// Copyright 2014 the V8 project authors. All rights reserved.
|
// Use of this source code is governed by a BSD-style license that can be
|
// found in the LICENSE file.
|
|
#ifndef V8_COMPILER_REGISTER_ALLOCATOR_H_
|
#define V8_COMPILER_REGISTER_ALLOCATOR_H_
|
|
#include "src/base/bits.h"
|
#include "src/base/compiler-specific.h"
|
#include "src/compiler/instruction.h"
|
#include "src/globals.h"
|
#include "src/ostreams.h"
|
#include "src/register-configuration.h"
|
#include "src/zone/zone-containers.h"
|
|
namespace v8 {
|
namespace internal {
|
namespace compiler {
|
|
enum RegisterKind { GENERAL_REGISTERS, FP_REGISTERS };
|
|
// This class represents a single point of a InstructionOperand's lifetime. For
|
// each instruction there are four lifetime positions:
|
//
|
// [[START, END], [START, END]]
|
//
|
// Where the first half position corresponds to
|
//
|
// [GapPosition::START, GapPosition::END]
|
//
|
// and the second half position corresponds to
|
//
|
// [Lifetime::USED_AT_START, Lifetime::USED_AT_END]
|
//
|
class LifetimePosition final {
|
public:
|
// Return the lifetime position that corresponds to the beginning of
|
// the gap with the given index.
|
static LifetimePosition GapFromInstructionIndex(int index) {
|
return LifetimePosition(index * kStep);
|
}
|
// Return the lifetime position that corresponds to the beginning of
|
// the instruction with the given index.
|
static LifetimePosition InstructionFromInstructionIndex(int index) {
|
return LifetimePosition(index * kStep + kHalfStep);
|
}
|
|
static bool ExistsGapPositionBetween(LifetimePosition pos1,
|
LifetimePosition pos2) {
|
if (pos1 > pos2) std::swap(pos1, pos2);
|
LifetimePosition next(pos1.value_ + 1);
|
if (next.IsGapPosition()) return next < pos2;
|
return next.NextFullStart() < pos2;
|
}
|
|
// Returns a numeric representation of this lifetime position.
|
int value() const { return value_; }
|
|
// Returns the index of the instruction to which this lifetime position
|
// corresponds.
|
int ToInstructionIndex() const {
|
DCHECK(IsValid());
|
return value_ / kStep;
|
}
|
|
// Returns true if this lifetime position corresponds to a START value
|
bool IsStart() const { return (value_ & (kHalfStep - 1)) == 0; }
|
// Returns true if this lifetime position corresponds to an END value
|
bool IsEnd() const { return (value_ & (kHalfStep - 1)) == 1; }
|
// Returns true if this lifetime position corresponds to a gap START value
|
bool IsFullStart() const { return (value_ & (kStep - 1)) == 0; }
|
|
bool IsGapPosition() const { return (value_ & 0x2) == 0; }
|
bool IsInstructionPosition() const { return !IsGapPosition(); }
|
|
// Returns the lifetime position for the current START.
|
LifetimePosition Start() const {
|
DCHECK(IsValid());
|
return LifetimePosition(value_ & ~(kHalfStep - 1));
|
}
|
|
// Returns the lifetime position for the current gap START.
|
LifetimePosition FullStart() const {
|
DCHECK(IsValid());
|
return LifetimePosition(value_ & ~(kStep - 1));
|
}
|
|
// Returns the lifetime position for the current END.
|
LifetimePosition End() const {
|
DCHECK(IsValid());
|
return LifetimePosition(Start().value_ + kHalfStep / 2);
|
}
|
|
// Returns the lifetime position for the beginning of the next START.
|
LifetimePosition NextStart() const {
|
DCHECK(IsValid());
|
return LifetimePosition(Start().value_ + kHalfStep);
|
}
|
|
// Returns the lifetime position for the beginning of the next gap START.
|
LifetimePosition NextFullStart() const {
|
DCHECK(IsValid());
|
return LifetimePosition(FullStart().value_ + kStep);
|
}
|
|
// Returns the lifetime position for the beginning of the previous START.
|
LifetimePosition PrevStart() const {
|
DCHECK(IsValid());
|
DCHECK_LE(kHalfStep, value_);
|
return LifetimePosition(Start().value_ - kHalfStep);
|
}
|
|
// Constructs the lifetime position which does not correspond to any
|
// instruction.
|
LifetimePosition() : value_(-1) {}
|
|
// Returns true if this lifetime positions corrensponds to some
|
// instruction.
|
bool IsValid() const { return value_ != -1; }
|
|
bool operator<(const LifetimePosition& that) const {
|
return this->value_ < that.value_;
|
}
|
|
bool operator<=(const LifetimePosition& that) const {
|
return this->value_ <= that.value_;
|
}
|
|
bool operator==(const LifetimePosition& that) const {
|
return this->value_ == that.value_;
|
}
|
|
bool operator!=(const LifetimePosition& that) const {
|
return this->value_ != that.value_;
|
}
|
|
bool operator>(const LifetimePosition& that) const {
|
return this->value_ > that.value_;
|
}
|
|
bool operator>=(const LifetimePosition& that) const {
|
return this->value_ >= that.value_;
|
}
|
|
void Print() const;
|
|
static inline LifetimePosition Invalid() { return LifetimePosition(); }
|
|
static inline LifetimePosition MaxPosition() {
|
// We have to use this kind of getter instead of static member due to
|
// crash bug in GDB.
|
return LifetimePosition(kMaxInt);
|
}
|
|
static inline LifetimePosition FromInt(int value) {
|
return LifetimePosition(value);
|
}
|
|
private:
|
static const int kHalfStep = 2;
|
static const int kStep = 2 * kHalfStep;
|
|
static_assert(base::bits::IsPowerOfTwo(kHalfStep),
|
"Code relies on kStep and kHalfStep being a power of two");
|
|
explicit LifetimePosition(int value) : value_(value) {}
|
|
int value_;
|
};
|
|
|
std::ostream& operator<<(std::ostream& os, const LifetimePosition pos);
|
|
|
// Representation of the non-empty interval [start,end[.
