
|
: TypeBase(kHeapConstant), bitset_(bitset), heap_ref_(heap_ref) {}
|
|
Handle<HeapObject> HeapConstantType::Value() const {
|
return heap_ref_.object<HeapObject>();
|
}
|
|
// -----------------------------------------------------------------------------
|
// Predicates.
|
|
bool Type::SimplyEquals(Type that) const {
|
DisallowHeapAllocation no_allocation;
|
if (this->IsHeapConstant()) {
|
return that.IsHeapConstant() &&
|
this->AsHeapConstant()->Value().address() ==
|
that.AsHeapConstant()->Value().address();
|
}
|
if (this->IsOtherNumberConstant()) {
|
return that.IsOtherNumberConstant() &&
|
this->AsOtherNumberConstant()->Value() ==
|
that.AsOtherNumberConstant()->Value();
|
}
|
if (this->IsRange()) {
|
if (that.IsHeapConstant() || that.IsOtherNumberConstant()) return false;
|
}
|
if (this->IsTuple()) {
|
if (!that.IsTuple()) return false;
|
const TupleType* this_tuple = this->AsTuple();
|
const TupleType* that_tuple = that.AsTuple();
|
if (this_tuple->Arity() != that_tuple->Arity()) {
|
return false;
|
}
|
for (int i = 0, n = this_tuple->Arity(); i < n; ++i) {
|
if (!this_tuple->Element(i).Equals(that_tuple->Element(i))) return false;
|
}
|
return true;
|
}
|
UNREACHABLE();
|
}
|
|
// Check if [this] <= [that].
|
bool Type::SlowIs(Type that) const {
|
DisallowHeapAllocation no_allocation;
|
|
// Fast bitset cases
|
if (that.IsBitset()) {
|
return BitsetType::Is(this->BitsetLub(), that.AsBitset());
|
}
|
|
if (this->IsBitset()) {
|
return BitsetType::Is(this->AsBitset(), that.BitsetGlb());
|
}
|
|
// (T1 \/ ... \/ Tn) <= T if (T1 <= T) /\ ... /\ (Tn <= T)
|
if (this->IsUnion()) {
|
for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
|
if (!this->AsUnion()->Get(i).Is(that)) return false;
|
}
|
return true;
|
}
|
|
// T <= (T1 \/ ... \/ Tn) if (T <= T1) \/ ... \/ (T <= Tn)
|
if (that.IsUnion()) {
|
for (int i = 0, n = that.AsUnion()->Length(); i < n; ++i) {
|
if (this->Is(that.AsUnion()->Get(i))) return true;
|
if (i > 1 && this->IsRange()) return false; // Shortcut.
|
}
|
return false;
|
}
|
|
if (that.IsRange()) {
|
return (this->IsRange() && Contains(that.AsRange(), this->AsRange()));
|
}
|
if (this->IsRange()) return false;
|
|
return this->SimplyEquals(that);
|
}
|
|
// Check if [this] and [that] overlap.
|
bool Type::Maybe(Type that) const {
|
DisallowHeapAllocation no_allocation;
|
|
if (BitsetType::IsNone(this->BitsetLub() & that.BitsetLub())) return false;
|
|
// (T1 \/ ... \/ Tn) overlaps T if (T1 overlaps T) \/ ... \/ (Tn overlaps T)
|
if (this->IsUnion()) {
|
for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
|
if (this->AsUnion()->Get(i).Maybe(that)) return true;
|
}
|
return false;
|
}
|
|
// T overlaps (T1 \/ ... \/ Tn) if (T overlaps T1) \/ ... \/ (T overlaps Tn)
|
if (that.IsUnion()) {
|
for (int i = 0, n = that.AsUnion()->Length(); i < n; ++i) {
|
if (this->Maybe(that.AsUnion()->Get(i))) return true;
|
}
|
return false;
|
}
|
|
if (this->IsBitset() && that.IsBitset()) return true;
|
|
if (this->IsRange()) {
|
if (that.IsRange()) {
|
return Overlap(this->AsRange(), that.AsRange());
|
}
|
if (that.IsBitset()) {
|
bitset number_bits = BitsetType::NumberBits(that.AsBitset());
|
if (number_bits == BitsetType::kNone) {
|
return false;
|
}
|
double min = std::max(BitsetType::Min(number_bits), this->Min());
|
double max = std::min(BitsetType::Max(number_bits), this->Max());
|
return min <= max;
|
}
|
}
|
if (that.IsRange()) {
|
return that.Maybe(*this); // This case is handled above.
