// Copyright 2013 the V8 project authors. All rights reserved.
|
// Use of this source code is governed by a BSD-style license that can be
|
// found in the LICENSE file.
|
|
#ifndef V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
|
#define V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
|
|
#include <vector>
|
|
#include "src/arm64/assembler-arm64.h"
|
#include "src/bailout-reason.h"
|
#include "src/base/bits.h"
|
#include "src/globals.h"
|
#include "src/turbo-assembler.h"
|
|
// Simulator specific helpers.
|
#if USE_SIMULATOR
|
// TODO(all): If possible automatically prepend an indicator like
|
// UNIMPLEMENTED or LOCATION.
|
#define ASM_UNIMPLEMENTED(message) \
|
__ Debug(message, __LINE__, NO_PARAM)
|
#define ASM_UNIMPLEMENTED_BREAK(message) \
|
__ Debug(message, __LINE__, \
|
FLAG_ignore_asm_unimplemented_break ? NO_PARAM : BREAK)
|
#if DEBUG
|
#define ASM_LOCATION(message) __ Debug("LOCATION: " message, __LINE__, NO_PARAM)
|
#define ASM_LOCATION_IN_ASSEMBLER(message) \
|
Debug("LOCATION: " message, __LINE__, NO_PARAM)
|
#else
|
#define ASM_LOCATION(message)
|
#define ASM_LOCATION_IN_ASSEMBLER(message)
|
#endif
|
#else
|
#define ASM_UNIMPLEMENTED(message)
|
#define ASM_UNIMPLEMENTED_BREAK(message)
|
#define ASM_LOCATION(message)
|
#define ASM_LOCATION_IN_ASSEMBLER(message)
|
#endif
|
|
|
namespace v8 {
|
namespace internal {
|
|
// Give alias names to registers for calling conventions.
|
constexpr Register kReturnRegister0 = x0;
|
constexpr Register kReturnRegister1 = x1;
|
constexpr Register kReturnRegister2 = x2;
|
constexpr Register kJSFunctionRegister = x1;
|
constexpr Register kContextRegister = cp;
|
constexpr Register kAllocateSizeRegister = x1;
|
constexpr Register kSpeculationPoisonRegister = x18;
|
constexpr Register kInterpreterAccumulatorRegister = x0;
|
constexpr Register kInterpreterBytecodeOffsetRegister = x19;
|
constexpr Register kInterpreterBytecodeArrayRegister = x20;
|
constexpr Register kInterpreterDispatchTableRegister = x21;
|
|
constexpr Register kJavaScriptCallArgCountRegister = x0;
|
constexpr Register kJavaScriptCallCodeStartRegister = x2;
|
constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister;
|
constexpr Register kJavaScriptCallNewTargetRegister = x3;
|
constexpr Register kJavaScriptCallExtraArg1Register = x2;
|
|
constexpr Register kOffHeapTrampolineRegister = ip0;
|
constexpr Register kRuntimeCallFunctionRegister = x1;
|
constexpr Register kRuntimeCallArgCountRegister = x0;
|
constexpr Register kRuntimeCallArgvRegister = x11;
|
constexpr Register kWasmInstanceRegister = x7;
|
|
#define LS_MACRO_LIST(V) \
|
V(Ldrb, Register&, rt, LDRB_w) \
|
V(Strb, Register&, rt, STRB_w) \
|
V(Ldrsb, Register&, rt, rt.Is64Bits() ? LDRSB_x : LDRSB_w) \
|
V(Ldrh, Register&, rt, LDRH_w) \
|
V(Strh, Register&, rt, STRH_w) \
|
V(Ldrsh, Register&, rt, rt.Is64Bits() ? LDRSH_x : LDRSH_w) \
|
V(Ldr, CPURegister&, rt, LoadOpFor(rt)) \
|
V(Str, CPURegister&, rt, StoreOpFor(rt)) \
|
V(Ldrsw, Register&, rt, LDRSW_x)
|
|
#define LSPAIR_MACRO_LIST(V) \
|
V(Ldp, CPURegister&, rt, rt2, LoadPairOpFor(rt, rt2)) \
|
V(Stp, CPURegister&, rt, rt2, StorePairOpFor(rt, rt2)) \
|
V(Ldpsw, CPURegister&, rt, rt2, LDPSW_x)
|
|
#define LDA_STL_MACRO_LIST(V) \
|
V(Ldarb, ldarb) \
|
V(Ldarh, ldarh) \
|
V(Ldar, ldar) \
|
V(Ldaxrb, ldaxrb) \
|
V(Ldaxrh, ldaxrh) \
|
V(Ldaxr, ldaxr) \
|
V(Stlrb, stlrb) \
|
V(Stlrh, stlrh) \
|
V(Stlr, stlr)
|
|
#define STLX_MACRO_LIST(V) \
|
V(Stlxrb, stlxrb) \
|
V(Stlxrh, stlxrh) \
|
V(Stlxr, stlxr)
|
|
// ----------------------------------------------------------------------------
|
// Static helper functions
|
|
// Generate a MemOperand for loading a field from an object.