|
class UseInterval final : public ZoneObject {
|
public:
|
UseInterval(LifetimePosition start, LifetimePosition end)
|
: start_(start), end_(end), next_(nullptr) {
|
DCHECK(start < end);
|
}
|
|
LifetimePosition start() const { return start_; }
|
void set_start(LifetimePosition start) { start_ = start; }
|
LifetimePosition end() const { return end_; }
|
void set_end(LifetimePosition end) { end_ = end; }
|
UseInterval* next() const { return next_; }
|
void set_next(UseInterval* next) { next_ = next; }
|
|
// Split this interval at the given position without effecting the
|
// live range that owns it. The interval must contain the position.
|
UseInterval* SplitAt(LifetimePosition pos, Zone* zone);
|
|
// If this interval intersects with other return smallest position
|
// that belongs to both of them.
|
LifetimePosition Intersect(const UseInterval* other) const {
|
if (other->start() < start_) return other->Intersect(this);
|
if (other->start() < end_) return other->start();
|
return LifetimePosition::Invalid();
|
}
|
|
bool Contains(LifetimePosition point) const {
|
return start_ <= point && point < end_;
|
}
|
|
// Returns the index of the first gap covered by this interval.
|
int FirstGapIndex() const {
|
int ret = start_.ToInstructionIndex();
|
if (start_.IsInstructionPosition()) {
|
++ret;
|
}
|
return ret;
|
}
|
|
// Returns the index of the last gap covered by this interval.
|
int LastGapIndex() const {
|
int ret = end_.ToInstructionIndex();
|
if (end_.IsGapPosition() && end_.IsStart()) {
|
--ret;
|
}
|
return ret;
|
}
|
|
private:
|
LifetimePosition start_;
|
LifetimePosition end_;
|
UseInterval* next_;
|
|
DISALLOW_COPY_AND_ASSIGN(UseInterval);
|
};
|
|
enum class UsePositionType : uint8_t {
|
kRegisterOrSlot,
|
kRegisterOrSlotOrConstant,
|
kRequiresRegister,
|
kRequiresSlot
|
};
|
|
enum class UsePositionHintType : uint8_t {
|
kNone,
|
kOperand,
|
kUsePos,
|
kPhi,
|
kUnresolved
|
};
|
|
|
static const int32_t kUnassignedRegister =
|
RegisterConfiguration::kMaxGeneralRegisters;
|
|
static_assert(kUnassignedRegister <= RegisterConfiguration::kMaxFPRegisters,
|
"kUnassignedRegister too small");
|
|
// Representation of a use position.
|
class V8_EXPORT_PRIVATE UsePosition final
|
: public NON_EXPORTED_BASE(ZoneObject) {
|
public:
|
UsePosition(LifetimePosition pos, InstructionOperand* operand, void* hint,
|
UsePositionHintType hint_type);
|
|
InstructionOperand* operand() const { return operand_; }
|
bool HasOperand() const { return operand_ != nullptr; }
|
|
bool RegisterIsBeneficial() const {
|
return RegisterBeneficialField::decode(flags_);
|
}
|
UsePositionType type() const { return TypeField::decode(flags_); }
|
void set_type(UsePositionType type, bool register_beneficial);
|
|
LifetimePosition pos() const { return pos_; }
|
|
UsePosition* next() const { return next_; }
|
void set_next(UsePosition* next) { next_ = next; }
|
|
// For hinting only.
|
void set_assigned_register(int register_code) {
|
flags_ = AssignedRegisterField::update(flags_, register_code);
|
}
|
|
UsePositionHintType hint_type() const {
|
return HintTypeField::decode(flags_);
|
}
|
bool HasHint() const;
|
bool HintRegister(int* register_code) const;
|
void SetHint(UsePosition* use_pos);
|
void ResolveHint(UsePosition* use_pos);
|
bool IsResolved() const {
|
return hint_type() != UsePositionHintType::kUnresolved;
|
}
|
static UsePositionHintType HintTypeForOperand(const InstructionOperand& op);
|
|
private:
|
typedef BitField<UsePositionType, 0, 2> TypeField;
|
typedef BitField<UsePositionHintType, 2, 3> HintTypeField;
|
typedef BitField<bool, 5, 1> RegisterBeneficialField;
|
typedef BitField<int32_t, 6, 6> AssignedRegisterField;
|
|
InstructionOperand* const operand_;
|
void* hint_;
|
UsePosition* next_;
|
LifetimePosition const pos_;
|
uint32_t flags_;
|
|
DISALLOW_COPY_AND_ASSIGN(UsePosition);
|
};
|
|
|
class SpillRange;
|
class RegisterAllocationData;
|
class TopLevelLiveRange;
|
|
// Representation of SSA values' live ranges as a collection of (continuous)
|
// intervals over the instruction ordering.
|
class V8_EXPORT_PRIVATE LiveRange : public NON_EXPORTED_BASE(ZoneObject) {
|
public:
|
UseInterval* first_interval() const { return first_interval_; }
|
UsePosition* first_pos() const { return first_pos_; }
|
TopLevelLiveRange* TopLevel() { return top_level_; }
|
const TopLevelLiveRange* TopLevel() const { return top_level_; }
|
|
bool IsTopLevel() const;
|
|
LiveRange* next() const { return next_; }
|
|
int relative_id() const { return relative_id_; }
|
|
bool IsEmpty() const { return first_interval() == nullptr; }
|
|
InstructionOperand GetAssignedOperand() const;
|
|
MachineRepresentation representation() const {
|
return RepresentationField::decode(bits_);
|
}
|
|
int assigned_register() const { return AssignedRegisterField::decode(bits_); }
|
bool HasRegisterAssigned() const {
|
return assigned_register() != kUnassignedRegister;
|
}
|
void set_assigned_register(int reg);
|
void UnsetAssignedRegister();
|
|
bool spilled() const { return SpilledField::decode(bits_); }
|
void Spill();
|
|
RegisterKind kind() const;
|
|
// Returns use position in this live range that follows both start
|
// and last processed use position.