|
}
|
|
if (this->IsBitset() || that.IsBitset()) return true;
|
|
return this->SimplyEquals(that);
|
}
|
|
// Return the range in [this], or [nullptr].
|
Type Type::GetRange() const {
|
DisallowHeapAllocation no_allocation;
|
if (this->IsRange()) return *this;
|
if (this->IsUnion() && this->AsUnion()->Get(1).IsRange()) {
|
return this->AsUnion()->Get(1);
|
}
|
return nullptr;
|
}
|
|
bool UnionType::Wellformed() const {
|
DisallowHeapAllocation no_allocation;
|
// This checks the invariants of the union representation:
|
// 1. There are at least two elements.
|
// 2. The first element is a bitset, no other element is a bitset.
|
// 3. At most one element is a range, and it must be the second one.
|
// 4. No element is itself a union.
|
// 5. No element (except the bitset) is a subtype of any other.
|
// 6. If there is a range, then the bitset type does not contain
|
// plain number bits.
|
DCHECK_LE(2, this->Length()); // (1)
|
DCHECK(this->Get(0).IsBitset()); // (2a)
|
|
for (int i = 0; i < this->Length(); ++i) {
|
if (i != 0) DCHECK(!this->Get(i).IsBitset()); // (2b)
|
if (i != 1) DCHECK(!this->Get(i).IsRange()); // (3)
|
DCHECK(!this->Get(i).IsUnion()); // (4)
|
for (int j = 0; j < this->Length(); ++j) {
|
if (i != j && i != 0) DCHECK(!this->Get(i).Is(this->Get(j))); // (5)
|
}
|
}
|
DCHECK(!this->Get(1).IsRange() ||
|
(BitsetType::NumberBits(this->Get(0).AsBitset()) ==
|
BitsetType::kNone)); // (6)
|
return true;
|
}
|
|
// -----------------------------------------------------------------------------
|
// Union and intersection
|
|
Type Type::Intersect(Type type1, Type type2, Zone* zone) {
|
// Fast case: bit sets.
|
if (type1.IsBitset() && type2.IsBitset()) {
|
return NewBitset(type1.AsBitset() & type2.AsBitset());
|
}
|
|
// Fast case: top or bottom types.
|
if (type1.IsNone() || type2.IsAny()) return type1; // Shortcut.
|
if (type2.IsNone() || type1.IsAny()) return type2; // Shortcut.
|
|
// Semi-fast case.
|
if (type1.Is(type2)) return type1;
|
if (type2.Is(type1)) return type2;
|
|
// Slow case: create union.
|
|
// Semantic subtyping check - this is needed for consistency with the
|
// semi-fast case above.
|
if (type1.Is(type2)) {
|
type2 = Any();
|
} else if (type2.Is(type1)) {
|
type1 = Any();
|
}
|
|
bitset bits = type1.BitsetGlb() & type2.BitsetGlb();
|
int size1 = type1.IsUnion() ? type1.AsUnion()->Length() : 1;
|
int size2 = type2.IsUnion() ? type2.AsUnion()->Length() : 1;
|
int size;
|
if (base::bits::SignedAddOverflow32(size1, size2, &size)) return Any();
|
if (base::bits::SignedAddOverflow32(size, 2, &size)) return Any();
|
UnionType* result = UnionType::New(size, zone);
|
size = 0;
|
|
// Deal with bitsets.
|
result->Set(size++, NewBitset(bits));
|
|
RangeType::Limits lims = RangeType::Limits::Empty();
|
size = IntersectAux(type1, type2, result, size, &lims, zone);
|
|
// If the range is not empty, then insert it into the union and
|
// remove the number bits from the bitset.
|
if (!lims.IsEmpty()) {
|
size = UpdateRange(Type::Range(lims, zone), result, size, zone);
|
|
// Remove the number bits.