|
inline MemOperand FieldMemOperand(Register object, int offset);
|
|
// ----------------------------------------------------------------------------
|
// MacroAssembler
|
|
enum BranchType {
|
// Copies of architectural conditions.
|
// The associated conditions can be used in place of those, the code will
|
// take care of reinterpreting them with the correct type.
|
integer_eq = eq,
|
integer_ne = ne,
|
integer_hs = hs,
|
integer_lo = lo,
|
integer_mi = mi,
|
integer_pl = pl,
|
integer_vs = vs,
|
integer_vc = vc,
|
integer_hi = hi,
|
integer_ls = ls,
|
integer_ge = ge,
|
integer_lt = lt,
|
integer_gt = gt,
|
integer_le = le,
|
integer_al = al,
|
integer_nv = nv,
|
|
// These two are *different* from the architectural codes al and nv.
|
// 'always' is used to generate unconditional branches.
|
// 'never' is used to not generate a branch (generally as the inverse
|
// branch type of 'always).
|
always, never,
|
// cbz and cbnz
|
reg_zero, reg_not_zero,
|
// tbz and tbnz
|
reg_bit_clear, reg_bit_set,
|
|
// Aliases.
|
kBranchTypeFirstCondition = eq,
|
kBranchTypeLastCondition = nv,
|
kBranchTypeFirstUsingReg = reg_zero,
|
kBranchTypeFirstUsingBit = reg_bit_clear
|
};
|
|
inline BranchType InvertBranchType(BranchType type) {
|
if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
|
return static_cast<BranchType>(
|
NegateCondition(static_cast<Condition>(type)));
|
} else {
|
return static_cast<BranchType>(type ^ 1);
|
}
|
}
|
|
enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
|
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
|
enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
|
enum TargetAddressStorageMode {
|
CAN_INLINE_TARGET_ADDRESS,
|
NEVER_INLINE_TARGET_ADDRESS
|
};
|
enum DiscardMoveMode { kDontDiscardForSameWReg, kDiscardForSameWReg };
|
|
// The macro assembler supports moving automatically pre-shifted immediates for
|
// arithmetic and logical instructions, and then applying a post shift in the
|
// instruction to undo the modification, in order to reduce the code emitted for
|
// an operation. For example:
|
//
|
// Add(x0, x0, 0x1f7de) => movz x16, 0xfbef; add x0, x0, x16, lsl #1.
|
//
|
// This optimisation can be only partially applied when the stack pointer is an
|
// operand or destination, so this enumeration is used to control the shift.
|
enum PreShiftImmMode {
|
kNoShift, // Don't pre-shift.
|
kLimitShiftForSP, // Limit pre-shift for add/sub extend use.
|
kAnyShift // Allow any pre-shift.
|
};
|
|
class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
|
public:
|
TurboAssembler(Isolate* isolate, const AssemblerOptions& options,
|
void* buffer, int buffer_size,
|
CodeObjectRequired create_code_object)
|
: TurboAssemblerBase(isolate, options, buffer, buffer_size,
|
create_code_object) {}
|
|
#if DEBUG
|
void set_allow_macro_instructions(bool value) {
|
allow_macro_instructions_ = value;
|
}
|
bool allow_macro_instructions() const { return allow_macro_instructions_; }
|
#endif
|
|
// We should not use near calls or jumps for JS->WASM calls and calls to
|
// external references, since the code spaces are not guaranteed to be close
|
// to each other.
|
bool CanUseNearCallOrJump(RelocInfo::Mode rmode) {
|
return rmode != RelocInfo::JS_TO_WASM_CALL &&
|
rmode != RelocInfo::EXTERNAL_REFERENCE;
|
}
|
|
// Activation support.
|
void EnterFrame(StackFrame::Type type);
|
void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) {
|
// Out-of-line constant pool not implemented on arm64.
|
UNREACHABLE();
|
}
|
void LeaveFrame(StackFrame::Type type);
|
|
inline void InitializeRootRegister();
|
|
void Mov(const Register& rd, const Operand& operand,
|
DiscardMoveMode discard_mode = kDontDiscardForSameWReg);
|
void Mov(const Register& rd, uint64_t imm);
|
void Mov(const VRegister& vd, int vd_index, const VRegister& vn,
|
int vn_index) {
|
DCHECK(allow_macro_instructions());
|
mov(vd, vd_index, vn, vn_index);
|
}
|
void Mov(const VRegister& vd, const VRegister& vn, int index) {
|
DCHECK(allow_macro_instructions());
|
mov(vd, vn, index);
|
}
|
void Mov(const VRegister& vd, int vd_index, const Register& rn) {
|
DCHECK(allow_macro_instructions());
|
mov(vd, vd_index, rn);
|
}
|
void Mov(const Register& rd, const VRegister& vn, int vn_index) {
|
DCHECK(allow_macro_instructions());
|
mov(rd, vn, vn_index);
|
}
|
|
// This is required for compatibility with architecture independent code.