|
UsePosition* NextUsePosition(LifetimePosition start) const;
|
|
// Returns use position for which register is required in this live
|
// range and which follows both start and last processed use position
|
UsePosition* NextRegisterPosition(LifetimePosition start) const;
|
|
// Returns the first use position requiring stack slot, or nullptr.
|
UsePosition* NextSlotPosition(LifetimePosition start) const;
|
|
// Returns use position for which register is beneficial in this live
|
// range and which follows both start and last processed use position
|
UsePosition* NextUsePositionRegisterIsBeneficial(
|
LifetimePosition start) const;
|
|
// Returns lifetime position for which register is beneficial in this live
|
// range and which follows both start and last processed use position.
|
LifetimePosition NextLifetimePositionRegisterIsBeneficial(
|
const LifetimePosition& start) const;
|
|
// Returns use position for which register is beneficial in this live
|
// range and which precedes start.
|
UsePosition* PreviousUsePositionRegisterIsBeneficial(
|
LifetimePosition start) const;
|
|
// Can this live range be spilled at this position.
|
bool CanBeSpilled(LifetimePosition pos) const;
|
|
// Splitting primitive used by both splitting and splintering members.
|
// Performs the split, but does not link the resulting ranges.
|
// The given position must follow the start of the range.
|
// All uses following the given position will be moved from this
|
// live range to the result live range.
|
// The current range will terminate at position, while result will start from
|
// position.
|
enum HintConnectionOption : bool {
|
DoNotConnectHints = false,
|
ConnectHints = true
|
};
|
UsePosition* DetachAt(LifetimePosition position, LiveRange* result,
|
Zone* zone, HintConnectionOption connect_hints);
|
|
// Detaches at position, and then links the resulting ranges. Returns the
|
// child, which starts at position.
|
LiveRange* SplitAt(LifetimePosition position, Zone* zone);
|
|
// Returns nullptr when no register is hinted, otherwise sets register_index.
|
UsePosition* FirstHintPosition(int* register_index) const;
|
UsePosition* FirstHintPosition() const {
|
int register_index;
|
return FirstHintPosition(®ister_index);
|
}
|
|
UsePosition* current_hint_position() const {
|
DCHECK(current_hint_position_ == FirstHintPosition());
|
return current_hint_position_;
|
}
|
|
LifetimePosition Start() const {
|
DCHECK(!IsEmpty());
|
return first_interval()->start();
|
}
|
|
LifetimePosition End() const {
|
DCHECK(!IsEmpty());
|
return last_interval_->end();
|
}
|
|
bool ShouldBeAllocatedBefore(const LiveRange* other) const;
|
bool CanCover(LifetimePosition position) const;
|
bool Covers(LifetimePosition position) const;
|
LifetimePosition FirstIntersection(LiveRange* other) const;
|
|
void VerifyChildStructure() const {
|
VerifyIntervals();
|
VerifyPositions();
|
}
|
|
void ConvertUsesToOperand(const InstructionOperand& op,
|
const InstructionOperand& spill_op);
|
void SetUseHints(int register_index);
|
void UnsetUseHints() { SetUseHints(kUnassignedRegister); }
|
|
void Print(const RegisterConfiguration* config, bool with_children) const;
|
void Print(bool with_children) const;
|
|
private:
|
friend class TopLevelLiveRange;
|
explicit LiveRange(int relative_id, MachineRepresentation rep,
|
TopLevelLiveRange* top_level);
|
|
void UpdateParentForAllChildren(TopLevelLiveRange* new_top_level);
|
|
void set_spilled(bool value) { bits_ = SpilledField::update(bits_, value); }
|
|
UseInterval* FirstSearchIntervalForPosition(LifetimePosition position) const;
|
void AdvanceLastProcessedMarker(UseInterval* to_start_of,
|
LifetimePosition but_not_past) const;
|
|
void VerifyPositions() const;
|
void VerifyIntervals() const;
|
|
typedef BitField<bool, 0, 1> SpilledField;
|
typedef BitField<int32_t, 6, 6> AssignedRegisterField;
|
typedef BitField<MachineRepresentation, 12, 8> RepresentationField;
|
|
// Unique among children and splinters of the same virtual register.
|
int relative_id_;
|
uint32_t bits_;
|
UseInterval* last_interval_;
|
UseInterval* first_interval_;
|
UsePosition* first_pos_;
|
TopLevelLiveRange* top_level_;
|
LiveRange* next_;
|
// This is used as a cache, it doesn't affect correctness.
|
mutable UseInterval* current_interval_;
|
// This is used as a cache, it doesn't affect correctness.
|
mutable UsePosition* last_processed_use_;
|
// This is used as a cache, it's invalid outside of BuildLiveRanges.
|
mutable UsePosition* current_hint_position_;
|
// Cache the last position splintering stopped at.
|
mutable UsePosition* splitting_pointer_;
|
|
DISALLOW_COPY_AND_ASSIGN(LiveRange);
|
};
|
|
|
class V8_EXPORT_PRIVATE TopLevelLiveRange final : public LiveRange {
|
public:
|
explicit TopLevelLiveRange(int vreg, MachineRepresentation rep);
|
int spill_start_index() const { return spill_start_index_; }
|
|
bool IsFixed() const { return vreg_ < 0; }
|
|
bool is_phi() const { return IsPhiField::decode(bits_); }
|
void set_is_phi(bool value) { bits_ = IsPhiField::update(bits_, value); }
|
|
bool is_non_loop_phi() const { return IsNonLoopPhiField::decode(bits_); }
|
void set_is_non_loop_phi(bool value) {
|
bits_ = IsNonLoopPhiField::update(bits_, value);
|
}
|
|
bool has_slot_use() const { return HasSlotUseField::decode(bits_); }
|
void set_has_slot_use(bool value) {
|
bits_ = HasSlotUseField::update(bits_, value);
|
}
|
|
// Add a new interval or a new use position to this live range.