|
bitset number_bits = BitsetType::NumberBits(bits);
|
bits &= ~number_bits;
|
result->Set(0, NewBitset(bits));
|
}
|
return NormalizeUnion(result, size, zone);
|
}
|
|
int Type::UpdateRange(Type range, UnionType* result, int size, Zone* zone) {
|
if (size == 1) {
|
result->Set(size++, range);
|
} else {
|
// Make space for the range.
|
result->Set(size++, result->Get(1));
|
result->Set(1, range);
|
}
|
|
// Remove any components that just got subsumed.
|
for (int i = 2; i < size;) {
|
if (result->Get(i).Is(range)) {
|
result->Set(i, result->Get(--size));
|
} else {
|
++i;
|
}
|
}
|
return size;
|
}
|
|
RangeType::Limits Type::ToLimits(bitset bits, Zone* zone) {
|
bitset number_bits = BitsetType::NumberBits(bits);
|
|
if (number_bits == BitsetType::kNone) {
|
return RangeType::Limits::Empty();
|
}
|
|
return RangeType::Limits(BitsetType::Min(number_bits),
|
BitsetType::Max(number_bits));
|
}
|
|
RangeType::Limits Type::IntersectRangeAndBitset(Type range, Type bitset,
|
Zone* zone) {
|
RangeType::Limits range_lims(range.AsRange());
|
RangeType::Limits bitset_lims = ToLimits(bitset.AsBitset(), zone);
|
return RangeType::Limits::Intersect(range_lims, bitset_lims);
|
}
|
|
int Type::IntersectAux(Type lhs, Type rhs, UnionType* result, int size,
|
RangeType::Limits* lims, Zone* zone) {
|
if (lhs.IsUnion()) {
|
for (int i = 0, n = lhs.AsUnion()->Length(); i < n; ++i) {
|
size = IntersectAux(lhs.AsUnion()->Get(i), rhs, result, size, lims, zone);
|
}
|
return size;
|
}
|
if (rhs.IsUnion()) {
|
for (int i = 0, n = rhs.AsUnion()->Length(); i < n; ++i) {
|
size = IntersectAux(lhs, rhs.AsUnion()->Get(i), result, size, lims, zone);
|
}
|
return size;
|
}
|
|
if (BitsetType::IsNone(lhs.BitsetLub() & rhs.BitsetLub())) return size;
|
|
if (lhs.IsRange()) {
|
if (rhs.IsBitset()) {
|
RangeType::Limits lim = IntersectRangeAndBitset(lhs, rhs, zone);
|
|
if (!lim.IsEmpty()) {
|
*lims = RangeType::Limits::Union(lim, *lims);
|
}
|
return size;
|
}
|
if (rhs.IsRange()) {
|
RangeType::Limits lim = RangeType::Limits::Intersect(
|
RangeType::Limits(lhs.AsRange()), RangeType::Limits(rhs.AsRange()));
|
if (!lim.IsEmpty()) {
|
*lims = RangeType::Limits::Union(lim, *lims);
|
}
|
}
|
return size;
|
}
|
if (rhs.IsRange()) {
|
// This case is handled symmetrically above.
|
return IntersectAux(rhs, lhs, result, size, lims, zone);
|
}
|
if (lhs.IsBitset() || rhs.IsBitset()) {
|
return AddToUnion(lhs.IsBitset() ? rhs : lhs, result, size, zone);
|
}
|
if (lhs.SimplyEquals(rhs)) {
|
return AddToUnion(lhs, result, size, zone);
|
}
|
return size;
|
}
|
|
// Make sure that we produce a well-formed range and bitset:
|
// If the range is non-empty, the number bits in the bitset should be
|
// clear. Moreover, if we have a canonical range (such as Signed32),
|
// we want to produce a bitset rather than a range.
|
Type Type::NormalizeRangeAndBitset(Type range, bitset* bits, Zone* zone) {
|
// Fast path: If the bitset does not mention numbers, we can just keep the
|
// range.
|
bitset number_bits = BitsetType::NumberBits(*bits);
|
if (number_bits == 0) {
|
return range;
|
}
|
|
// If the range is semantically contained within the bitset, return None and
|
// leave the bitset untouched.
|
bitset range_lub = range.BitsetLub();
|
if (BitsetType::Is(range_lub, *bits)) {
|
return None();
|
}
|
|
// Slow path: reconcile the bitset range and the range.