|
// Remove if not needed.
|
void Move(Register dst, Smi* src);
|
|
// Register swap. Note that the register operands should be distinct.
|
void Swap(Register lhs, Register rhs);
|
void Swap(VRegister lhs, VRegister rhs);
|
|
// NEON by element instructions.
|
#define NEON_BYELEMENT_MACRO_LIST(V) \
|
V(fmla, Fmla) \
|
V(fmls, Fmls) \
|
V(fmul, Fmul) \
|
V(fmulx, Fmulx) \
|
V(mul, Mul) \
|
V(mla, Mla) \
|
V(mls, Mls) \
|
V(sqdmulh, Sqdmulh) \
|
V(sqrdmulh, Sqrdmulh) \
|
V(sqdmull, Sqdmull) \
|
V(sqdmull2, Sqdmull2) \
|
V(sqdmlal, Sqdmlal) \
|
V(sqdmlal2, Sqdmlal2) \
|
V(sqdmlsl, Sqdmlsl) \
|
V(sqdmlsl2, Sqdmlsl2) \
|
V(smull, Smull) \
|
V(smull2, Smull2) \
|
V(smlal, Smlal) \
|
V(smlal2, Smlal2) \
|
V(smlsl, Smlsl) \
|
V(smlsl2, Smlsl2) \
|
V(umull, Umull) \
|
V(umull2, Umull2) \
|
V(umlal, Umlal) \
|
V(umlal2, Umlal2) \
|
V(umlsl, Umlsl) \
|
V(umlsl2, Umlsl2)
|
|
#define DEFINE_MACRO_ASM_FUNC(ASM, MASM) \
|
void MASM(const VRegister& vd, const VRegister& vn, const VRegister& vm, \
|
int vm_index) { \
|
DCHECK(allow_macro_instructions()); \
|
ASM(vd, vn, vm, vm_index); \
|
}
|
NEON_BYELEMENT_MACRO_LIST(DEFINE_MACRO_ASM_FUNC)
|
#undef DEFINE_MACRO_ASM_FUNC
|
|
// NEON 2 vector register instructions.
|
#define NEON_2VREG_MACRO_LIST(V) \
|
V(abs, Abs) \
|
V(addp, Addp) \
|
V(addv, Addv) \
|
V(cls, Cls) \
|
V(clz, Clz) \
|
V(cnt, Cnt) \
|
V(faddp, Faddp) \
|
V(fcvtas, Fcvtas) \
|
V(fcvtau, Fcvtau) \
|
V(fcvtms, Fcvtms) \
|
V(fcvtmu, Fcvtmu) \
|
V(fcvtns, Fcvtns) \
|
V(fcvtnu, Fcvtnu) \
|
V(fcvtps, Fcvtps) \
|
V(fcvtpu, Fcvtpu) \
|
V(fmaxnmp, Fmaxnmp) \
|
V(fmaxnmv, Fmaxnmv) \
|
V(fmaxp, Fmaxp) \
|
V(fmaxv, Fmaxv) \
|
V(fminnmp, Fminnmp) \
|
V(fminnmv, Fminnmv) \
|
V(fminp, Fminp) \
|
V(fminv, Fminv) \
|
V(fneg, Fneg) \
|
V(frecpe, Frecpe) \
|
V(frecpx, Frecpx) \
|
V(frinta, Frinta) \
|
V(frinti, Frinti) \
|
V(frintm, Frintm) \
|
V(frintn, Frintn) \
|
V(frintp, Frintp) \
|
V(frintx, Frintx) \
|
V(frintz, Frintz) \
|
V(frsqrte, Frsqrte) \
|
V(fsqrt, Fsqrt) \
|
V(mov, Mov) \
|
V(mvn, Mvn) \
|
V(neg, Neg) \
|
V(not_, Not) \
|
V(rbit, Rbit) \
|
V(rev16, Rev16) \
|
V(rev32, Rev32) \
|
V(rev64, Rev64) \
|
V(sadalp, Sadalp) \
|
V(saddlp, Saddlp) \
|
V(saddlv, Saddlv) \
|
V(smaxv, Smaxv) \
|
V(sminv, Sminv) \
|
V(sqabs, Sqabs) \
|
V(sqneg, Sqneg) \
|
V(sqxtn2, Sqxtn2) \
|
V(sqxtn, Sqxtn) \
|
V(sqxtun2, Sqxtun2) \
|
V(sqxtun, Sqxtun) \
|
V(suqadd, Suqadd) \
|
V(sxtl2, Sxtl2) \
|
V(sxtl, Sxtl) \
|
V(uadalp, Uadalp) \
|
V(uaddlp, Uaddlp) \
|
V(uaddlv, Uaddlv) \
|
V(umaxv, Umaxv) \
|
V(uminv, Uminv) \
|
V(uqxtn2, Uqxtn2) \
|
V(uqxtn, Uqxtn) \
|
V(urecpe, Urecpe) \
|
V(ursqrte, Ursqrte) \
|
V(usqadd, Usqadd) \
|
V(uxtl2, Uxtl2) \
|
V(uxtl, Uxtl) \
|
V(xtn2, Xtn2) \
|
V(xtn, Xtn)
|
|
#define DEFINE_MACRO_ASM_FUNC(ASM, MASM) \
|
void MASM(const VRegister& vd, const VRegister& vn) { \
|
DCHECK(allow_macro_instructions()); \
|
ASM(vd, vn); \
|
}
|
NEON_2VREG_MACRO_LIST(DEFINE_MACRO_ASM_FUNC)
|
#undef DEFINE_MACRO_ASM_FUNC
|
#undef NEON_2VREG_MACRO_LIST
|
|
// NEON 2 vector register with immediate instructions.