|
void EnsureInterval(LifetimePosition start, LifetimePosition end, Zone* zone);
|
void AddUseInterval(LifetimePosition start, LifetimePosition end, Zone* zone);
|
void AddUsePosition(UsePosition* pos);
|
|
// Shorten the most recently added interval by setting a new start.
|
void ShortenTo(LifetimePosition start);
|
|
// Detaches between start and end, and attributes the resulting range to
|
// result.
|
// The current range is pointed to as "splintered_from". No parent/child
|
// relationship is established between this and result.
|
void Splinter(LifetimePosition start, LifetimePosition end, Zone* zone);
|
|
// Assuming other was splintered from this range, embeds other and its
|
// children as part of the children sequence of this range.
|
void Merge(TopLevelLiveRange* other, Zone* zone);
|
|
// Spill range management.
|
void SetSpillRange(SpillRange* spill_range);
|
enum class SpillType { kNoSpillType, kSpillOperand, kSpillRange };
|
void set_spill_type(SpillType value) {
|
bits_ = SpillTypeField::update(bits_, value);
|
}
|
SpillType spill_type() const { return SpillTypeField::decode(bits_); }
|
InstructionOperand* GetSpillOperand() const {
|
DCHECK_EQ(SpillType::kSpillOperand, spill_type());
|
return spill_operand_;
|
}
|
|
SpillRange* GetAllocatedSpillRange() const {
|
DCHECK_NE(SpillType::kSpillOperand, spill_type());
|
return spill_range_;
|
}
|
|
SpillRange* GetSpillRange() const {
|
DCHECK_EQ(SpillType::kSpillRange, spill_type());
|
return spill_range_;
|
}
|
bool HasNoSpillType() const {
|
return spill_type() == SpillType::kNoSpillType;
|
}
|
bool HasSpillOperand() const {
|
return spill_type() == SpillType::kSpillOperand;
|
}
|
bool HasSpillRange() const { return spill_type() == SpillType::kSpillRange; }
|
|
AllocatedOperand GetSpillRangeOperand() const;
|
|
void RecordSpillLocation(Zone* zone, int gap_index,
|
InstructionOperand* operand);
|
void SetSpillOperand(InstructionOperand* operand);
|
void SetSpillStartIndex(int start) {
|
spill_start_index_ = Min(start, spill_start_index_);
|
}
|
|
void CommitSpillMoves(InstructionSequence* sequence,
|
const InstructionOperand& operand,
|
bool might_be_duplicated);
|
|
// If all the children of this range are spilled in deferred blocks, and if
|
// for any non-spilled child with a use position requiring a slot, that range
|
// is contained in a deferred block, mark the range as
|
// IsSpilledOnlyInDeferredBlocks, so that we avoid spilling at definition,
|
// and instead let the LiveRangeConnector perform the spills within the
|
// deferred blocks. If so, we insert here spills for non-spilled ranges
|
// with slot use positions.
|
void TreatAsSpilledInDeferredBlock(Zone* zone, int total_block_count) {
|
spill_start_index_ = -1;
|
spilled_in_deferred_blocks_ = true;
|
spill_move_insertion_locations_ = nullptr;
|
list_of_blocks_requiring_spill_operands_ =
|
new (zone) BitVector(total_block_count, zone);
|
}
|
|
void CommitSpillInDeferredBlocks(RegisterAllocationData* data,
|
const InstructionOperand& spill_operand,
|
BitVector* necessary_spill_points);
|
|
TopLevelLiveRange* splintered_from() const { return splintered_from_; }
|
bool IsSplinter() const { return splintered_from_ != nullptr; }
|
bool MayRequireSpillRange() const {
|
DCHECK(!IsSplinter());
|
return !HasSpillOperand() && spill_range_ == nullptr;
|
}
|
void UpdateSpillRangePostMerge(TopLevelLiveRange* merged);
|
int vreg() const { return vreg_; }
|
|
#if DEBUG
|
int debug_virt_reg() const;
|
#endif
|
|
void Verify() const;
|
void VerifyChildrenInOrder() const;
|
|
int GetNextChildId() {
|
return IsSplinter() ? splintered_from()->GetNextChildId()
|
: ++last_child_id_;
|
}
|
|
int GetChildCount() const { return last_child_id_ + 1; }
|
|
bool IsSpilledOnlyInDeferredBlocks() const {
|
return spilled_in_deferred_blocks_;
|
}
|
|
struct SpillMoveInsertionList;
|
|
SpillMoveInsertionList* GetSpillMoveInsertionLocations() const {
|
DCHECK(!IsSpilledOnlyInDeferredBlocks());
|
return spill_move_insertion_locations_;
|
}
|
TopLevelLiveRange* splinter() const { return splinter_; }
|
void SetSplinter(TopLevelLiveRange* splinter) {
|
DCHECK_NULL(splinter_);
|
DCHECK_NOT_NULL(splinter);
|
|
splinter_ = splinter;
|
splinter->relative_id_ = GetNextChildId();
|
splinter->set_spill_type(spill_type());
|
splinter->SetSplinteredFrom(this);
|
}
|
|
void MarkHasPreassignedSlot() { has_preassigned_slot_ = true; }
|
bool has_preassigned_slot() const { return has_preassigned_slot_; }
|
|
void AddBlockRequiringSpillOperand(RpoNumber block_id) {
|
DCHECK(IsSpilledOnlyInDeferredBlocks());
|
GetListOfBlocksRequiringSpillOperands()->Add(block_id.ToInt());
|
}
|
|
BitVector* GetListOfBlocksRequiringSpillOperands() const {
|
DCHECK(IsSpilledOnlyInDeferredBlocks());
|
return list_of_blocks_requiring_spill_operands_;
|
}
|
|
private:
|
void SetSplinteredFrom(TopLevelLiveRange* splinter_parent);
|
|
typedef BitField<bool, 1, 1> HasSlotUseField;
|
typedef BitField<bool, 2, 1> IsPhiField;
|
typedef BitField<bool, 3, 1> IsNonLoopPhiField;
|
typedef BitField<SpillType, 4, 2> SpillTypeField;
|
|
int vreg_;
|
int last_child_id_;
|
TopLevelLiveRange* splintered_from_;
|
union {
|
// Correct value determined by spill_type()
|
InstructionOperand* spill_operand_;
|
SpillRange* spill_range_;
|
};
|
|
union {
|
SpillMoveInsertionList* spill_move_insertion_locations_;
|
BitVector* list_of_blocks_requiring_spill_operands_;
|
};
|
|
// TODO(mtrofin): generalize spilling after definition, currently specialized
|
// just for spill in a single deferred block.