|
double bitset_min = BitsetType::Min(number_bits);
|
double bitset_max = BitsetType::Max(number_bits);
|
|
double range_min = range.Min();
|
double range_max = range.Max();
|
|
// Remove the number bits from the bitset, they would just confuse us now.
|
// NOTE: bits contains OtherNumber iff bits contains PlainNumber, in which
|
// case we already returned after the subtype check above.
|
*bits &= ~number_bits;
|
|
if (range_min <= bitset_min && range_max >= bitset_max) {
|
// Bitset is contained within the range, just return the range.
|
return range;
|
}
|
|
if (bitset_min < range_min) {
|
range_min = bitset_min;
|
}
|
if (bitset_max > range_max) {
|
range_max = bitset_max;
|
}
|
return Type::Range(range_min, range_max, zone);
|
}
|
|
Type Type::NewConstant(double value, Zone* zone) {
|
if (RangeType::IsInteger(value)) {
|
return Range(value, value, zone);
|
} else if (IsMinusZero(value)) {
|
return Type::MinusZero();
|
} else if (std::isnan(value)) {
|
return Type::NaN();
|
}
|
|
DCHECK(OtherNumberConstantType::IsOtherNumberConstant(value));
|
return OtherNumberConstant(value, zone);
|
}
|
|
Type Type::NewConstant(JSHeapBroker* js_heap_broker, Handle<i::Object> value,
|
Zone* zone) {
|
ObjectRef ref(js_heap_broker, value);
|
if (ref.IsSmi()) {
|
return NewConstant(static_cast<double>(ref.AsSmi()), zone);
|
}
|
if (ref.IsHeapNumber()) {
|
return NewConstant(ref.AsHeapNumber().value(), zone);
|
}
|
if (ref.IsString() && !ref.IsInternalizedString()) {
|
return Type::String();
|
}
|
return HeapConstant(ref.AsHeapObject(), zone);
|
}
|
|
Type Type::Union(Type type1, Type type2, Zone* zone) {
|
// Fast case: bit sets.
|
if (type1.IsBitset() && type2.IsBitset()) {
|
return NewBitset(type1.AsBitset() | type2.AsBitset());
|
}
|
|
// Fast case: top or bottom types.
|
if (type1.IsAny() || type2.IsNone()) return type1;
|
if (type2.IsAny() || type1.IsNone()) return type2;
|
|
// Semi-fast case.
|
if (type1.Is(type2)) return type2;
|
if (type2.Is(type1)) return type1;
|
|
// Slow case: create union.
|
int size1 = type1.IsUnion() ? type1.AsUnion()->Length() : 1;
|
int size2 = type2.IsUnion() ? type2.AsUnion()->Length() : 1;
|
int size;
|
if (base::bits::SignedAddOverflow32(size1, size2, &size)) return Any();
|
if (base::bits::SignedAddOverflow32(size, 2, &size)) return Any();
|
UnionType* result = UnionType::New(size, zone);
|
size = 0;
|
|
// Compute the new bitset.
|
bitset new_bitset = type1.BitsetGlb() | type2.BitsetGlb();
|
|
// Deal with ranges.
|
Type range = None();
|
Type range1 = type1.GetRange();
|
Type range2 = type2.GetRange();
|
if (range1 != nullptr && range2 != nullptr) {
|
RangeType::Limits lims =
|
RangeType::Limits::Union(RangeType::Limits(range1.AsRange()),
|
RangeType::Limits(range2.AsRange()));
|
Type union_range = Type::Range(lims, zone);
|
range = NormalizeRangeAndBitset(union_range, &new_bitset, zone);
|
} else if (range1 != nullptr) {
|
range = NormalizeRangeAndBitset(range1, &new_bitset, zone);
|
} else if (range2 != nullptr) {
|
range = NormalizeRangeAndBitset(range2, &new_bitset, zone);
|
}
|
Type bits = NewBitset(new_bitset);
|
result->Set(size++, bits);
|
if (!range.IsNone()) result->Set(size++, range);
|
|
size = AddToUnion(type1, result, size, zone);
|
size = AddToUnion(type2, result, size, zone);
|
return NormalizeUnion(result, size, zone);
|
}
|
|
// Add [type] to [result] unless [type] is bitset, range, or already subsumed.