|
#define NEON_2VREG_FPIMM_MACRO_LIST(V) \
|
V(fcmeq, Fcmeq) \
|
V(fcmge, Fcmge) \
|
V(fcmgt, Fcmgt) \
|
V(fcmle, Fcmle) \
|
V(fcmlt, Fcmlt)
|
|
#define DEFINE_MACRO_ASM_FUNC(ASM, MASM) \
|
void MASM(const VRegister& vd, const VRegister& vn, double imm) { \
|
DCHECK(allow_macro_instructions()); \
|
ASM(vd, vn, imm); \
|
}
|
NEON_2VREG_FPIMM_MACRO_LIST(DEFINE_MACRO_ASM_FUNC)
|
#undef DEFINE_MACRO_ASM_FUNC
|
|
// NEON 3 vector register instructions.
|
#define NEON_3VREG_MACRO_LIST(V) \
|
V(add, Add) \
|
V(addhn2, Addhn2) \
|
V(addhn, Addhn) \
|
V(addp, Addp) \
|
V(and_, And) \
|
V(bic, Bic) \
|
V(bif, Bif) \
|
V(bit, Bit) \
|
V(bsl, Bsl) \
|
V(cmeq, Cmeq) \
|
V(cmge, Cmge) \
|
V(cmgt, Cmgt) \
|
V(cmhi, Cmhi) \
|
V(cmhs, Cmhs) \
|
V(cmtst, Cmtst) \
|
V(eor, Eor) \
|
V(fabd, Fabd) \
|
V(facge, Facge) \
|
V(facgt, Facgt) \
|
V(faddp, Faddp) \
|
V(fcmeq, Fcmeq) \
|
V(fcmge, Fcmge) \
|
V(fcmgt, Fcmgt) \
|
V(fmaxnmp, Fmaxnmp) \
|
V(fmaxp, Fmaxp) \
|
V(fminnmp, Fminnmp) \
|
V(fminp, Fminp) \
|
V(fmla, Fmla) \
|
V(fmls, Fmls) \
|
V(fmulx, Fmulx) \
|
V(frecps, Frecps) \
|
V(frsqrts, Frsqrts) \
|
V(mla, Mla) \
|
V(mls, Mls) \
|
V(mul, Mul) \
|
V(orn, Orn) \
|
V(orr, Orr) \
|
V(pmull2, Pmull2) \
|
V(pmull, Pmull) \
|
V(pmul, Pmul) \
|
V(raddhn2, Raddhn2) \
|
V(raddhn, Raddhn) \
|
V(rsubhn2, Rsubhn2) \
|
V(rsubhn, Rsubhn) \
|
V(sabal2, Sabal2) \
|
V(sabal, Sabal) \
|
V(saba, Saba) \
|
V(sabdl2, Sabdl2) \
|
V(sabdl, Sabdl) \
|
V(sabd, Sabd) \
|
V(saddl2, Saddl2) \
|
V(saddl, Saddl) \
|
V(saddw2, Saddw2) \
|
V(saddw, Saddw) \
|
V(shadd, Shadd) \
|
V(shsub, Shsub) \
|
V(smaxp, Smaxp) \
|
V(smax, Smax) \
|
V(sminp, Sminp) \
|
V(smin, Smin) \
|
V(smlal2, Smlal2) \
|
V(smlal, Smlal) \
|
V(smlsl2, Smlsl2) \
|
V(smlsl, Smlsl) \
|
V(smull2, Smull2) \
|
V(smull, Smull) \
|
V(sqadd, Sqadd) \
|
V(sqdmlal2, Sqdmlal2) \
|
V(sqdmlal, Sqdmlal) \
|
V(sqdmlsl2, Sqdmlsl2) \
|
V(sqdmlsl, Sqdmlsl) \
|
V(sqdmulh, Sqdmulh) \
|
V(sqdmull2, Sqdmull2) \
|
V(sqdmull, Sqdmull) \
|
V(sqrdmulh, Sqrdmulh) \
|
V(sqrshl, Sqrshl) \
|
V(sqshl, Sqshl) \
|
V(sqsub, Sqsub) \
|
V(srhadd, Srhadd) \
|
V(srshl, Srshl) \
|
V(sshl, Sshl) \
|
V(ssubl2, Ssubl2) \
|
V(ssubl, Ssubl) \
|
V(ssubw2, Ssubw2) \
|
V(ssubw, Ssubw) \
|
V(subhn2, Subhn2) \
|
V(subhn, Subhn) \
|
V(sub, Sub) \
|
V(trn1, Trn1) \
|
V(trn2, Trn2) \
|
V(uabal2, Uabal2) \
|
V(uabal, Uabal) \
|
V(uaba, Uaba) \
|
V(uabdl2, Uabdl2) \
|
V(uabdl, Uabdl) \
|
V(uabd, Uabd) \
|
V(uaddl2, Uaddl2) \
|
V(uaddl, Uaddl) \
|
V(uaddw2, Uaddw2) \
|
V(uaddw, Uaddw) \
|
V(uhadd, Uhadd) \
|
V(uhsub, Uhsub) \
|
V(umaxp, Umaxp) \
|
V(umax, Umax) \
|
V(uminp, Uminp) \
|
V(umin, Umin) \
|
V(umlal2, Umlal2) \
|
V(umlal, Umlal) \
|
V(umlsl2, Umlsl2) \
|
V(umlsl, Umlsl) \
|
V(umull2, Umull2) \
|
V(umull, Umull) \
|
V(uqadd, Uqadd) \
|
V(uqrshl, Uqrshl) \
|
V(uqshl, Uqshl) \
|
V(uqsub, Uqsub) \
|