|
bool spilled_in_deferred_blocks_;
|
int spill_start_index_;
|
UsePosition* last_pos_;
|
TopLevelLiveRange* splinter_;
|
bool has_preassigned_slot_;
|
|
DISALLOW_COPY_AND_ASSIGN(TopLevelLiveRange);
|
};
|
|
|
struct PrintableLiveRange {
|
const RegisterConfiguration* register_configuration_;
|
const LiveRange* range_;
|
};
|
|
|
std::ostream& operator<<(std::ostream& os,
|
const PrintableLiveRange& printable_range);
|
|
|
class SpillRange final : public ZoneObject {
|
public:
|
static const int kUnassignedSlot = -1;
|
SpillRange(TopLevelLiveRange* range, Zone* zone);
|
|
UseInterval* interval() const { return use_interval_; }
|
|
bool IsEmpty() const { return live_ranges_.empty(); }
|
bool TryMerge(SpillRange* other);
|
bool HasSlot() const { return assigned_slot_ != kUnassignedSlot; }
|
|
void set_assigned_slot(int index) {
|
DCHECK_EQ(kUnassignedSlot, assigned_slot_);
|
assigned_slot_ = index;
|
}
|
int assigned_slot() {
|
DCHECK_NE(kUnassignedSlot, assigned_slot_);
|
return assigned_slot_;
|
}
|
const ZoneVector<TopLevelLiveRange*>& live_ranges() const {
|
return live_ranges_;
|
}
|
ZoneVector<TopLevelLiveRange*>& live_ranges() { return live_ranges_; }
|
// Spill slots can be 4, 8, or 16 bytes wide.
|
int byte_width() const { return byte_width_; }
|
void Print() const;
|
|
private:
|
LifetimePosition End() const { return end_position_; }
|
bool IsIntersectingWith(SpillRange* other) const;
|
// Merge intervals, making sure the use intervals are sorted
|
void MergeDisjointIntervals(UseInterval* other);
|
|
ZoneVector<TopLevelLiveRange*> live_ranges_;
|
UseInterval* use_interval_;
|
LifetimePosition end_position_;
|
int assigned_slot_;
|
int byte_width_;
|
|
DISALLOW_COPY_AND_ASSIGN(SpillRange);
|
};
|
|
|
class RegisterAllocationData final : public ZoneObject {
|
public:
|
class PhiMapValue : public ZoneObject {
|
public:
|
PhiMapValue(PhiInstruction* phi, const InstructionBlock* block, Zone* zone);
|
|
const PhiInstruction* phi() const { return phi_; }
|
const InstructionBlock* block() const { return block_; }
|
|
// For hinting.
|
int assigned_register() const { return assigned_register_; }
|
void set_assigned_register(int register_code) {
|
DCHECK_EQ(assigned_register_, kUnassignedRegister);
|
assigned_register_ = register_code;
|
}
|
void UnsetAssignedRegister() { assigned_register_ = kUnassignedRegister; }
|
|
void AddOperand(InstructionOperand* operand);
|
void CommitAssignment(const InstructionOperand& operand);
|
|
private:
|
PhiInstruction* const phi_;
|
const InstructionBlock* const block_;
|
ZoneVector<InstructionOperand*> incoming_operands_;
|
int assigned_register_;
|
};
|
typedef ZoneMap<int, PhiMapValue*> PhiMap;
|
|
struct DelayedReference {
|
ReferenceMap* map;
|
InstructionOperand* operand;
|
};
|
typedef ZoneVector<DelayedReference> DelayedReferences;
|
typedef ZoneVector<std::pair<TopLevelLiveRange*, int>>
|
RangesWithPreassignedSlots;
|
|
RegisterAllocationData(const RegisterConfiguration* config,
|
Zone* allocation_zone, Frame* frame,
|
InstructionSequence* code,
|
const char* debug_name = nullptr);
|
|
const ZoneVector<TopLevelLiveRange*>& live_ranges() const {
|
return live_ranges_;
|
}
|
ZoneVector<TopLevelLiveRange*>& live_ranges() { return live_ranges_; }
|
const ZoneVector<TopLevelLiveRange*>& fixed_live_ranges() const {
|
return fixed_live_ranges_;
|
}
|
ZoneVector<TopLevelLiveRange*>& fixed_live_ranges() {
|
return fixed_live_ranges_;
|
}
|
ZoneVector<TopLevelLiveRange*>& fixed_float_live_ranges() {
|
return fixed_float_live_ranges_;
|
}
|
const ZoneVector<TopLevelLiveRange*>& fixed_float_live_ranges() const {
|
return fixed_float_live_ranges_;
|
}
|
ZoneVector<TopLevelLiveRange*>& fixed_double_live_ranges() {
|
return fixed_double_live_ranges_;
|
}
|
const ZoneVector<TopLevelLiveRange*>& fixed_double_live_ranges() const {
|
return fixed_double_live_ranges_;
|
}
|
ZoneVector<TopLevelLiveRange*>& fixed_simd128_live_ranges() {
|
return fixed_simd128_live_ranges_;
|
}
|
const ZoneVector<TopLevelLiveRange*>& fixed_simd128_live_ranges() const {
|
return fixed_simd128_live_ranges_;
|
}
|
ZoneVector<BitVector*>& live_in_sets() { return live_in_sets_; }
|
ZoneVector<BitVector*>& live_out_sets() { return live_out_sets_; }
|
ZoneVector<SpillRange*>& spill_ranges() { return spill_ranges_; }
|
DelayedReferences& delayed_references() { return delayed_references_; }
|
InstructionSequence* code() const { return code_; }
|
// This zone is for data structures only needed during register allocation
|
// phases.