|
// Return new size of [result].
|
int Type::AddToUnion(Type type, UnionType* result, int size, Zone* zone) {
|
if (type.IsBitset() || type.IsRange()) return size;
|
if (type.IsUnion()) {
|
for (int i = 0, n = type.AsUnion()->Length(); i < n; ++i) {
|
size = AddToUnion(type.AsUnion()->Get(i), result, size, zone);
|
}
|
return size;
|
}
|
for (int i = 0; i < size; ++i) {
|
if (type.Is(result->Get(i))) return size;
|
}
|
result->Set(size++, type);
|
return size;
|
}
|
|
Type Type::NormalizeUnion(UnionType* unioned, int size, Zone* zone) {
|
DCHECK_LE(1, size);
|
DCHECK(unioned->Get(0).IsBitset());
|
// If the union has just one element, return it.
|
if (size == 1) {
|
return unioned->Get(0);
|
}
|
bitset bits = unioned->Get(0).AsBitset();
|
// If the union only consists of a range, we can get rid of the union.
|
if (size == 2 && bits == BitsetType::kNone) {
|
if (unioned->Get(1).IsRange()) {
|
return Type::Range(unioned->Get(1).AsRange()->Min(),
|
unioned->Get(1).AsRange()->Max(), zone);
|
}
|
}
|
unioned->Shrink(size);
|
SLOW_DCHECK(unioned->Wellformed());
|
return Type(unioned);
|
}
|
|
int Type::NumConstants() const {
|
DisallowHeapAllocation no_allocation;
|
if (this->IsHeapConstant() || this->IsOtherNumberConstant()) {
|
return 1;
|
} else if (this->IsUnion()) {
|
int result = 0;
|
for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
|
if (this->AsUnion()->Get(i).IsHeapConstant()) ++result;
|
}
|
return result;
|
} else {
|
return 0;
|
}
|
}
|
|
// -----------------------------------------------------------------------------
|
// Printing.
|
|
const char* BitsetType::Name(bitset bits) {
|
switch (bits) {
|
#define RETURN_NAMED_TYPE(type, value) \
|
case k##type: \
|
return #type;
|
PROPER_BITSET_TYPE_LIST(RETURN_NAMED_TYPE)
|
INTERNAL_BITSET_TYPE_LIST(RETURN_NAMED_TYPE)
|
#undef RETURN_NAMED_TYPE
|
|
default:
|
return nullptr;
|
}
|
}
|
|
void BitsetType::Print(std::ostream& os, // NOLINT
|
bitset bits) {
|
DisallowHeapAllocation no_allocation;
|
const char* name = Name(bits);
|
if (name != nullptr) {
|
os << name;
|
return;
|
}
|
|
// clang-format off
|
static const bitset named_bitsets[] = {
|
#define BITSET_CONSTANT(type, value) k##type,
|
INTERNAL_BITSET_TYPE_LIST(BITSET_CONSTANT)
|
PROPER_BITSET_TYPE_LIST(BITSET_CONSTANT)
|
#undef BITSET_CONSTANT
|
};
|
// clang-format on
|
|
bool is_first = true;
|
os << "(";
|
for (int i(arraysize(named_bitsets) - 1); bits != 0 && i >= 0; --i) {
|
bitset subset = named_bitsets[i];
|
if ((bits & subset) == subset) {
|
if (!is_first) os << " | ";
|
is_first = false;
|
os << Name(subset);
|
bits -= subset;
|
}
|
}
|
DCHECK_EQ(0, bits);
|
os << ")";
|
}
|
|
void Type::PrintTo(std::ostream& os) const {
|
DisallowHeapAllocation no_allocation;
|
if (this->IsBitset()) {
|
BitsetType::Print(os, this->AsBitset());
|
} else if (this->IsHeapConstant()) {
|
os << "HeapConstant(" << Brief(*this->AsHeapConstant()->Value()) << ")";
|
} else if (this->IsOtherNumberConstant()) {
|
os << "OtherNumberConstant(" << this->AsOtherNumberConstant()->Value()
|
<< ")";
|
} else if (this->IsRange()) {
|
std::ostream::fmtflags saved_flags = os.setf(std::ios::fixed);