V(urhadd, Urhadd) \
|
V(urshl, Urshl) \
|
V(ushl, Ushl) \
|
V(usubl2, Usubl2) \
|
V(usubl, Usubl) \
|
V(usubw2, Usubw2) \
|
V(usubw, Usubw) \
|
V(uzp1, Uzp1) \
|
V(uzp2, Uzp2) \
|
V(zip1, Zip1) \
|
V(zip2, Zip2)
|
|
#define DEFINE_MACRO_ASM_FUNC(ASM, MASM) \
|
void MASM(const VRegister& vd, const VRegister& vn, const VRegister& vm) { \
|
DCHECK(allow_macro_instructions()); \
|
ASM(vd, vn, vm); \
|
}
|
NEON_3VREG_MACRO_LIST(DEFINE_MACRO_ASM_FUNC)
|
#undef DEFINE_MACRO_ASM_FUNC
|
|
void Bic(const VRegister& vd, const int imm8, const int left_shift = 0) {
|
DCHECK(allow_macro_instructions());
|
bic(vd, imm8, left_shift);
|
}
|
|
// This is required for compatibility in architecture independent code.
|
inline void jmp(Label* L);
|
|
void B(Label* label, BranchType type, Register reg = NoReg, int bit = -1);
|
inline void B(Label* label);
|
inline void B(Condition cond, Label* label);
|
void B(Label* label, Condition cond);
|
|
void Tbnz(const Register& rt, unsigned bit_pos, Label* label);
|
void Tbz(const Register& rt, unsigned bit_pos, Label* label);
|
|
void Cbnz(const Register& rt, Label* label);
|
void Cbz(const Register& rt, Label* label);
|
|
inline void Dmb(BarrierDomain domain, BarrierType type);
|
inline void Dsb(BarrierDomain domain, BarrierType type);
|
inline void Isb();
|
inline void Csdb();
|
|
bool AllowThisStubCall(CodeStub* stub);
|
void CallStubDelayed(CodeStub* stub);
|
|
// Call a runtime routine. This expects {centry} to contain a fitting CEntry
|
// builtin for the target runtime function and uses an indirect call.
|
void CallRuntimeWithCEntry(Runtime::FunctionId fid, Register centry);
|
|
// Removes current frame and its arguments from the stack preserving
|
// the arguments and a return address pushed to the stack for the next call.
|
// Both |callee_args_count| and |caller_args_count_reg| do not include
|
// receiver. |callee_args_count| is not modified, |caller_args_count_reg|
|
// is trashed.
|
void PrepareForTailCall(const ParameterCount& callee_args_count,
|
Register caller_args_count_reg, Register scratch0,
|
Register scratch1);
|
|
inline void SmiUntag(Register dst, Register src);
|
inline void SmiUntag(Register dst, const MemOperand& src);
|
inline void SmiUntag(Register smi);
|
|
// Calls Abort(msg) if the condition cond is not satisfied.
|
// Use --debug_code to enable.
|
void Assert(Condition cond, AbortReason reason);
|
|
// Like Assert(), but without condition.
|
// Use --debug_code to enable.
|
void AssertUnreachable(AbortReason reason);
|
|
void AssertSmi(Register object,
|
AbortReason reason = AbortReason::kOperandIsNotASmi);
|
|
// Like Assert(), but always enabled.
|
void Check(Condition cond, AbortReason reason);
|
|
inline void Debug(const char* message, uint32_t code, Instr params = BREAK);
|
|
// Print a message to stderr and abort execution.