|
Zone* allocation_zone() const { return allocation_zone_; }
|
// This zone is for InstructionOperands and moves that live beyond register
|
// allocation.
|
Zone* code_zone() const { return code()->zone(); }
|
Frame* frame() const { return frame_; }
|
const char* debug_name() const { return debug_name_; }
|
const RegisterConfiguration* config() const { return config_; }
|
|
MachineRepresentation RepresentationFor(int virtual_register);
|
|
TopLevelLiveRange* GetOrCreateLiveRangeFor(int index);
|
// Creates a new live range.
|
TopLevelLiveRange* NewLiveRange(int index, MachineRepresentation rep);
|
TopLevelLiveRange* NextLiveRange(MachineRepresentation rep);
|
|
SpillRange* AssignSpillRangeToLiveRange(TopLevelLiveRange* range);
|
SpillRange* CreateSpillRangeForLiveRange(TopLevelLiveRange* range);
|
|
MoveOperands* AddGapMove(int index, Instruction::GapPosition position,
|
const InstructionOperand& from,
|
const InstructionOperand& to);
|
|
bool IsReference(TopLevelLiveRange* top_range) const {
|
return code()->IsReference(top_range->vreg());
|
}
|
|
bool ExistsUseWithoutDefinition();
|
bool RangesDefinedInDeferredStayInDeferred();
|
|
void MarkAllocated(MachineRepresentation rep, int index);
|
|
PhiMapValue* InitializePhiMap(const InstructionBlock* block,
|
PhiInstruction* phi);
|
PhiMapValue* GetPhiMapValueFor(TopLevelLiveRange* top_range);
|
PhiMapValue* GetPhiMapValueFor(int virtual_register);
|
bool IsBlockBoundary(LifetimePosition pos) const;
|
|
RangesWithPreassignedSlots& preassigned_slot_ranges() {
|
return preassigned_slot_ranges_;
|
}
|
|
private:
|
int GetNextLiveRangeId();
|
|
Zone* const allocation_zone_;
|
Frame* const frame_;
|
InstructionSequence* const code_;
|
const char* const debug_name_;
|
const RegisterConfiguration* const config_;
|
PhiMap phi_map_;
|
ZoneVector<BitVector*> live_in_sets_;
|
ZoneVector<BitVector*> live_out_sets_;
|
ZoneVector<TopLevelLiveRange*> live_ranges_;
|
ZoneVector<TopLevelLiveRange*> fixed_live_ranges_;
|
ZoneVector<TopLevelLiveRange*> fixed_float_live_ranges_;
|
ZoneVector<TopLevelLiveRange*> fixed_double_live_ranges_;
|
ZoneVector<TopLevelLiveRange*> fixed_simd128_live_ranges_;
|
ZoneVector<SpillRange*> spill_ranges_;
|
DelayedReferences delayed_references_;
|
BitVector* assigned_registers_;
|
BitVector* assigned_double_registers_;
|
int virtual_register_count_;
|
RangesWithPreassignedSlots preassigned_slot_ranges_;
|
|
DISALLOW_COPY_AND_ASSIGN(RegisterAllocationData);
|
};
|
|
|
class ConstraintBuilder final : public ZoneObject {
|
public:
|
explicit ConstraintBuilder(RegisterAllocationData* data);
|
|
// Phase 1 : insert moves to account for fixed register operands.
|
void MeetRegisterConstraints();
|
|
// Phase 2: deconstruct SSA by inserting moves in successors and the headers
|
// of blocks containing phis.
|
void ResolvePhis();
|
|
private:
|
RegisterAllocationData* data() const { return data_; }
|
InstructionSequence* code() const { return data()->code(); }
|
Zone* allocation_zone() const { return data()->allocation_zone(); }
|
|
InstructionOperand* AllocateFixed(UnallocatedOperand* operand, int pos,
|
bool is_tagged);
|
void MeetRegisterConstraints(const InstructionBlock* block);
|
void MeetConstraintsBefore(int index);
|
void MeetConstraintsAfter(int index);
|
void MeetRegisterConstraintsForLastInstructionInBlock(
|
const InstructionBlock* block);
|
void ResolvePhis(const InstructionBlock* block);
|
|
RegisterAllocationData* const data_;
|
|
DISALLOW_COPY_AND_ASSIGN(ConstraintBuilder);
|
};
|
|
|
class LiveRangeBuilder final : public ZoneObject {
|
public:
|
explicit LiveRangeBuilder(RegisterAllocationData* data, Zone* local_zone);
|
|
// Phase 3: compute liveness of all virtual register.
|
void BuildLiveRanges();
|
static BitVector* ComputeLiveOut(const InstructionBlock* block,
|
RegisterAllocationData* data);
|
|
private:
|
RegisterAllocationData* data() const { return data_; }
|
InstructionSequence* code() const { return data()->code(); }
|
Zone* allocation_zone() const { return data()->allocation_zone(); }
|
Zone* code_zone() const { return code()->zone(); }
|
const RegisterConfiguration* config() const { return data()->config(); }
|
ZoneVector<BitVector*>& live_in_sets() const {
|
return data()->live_in_sets();
|
}
|
|
// Verification.