|
std::streamsize saved_precision = os.precision(0);
|
os << "Range(" << this->AsRange()->Min() << ", " << this->AsRange()->Max()
|
<< ")";
|
os.flags(saved_flags);
|
os.precision(saved_precision);
|
} else if (this->IsUnion()) {
|
os << "(";
|
for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
|
Type type_i = this->AsUnion()->Get(i);
|
if (i > 0) os << " | " << type_i;
|
}
|
os << ")";
|
} else if (this->IsTuple()) {
|
os << "<";
|
for (int i = 0, n = this->AsTuple()->Arity(); i < n; ++i) {
|
Type type_i = this->AsTuple()->Element(i);
|
if (i > 0) os << ", " << type_i;
|
}
|
os << ">";
|
} else {
|
UNREACHABLE();
|
}
|
}
|
|
#ifdef DEBUG
|
void Type::Print() const {
|
StdoutStream os;
|
PrintTo(os);
|
os << std::endl;
|
}
|
void BitsetType::Print(bitset bits) {
|
StdoutStream os;
|
Print(os, bits);
|
os << std::endl;
|
}
|
#endif
|
|
BitsetType::bitset BitsetType::SignedSmall() {
|
return SmiValuesAre31Bits() ? kSigned31 : kSigned32;
|
}
|
|
BitsetType::bitset BitsetType::UnsignedSmall() {
|
return SmiValuesAre31Bits() ? kUnsigned30 : kUnsigned31;
|
}
|
|
// static
|
Type Type::Tuple(Type first, Type second, Type third, Zone* zone) {
|
TupleType* tuple = TupleType::New(3, zone);
|
tuple->InitElement(0, first);
|
tuple->InitElement(1, second);
|
tuple->InitElement(2, third);
|
return FromTypeBase(tuple);
|
}
|
|
// static
|
Type Type::OtherNumberConstant(double value, Zone* zone) {
|
return FromTypeBase(OtherNumberConstantType::New(value, zone));
|
}
|
|
// static
|
Type Type::HeapConstant(JSHeapBroker* js_heap_broker, Handle<i::Object> value,
|
Zone* zone) {
|
return FromTypeBase(
|
HeapConstantType::New(HeapObjectRef(js_heap_broker, value), zone));
|
}
|
|
// static
|
Type Type::HeapConstant(const HeapObjectRef& value, Zone* zone) {
|
return HeapConstantType::New(value, zone);
|
}
|
|
// static
|
Type Type::Range(double min, double max, Zone* zone) {
|
return FromTypeBase(RangeType::New(min, max, zone));
|
}
|
|
// static
|
Type Type::Range(RangeType::Limits lims, Zone* zone) {
|
return FromTypeBase(RangeType::New(lims, zone));
|
}
|
|
// static
|
Type Type::Union(int length, Zone* zone) {
|
return FromTypeBase(UnionType::New(length, zone));
|
}
|
|
const HeapConstantType* Type::AsHeapConstant() const {
|
DCHECK(IsKind(TypeBase::kHeapConstant));
|
return static_cast<const HeapConstantType*>(ToTypeBase());
|
}
|
|
const OtherNumberConstantType* Type::AsOtherNumberConstant() const {
|
DCHECK(IsKind(TypeBase::kOtherNumberConstant));
|
return static_cast<const OtherNumberConstantType*>(ToTypeBase());
|
}
|
|
const RangeType* Type::AsRange() const {
|
DCHECK(IsKind(TypeBase::kRange));
|
return static_cast<const RangeType*>(ToTypeBase());
|
}
|
|
const TupleType* Type::AsTuple() const {
|
DCHECK(IsKind(TypeBase::kTuple));
|
return static_cast<const TupleType*>(ToTypeBase());
|
}
|
|
const UnionType* Type::AsUnion() const {
|
DCHECK(IsKind(TypeBase::kUnion));
|
return static_cast<const UnionType*>(ToTypeBase());
|
}
|
|
std::ostream& operator<<(std::ostream& os, Type type) {
|
type.PrintTo(os);
|
return os;
|
}
|
|
} // namespace compiler
|
} // namespace internal
|
} // namespace v8
|