|
void Abort(AbortReason reason);
|
|
// Remaining instructions are simple pass-through calls to the assembler.
|
inline void Asr(const Register& rd, const Register& rn, unsigned shift);
|
inline void Asr(const Register& rd, const Register& rn, const Register& rm);
|
|
// Try to move an immediate into the destination register in a single
|
// instruction. Returns true for success, and updates the contents of dst.
|
// Returns false, otherwise.
|
bool TryOneInstrMoveImmediate(const Register& dst, int64_t imm);
|
|
inline void Bind(Label* label);
|
|
static unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
|
|
CPURegList* TmpList() { return &tmp_list_; }
|
CPURegList* FPTmpList() { return &fptmp_list_; }
|
|
static CPURegList DefaultTmpList();
|
static CPURegList DefaultFPTmpList();
|
|
// Move macros.
|
inline void Mvn(const Register& rd, uint64_t imm);
|
void Mvn(const Register& rd, const Operand& operand);
|
static bool IsImmMovn(uint64_t imm, unsigned reg_size);
|
static bool IsImmMovz(uint64_t imm, unsigned reg_size);
|
|
void LogicalMacro(const Register& rd, const Register& rn,
|
const Operand& operand, LogicalOp op);
|
void AddSubMacro(const Register& rd, const Register& rn,
|
const Operand& operand, FlagsUpdate S, AddSubOp op);
|
inline void Orr(const Register& rd, const Register& rn,
|
const Operand& operand);
|
void Orr(const VRegister& vd, const int imm8, const int left_shift = 0) {
|
DCHECK(allow_macro_instructions());
|
orr(vd, imm8, left_shift);
|
}
|
inline void Orn(const Register& rd, const Register& rn,
|
const Operand& operand);
|
inline void Eor(const Register& rd, const Register& rn,
|
const Operand& operand);
|
inline void Eon(const Register& rd, const Register& rn,
|
const Operand& operand);
|
inline void And(const Register& rd, const Register& rn,
|
const Operand& operand);
|
inline void Ands(const Register& rd, const Register& rn,
|
const Operand& operand);
|
inline void Tst(const Register& rn, const Operand& operand);
|
inline void Bic(const Register& rd, const Register& rn,
|
const Operand& operand);
|
inline void Blr(const Register& xn);
|
inline void Cmp(const Register& rn, const Operand& operand);
|
inline void Subs(const Register& rd, const Register& rn,
|
const Operand& operand);
|
void Csel(const Register& rd, const Register& rn, const Operand& operand,
|
Condition cond);
|
|
// Emits a runtime assert that the stack pointer is aligned.
|
void AssertSpAligned();
|
|
// Copy slot_count stack slots from the stack offset specified by src to
|
// the stack offset specified by dst. The offsets and count are expressed in
|
// slot-sized units. Offset dst must be less than src, or the gap between
|
// them must be greater than or equal to slot_count, otherwise the result is
|
// unpredictable. The function may corrupt its register arguments. The
|
// registers must not alias each other.
|
void CopySlots(int dst, Register src, Register slot_count);
|
void CopySlots(Register dst, Register src, Register slot_count);
|
|
// Copy count double words from the address in register src to the address
|
// in register dst. There are two modes for this function:
|
// 1) Address dst must be less than src, or the gap between them must be
|
// greater than or equal to count double words, otherwise the result is
|
// unpredictable. This is the default mode.
|
// 2) Address src must be less than dst, or the gap between them must be
|
// greater than or equal to count double words, otherwise the result is
|
// undpredictable. In this mode, src and dst specify the last (highest)
|
// address of the regions to copy from and to.
|
// The case where src == dst is not supported.
|
// The function may corrupt its register arguments. The registers must not
|
// alias each other.
|
enum CopyDoubleWordsMode { kDstLessThanSrc, kSrcLessThanDst };
|
void CopyDoubleWords(Register dst, Register src, Register count,
|
CopyDoubleWordsMode mode = kDstLessThanSrc);
|
|
// Calculate the address of a double word-sized slot at slot_offset from the
|
// stack pointer, and write it to dst. Positive slot_offsets are at addresses
|
// greater than sp, with slot zero at sp.
|
void SlotAddress(Register dst, int slot_offset);
|
void SlotAddress(Register dst, Register slot_offset);
|
|
// Load a literal from the inline constant pool.
|
inline void Ldr(const CPURegister& rt, const Operand& imm);
|
|
// Claim or drop stack space without actually accessing memory.
|
//
|
// In debug mode, both of these will write invalid data into the claimed or
|
// dropped space.
|
//
|
// The stack pointer must be aligned to 16 bytes and the size claimed or
|
// dropped must be a multiple of 16 bytes.
|
//
|
// Note that unit_size must be specified in bytes. For variants which take a
|
// Register count, the unit size must be a power of two.