|
void Verify() const;
|
bool IntervalStartsAtBlockBoundary(const UseInterval* interval) const;
|
bool IntervalPredecessorsCoveredByRange(const UseInterval* interval,
|
const TopLevelLiveRange* range) const;
|
bool NextIntervalStartsInDifferentBlocks(const UseInterval* interval) const;
|
|
// Liveness analysis support.
|
void AddInitialIntervals(const InstructionBlock* block, BitVector* live_out);
|
void ProcessInstructions(const InstructionBlock* block, BitVector* live);
|
void ProcessPhis(const InstructionBlock* block, BitVector* live);
|
void ProcessLoopHeader(const InstructionBlock* block, BitVector* live);
|
|
static int FixedLiveRangeID(int index) { return -index - 1; }
|
int FixedFPLiveRangeID(int index, MachineRepresentation rep);
|
TopLevelLiveRange* FixedLiveRangeFor(int index);
|
TopLevelLiveRange* FixedFPLiveRangeFor(int index, MachineRepresentation rep);
|
|
void MapPhiHint(InstructionOperand* operand, UsePosition* use_pos);
|
void ResolvePhiHint(InstructionOperand* operand, UsePosition* use_pos);
|
|
UsePosition* NewUsePosition(LifetimePosition pos, InstructionOperand* operand,
|
void* hint, UsePositionHintType hint_type);
|
UsePosition* NewUsePosition(LifetimePosition pos) {
|
return NewUsePosition(pos, nullptr, nullptr, UsePositionHintType::kNone);
|
}
|
TopLevelLiveRange* LiveRangeFor(InstructionOperand* operand);
|
// Helper methods for building intervals.
|
UsePosition* Define(LifetimePosition position, InstructionOperand* operand,
|
void* hint, UsePositionHintType hint_type);
|
void Define(LifetimePosition position, InstructionOperand* operand) {
|
Define(position, operand, nullptr, UsePositionHintType::kNone);
|
}
|
UsePosition* Use(LifetimePosition block_start, LifetimePosition position,
|
InstructionOperand* operand, void* hint,
|
UsePositionHintType hint_type);
|
void Use(LifetimePosition block_start, LifetimePosition position,
|
InstructionOperand* operand) {
|
Use(block_start, position, operand, nullptr, UsePositionHintType::kNone);
|
}
|
|
RegisterAllocationData* const data_;
|
ZoneMap<InstructionOperand*, UsePosition*> phi_hints_;
|
|
DISALLOW_COPY_AND_ASSIGN(LiveRangeBuilder);
|
};
|
|
|
class RegisterAllocator : public ZoneObject {
|
public:
|
RegisterAllocator(RegisterAllocationData* data, RegisterKind kind);
|
|
protected:
|
RegisterAllocationData* data() const { return data_; }
|
InstructionSequence* code() const { return data()->code(); }
|
RegisterKind mode() const { return mode_; }
|
int num_registers() const { return num_registers_; }
|
int num_allocatable_registers() const { return num_allocatable_registers_; }
|
const int* allocatable_register_codes() const {
|
return allocatable_register_codes_;
|
}
|
// Returns true iff. we must check float register aliasing.
|
bool check_fp_aliasing() const { return check_fp_aliasing_; }
|
|
// TODO(mtrofin): explain why splitting in gap START is always OK.
|
LifetimePosition GetSplitPositionForInstruction(const LiveRange* range,
|
int instruction_index);
|
|
Zone* allocation_zone() const { return data()->allocation_zone(); }
|
|
// Find the optimal split for ranges defined by a memory operand, e.g.
|
// constants or function parameters passed on the stack.
|
void SplitAndSpillRangesDefinedByMemoryOperand();
|
|
// Split the given range at the given position.
|
// If range starts at or after the given position then the
|
// original range is returned.
|
// Otherwise returns the live range that starts at pos and contains
|
// all uses from the original range that follow pos. Uses at pos will
|
// still be owned by the original range after splitting.
|
LiveRange* SplitRangeAt(LiveRange* range, LifetimePosition pos);
|
|
bool CanProcessRange(LiveRange* range) const {
|
return range != nullptr && !range->IsEmpty() && range->kind() == mode();
|
}
|
|
|
// Split the given range in a position from the interval [start, end].
|
LiveRange* SplitBetween(LiveRange* range, LifetimePosition start,
|
LifetimePosition end);
|
|
// Find a lifetime position in the interval [start, end] which
|
// is optimal for splitting: it is either header of the outermost
|
// loop covered by this interval or the latest possible position.
|
LifetimePosition FindOptimalSplitPos(LifetimePosition start,
|
LifetimePosition end);
|
|
void Spill(LiveRange* range);
|
|
// If we are trying to spill a range inside the loop try to
|
// hoist spill position out to the point just before the loop.
|
LifetimePosition FindOptimalSpillingPos(LiveRange* range,
|
LifetimePosition pos);
|
|
const ZoneVector<TopLevelLiveRange*>& GetFixedRegisters() const;
|
const char* RegisterName(int allocation_index) const;
|
|
private:
|
RegisterAllocationData* const data_;
|
const RegisterKind mode_;
|
const int num_registers_;
|
int num_allocatable_registers_;
|
const int* allocatable_register_codes_;
|
bool check_fp_aliasing_;
|
|
private:
|
bool no_combining_;
|
|
DISALLOW_COPY_AND_ASSIGN(RegisterAllocator);
|
};
|
|
|
class LinearScanAllocator final : public RegisterAllocator {
|
public:
|
LinearScanAllocator(RegisterAllocationData* data, RegisterKind kind,
|
Zone* local_zone);
|
|
// Phase 4: compute register assignments.