|
inline void Claim(int64_t count, uint64_t unit_size = kXRegSize);
|
inline void Claim(const Register& count, uint64_t unit_size = kXRegSize);
|
inline void Drop(int64_t count, uint64_t unit_size = kXRegSize);
|
inline void Drop(const Register& count, uint64_t unit_size = kXRegSize);
|
|
// Drop 'count' arguments from the stack, rounded up to a multiple of two,
|
// without actually accessing memory.
|
// We assume the size of the arguments is the pointer size.
|
// An optional mode argument is passed, which can indicate we need to
|
// explicitly add the receiver to the count.
|
enum ArgumentsCountMode { kCountIncludesReceiver, kCountExcludesReceiver };
|
inline void DropArguments(const Register& count,
|
ArgumentsCountMode mode = kCountIncludesReceiver);
|
inline void DropArguments(int64_t count,
|
ArgumentsCountMode mode = kCountIncludesReceiver);
|
|
// Drop 'count' slots from stack, rounded up to a multiple of two, without
|
// actually accessing memory.
|
inline void DropSlots(int64_t count);
|
|
// Push a single argument, with padding, to the stack.
|
inline void PushArgument(const Register& arg);
|
|
// Add and sub macros.
|
inline void Add(const Register& rd, const Register& rn,
|
const Operand& operand);
|
inline void Adds(const Register& rd, const Register& rn,
|
const Operand& operand);
|
inline void Sub(const Register& rd, const Register& rn,
|
const Operand& operand);
|
|
// Abort execution if argument is not a positive or zero integer, enabled via
|
// --debug-code.
|
void AssertPositiveOrZero(Register value);
|
|
#define DECLARE_FUNCTION(FN, REGTYPE, REG, OP) \
|
inline void FN(const REGTYPE REG, const MemOperand& addr);
|
LS_MACRO_LIST(DECLARE_FUNCTION)
|
#undef DECLARE_FUNCTION
|
|
// Push or pop up to 4 registers of the same width to or from the stack.
|
//
|
// If an argument register is 'NoReg', all further arguments are also assumed
|
// to be 'NoReg', and are thus not pushed or popped.
|
//
|
// Arguments are ordered such that "Push(a, b);" is functionally equivalent
|
// to "Push(a); Push(b);".
|
//
|
// It is valid to push the same register more than once, and there is no
|
// restriction on the order in which registers are specified.
|
//
|
// It is not valid to pop into the same register more than once in one
|
// operation, not even into the zero register.
|
//
|
// The stack pointer must be aligned to 16 bytes on entry and the total size
|
// of the specified registers must also be a multiple of 16 bytes.
|
//
|
// Other than the registers passed into Pop, the stack pointer and (possibly)
|
// the system stack pointer, these methods do not modify any other registers.
|
void Push(const CPURegister& src0, const CPURegister& src1 = NoReg,
|
const CPURegister& src2 = NoReg, const CPURegister& src3 = NoReg);
|
void Push(const CPURegister& src0, const CPURegister& src1,
|
const CPURegister& src2, const CPURegister& src3,
|
const CPURegister& src4, const CPURegister& src5 = NoReg,
|
const CPURegister& src6 = NoReg, const CPURegister& src7 = NoReg);
|
void Pop(const CPURegister& dst0, const CPURegister& dst1 = NoReg,
|
const CPURegister& dst2 = NoReg, const CPURegister& dst3 = NoReg);
|
void Pop(const CPURegister& dst0, const CPURegister& dst1,
|
const CPURegister& dst2, const CPURegister& dst3,
|
const CPURegister& dst4, const CPURegister& dst5 = NoReg,
|
const CPURegister& dst6 = NoReg, const CPURegister& dst7 = NoReg);
|
void Push(const Register& src0, const VRegister& src1);
|
|
// This is a convenience method for pushing a single Handle<Object>.
|
inline void Push(Handle<HeapObject> object);
|
inline void Push(Smi* smi);
|
|
// Aliases of Push and Pop, required for V8 compatibility.
|
inline void push(Register src) { Push(src); }
|
inline void pop(Register dst) { Pop(dst); }
|
|
void SaveRegisters(RegList registers);
|
void RestoreRegisters(RegList registers);
|
|
void CallRecordWriteStub(Register object, Register address,
|
RememberedSetAction remembered_set_action,
|
SaveFPRegsMode fp_mode);
|
|
// Alternative forms of Push and Pop, taking a RegList or CPURegList that
|
// specifies the registers that are to be pushed or popped. Higher-numbered
|
// registers are associated with higher memory addresses (as in the A32 push
|
// and pop instructions).
|
//
|
// (Push|Pop)SizeRegList allow you to specify the register size as a
|
// parameter. Only kXRegSizeInBits, kWRegSizeInBits, kDRegSizeInBits and
|
// kSRegSizeInBits are supported.
|
//
|
// Otherwise, (Push|Pop)(CPU|X|W|D|S)RegList is preferred.
|
void PushCPURegList(CPURegList registers);
|
void PopCPURegList(CPURegList registers);
|
|
// Calculate how much stack space (in bytes) are required to store caller
|
// registers excluding those specified in the arguments.