|
void AllocateRegisters();
|
|
private:
|
struct LiveRangeOrdering {
|
bool operator()(LiveRange* a, LiveRange* b) {
|
return a->ShouldBeAllocatedBefore(b);
|
}
|
};
|
using LiveRangeQueue = ZoneMultiset<LiveRange*, LiveRangeOrdering>;
|
LiveRangeQueue& unhandled_live_ranges() { return unhandled_live_ranges_; }
|
ZoneVector<LiveRange*>& active_live_ranges() { return active_live_ranges_; }
|
ZoneVector<LiveRange*>& inactive_live_ranges() {
|
return inactive_live_ranges_;
|
}
|
|
void SetLiveRangeAssignedRegister(LiveRange* range, int reg);
|
|
// Helper methods for updating the life range lists.
|
void AddToActive(LiveRange* range);
|
void AddToInactive(LiveRange* range);
|
void AddToUnhandled(LiveRange* range);
|
void ActiveToHandled(LiveRange* range);
|
void ActiveToInactive(LiveRange* range);
|
void InactiveToHandled(LiveRange* range);
|
void InactiveToActive(LiveRange* range);
|
|
// Helper methods for allocating registers.
|
bool TryReuseSpillForPhi(TopLevelLiveRange* range);
|
bool TryAllocateFreeReg(LiveRange* range,
|
const Vector<LifetimePosition>& free_until_pos);
|
bool TryAllocatePreferredReg(LiveRange* range,
|
const Vector<LifetimePosition>& free_until_pos);
|
void GetFPRegisterSet(MachineRepresentation rep, int* num_regs,
|
int* num_codes, const int** codes) const;
|
void FindFreeRegistersForRange(LiveRange* range,
|
Vector<LifetimePosition> free_until_pos);
|
void ProcessCurrentRange(LiveRange* current);
|
void AllocateBlockedReg(LiveRange* range);
|
bool TrySplitAndSpillSplinter(LiveRange* range);
|
|
// Spill the given life range after position pos.
|
void SpillAfter(LiveRange* range, LifetimePosition pos);
|
|
// Spill the given life range after position [start] and up to position [end].
|
void SpillBetween(LiveRange* range, LifetimePosition start,
|
LifetimePosition end);
|
|
// Spill the given life range after position [start] and up to position [end].
|
// Range is guaranteed to be spilled at least until position [until].
|
void SpillBetweenUntil(LiveRange* range, LifetimePosition start,
|
LifetimePosition until, LifetimePosition end);
|
|
void SplitAndSpillIntersecting(LiveRange* range);
|
|
LiveRangeQueue unhandled_live_ranges_;
|
ZoneVector<LiveRange*> active_live_ranges_;
|
ZoneVector<LiveRange*> inactive_live_ranges_;
|
|
#ifdef DEBUG
|
LifetimePosition allocation_finger_;
|
#endif
|
|
DISALLOW_COPY_AND_ASSIGN(LinearScanAllocator);
|
};
|
|
|
class SpillSlotLocator final : public ZoneObject {
|
public:
|
explicit SpillSlotLocator(RegisterAllocationData* data);
|
|
void LocateSpillSlots();
|
|
private:
|
RegisterAllocationData* data() const { return data_; }
|
|
RegisterAllocationData* const data_;
|
|
DISALLOW_COPY_AND_ASSIGN(SpillSlotLocator);
|
};
|
|
|
class OperandAssigner final : public ZoneObject {
|
public:
|
explicit OperandAssigner(RegisterAllocationData* data);
|
|
// Phase 5: assign spill splots.
|
void AssignSpillSlots();
|
|
// Phase 6: commit assignment.
|
void CommitAssignment();
|
|
private:
|
RegisterAllocationData* data() const { return data_; }
|
|
RegisterAllocationData* const data_;
|
|
DISALLOW_COPY_AND_ASSIGN(OperandAssigner);
|
};
|
|
|
class ReferenceMapPopulator final : public ZoneObject {
|
public:
|
explicit ReferenceMapPopulator(RegisterAllocationData* data);
|
|
// Phase 7: compute values for pointer maps.
|
void PopulateReferenceMaps();
|
|
private:
|
RegisterAllocationData* data() const { return data_; }
|
|
bool SafePointsAreInOrder() const;
|
|
RegisterAllocationData* const data_;
|
|
DISALLOW_COPY_AND_ASSIGN(ReferenceMapPopulator);
|
};
|
|
|
class LiveRangeBoundArray;
|
// Insert moves of the form
|
//
|
// Operand(child_(k+1)) = Operand(child_k)
|
//
|
// where child_k and child_(k+1) are consecutive children of a range (so
|
// child_k->next() == child_(k+1)), and Operand(...) refers to the
|
// assigned operand, be it a register or a slot.
|
class LiveRangeConnector final : public ZoneObject {
|
public:
|
explicit LiveRangeConnector(RegisterAllocationData* data);
|
|
// Phase 8: reconnect split ranges with moves, when the control flow
|
// between the ranges is trivial (no branches).
|
void ConnectRanges(Zone* local_zone);
|
|
// Phase 9: insert moves to connect ranges across basic blocks, when the
|
// control flow between them cannot be trivially resolved, such as joining
|
// branches.
|
void ResolveControlFlow(Zone* local_zone);
|
|
private:
|
RegisterAllocationData* data() const { return data_; }
|
InstructionSequence* code() const { return data()->code(); }
|
Zone* code_zone() const { return code()->zone(); }
|
|
bool CanEagerlyResolveControlFlow(const InstructionBlock* block) const;
|
|
int ResolveControlFlow(const InstructionBlock* block,
|
const InstructionOperand& cur_op,
|
const InstructionBlock* pred,
|
const InstructionOperand& pred_op);
|
|
void CommitSpillsInDeferredBlocks(TopLevelLiveRange* range,
|
LiveRangeBoundArray* array,
|
Zone* temp_zone);
|
|
RegisterAllocationData* const data_;
|
|
DISALLOW_COPY_AND_ASSIGN(LiveRangeConnector);
|
};
|
|
} // namespace compiler
|
} // namespace internal
|
} // namespace v8
|
|
#endif // V8_COMPILER_REGISTER_ALLOCATOR_H_
|