|
int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
|
Register exclusion) const;
|
|
// Push caller saved registers on the stack, and return the number of bytes
|
// stack pointer is adjusted.
|
int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion = no_reg);
|
|
// Restore caller saved registers from the stack, and return the number of
|
// bytes stack pointer is adjusted.
|
int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion = no_reg);
|
|
// Move an immediate into register dst, and return an Operand object for use
|
// with a subsequent instruction that accepts a shift. The value moved into
|
// dst is not necessarily equal to imm; it may have had a shifting operation
|
// applied to it that will be subsequently undone by the shift applied in the
|
// Operand.
|
Operand MoveImmediateForShiftedOp(const Register& dst, int64_t imm,
|
PreShiftImmMode mode);
|
|
void CheckPageFlagSet(const Register& object, const Register& scratch,
|
int mask, Label* if_any_set);
|
|
void CheckPageFlagClear(const Register& object, const Register& scratch,
|
int mask, Label* if_all_clear);
|
|
// Test the bits of register defined by bit_pattern, and branch if ANY of
|
// those bits are set. May corrupt the status flags.
|
inline void TestAndBranchIfAnySet(const Register& reg,
|
const uint64_t bit_pattern, Label* label);
|
|
// Test the bits of register defined by bit_pattern, and branch if ALL of
|
// those bits are clear (ie. not set.) May corrupt the status flags.
|
inline void TestAndBranchIfAllClear(const Register& reg,
|
const uint64_t bit_pattern, Label* label);
|
|
inline void Brk(int code);
|
|
inline void JumpIfSmi(Register value, Label* smi_label,
|
Label* not_smi_label = nullptr);
|
|
inline void JumpIfEqual(Register x, int32_t y, Label* dest);
|
inline void JumpIfLessThan(Register x, int32_t y, Label* dest);
|
|
inline void Fmov(VRegister fd, VRegister fn);
|
inline void Fmov(VRegister fd, Register rn);
|
// Provide explicit double and float interfaces for FP immediate moves, rather
|
// than relying on implicit C++ casts. This allows signalling NaNs to be
|
// preserved when the immediate matches the format of fd. Most systems convert
|
// signalling NaNs to quiet NaNs when converting between float and double.
|
inline void Fmov(VRegister fd, double imm);
|
inline void Fmov(VRegister fd, float imm);
|
// Provide a template to allow other types to be converted automatically.
|
template <typename T>
|
void Fmov(VRegister fd, T imm) {
|
DCHECK(allow_macro_instructions());
|
Fmov(fd, static_cast<double>(imm));
|
}
|
inline void Fmov(Register rd, VRegister fn);
|
|
void Movi(const VRegister& vd, uint64_t imm, Shift shift = LSL,
|
int shift_amount = 0);
|
void Movi(const VRegister& vd, uint64_t hi, uint64_t lo);
|
|
void LoadFromConstantsTable(Register destination,
|
int constant_index) override;
|
void LoadRootRegisterOffset(Register destination, intptr_t offset) override;
|
void LoadRootRelative(Register destination, int32_t offset) override;
|
|
void Jump(Register target, Condition cond = al);
|
void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al);
|
void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
|
|
void Call(Register target);
|
void Call(Address target, RelocInfo::Mode rmode);
|
void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET);
|
void Call(ExternalReference target);
|
|
// Generate an indirect call (for when a direct call's range is not adequate).
|
void IndirectCall(Address target, RelocInfo::Mode rmode);
|
|
void CallForDeoptimization(Address target, int deopt_id,
|
RelocInfo::Mode rmode);
|
|
// Calls a C function.
|
// The called function is not allowed to trigger a
|
// garbage collection, since that might move the code and invalidate the
|
// return address (unless this is somehow accounted for by the called
|
// function).
|
void CallCFunction(ExternalReference function, int num_reg_arguments);
|
void CallCFunction(ExternalReference function, int num_reg_arguments,
|
int num_double_arguments);
|
void CallCFunction(Register function, int num_reg_arguments,
|
int num_double_arguments);
|
|
// Performs a truncating conversion of a floating point number as used by
|
// the JS bitwise operations. See ECMA-262 9.5: ToInt32.
|
// Exits with 'result' holding the answer.
|
void TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result,
|
DoubleRegister double_input, StubCallMode stub_mode);
|
|
inline void Mul(const Register& rd, const Register& rn, const Register& rm);
|
|
inline void Fcvtzs(const Register& rd, const VRegister& fn);
|
void Fcvtzs(const VRegister& vd, const VRegister& vn, int fbits = 0) {
|
DCHECK(allow_macro_instructions());
|
fcvtzs(vd, vn, fbits);
|
}
|
|
inline void Fcvtzu(const Register& rd, const VRegister& fn);
|
void Fcvtzu(const VRegister& vd, const VRegister& vn, int fbits = 0) {
|
DCHECK(allow_macro_instructions());
|
fcvtzu(vd, vn, fbits);
|
}
|
|
inline void Madd(const Register& rd, const Register& rn, const Register& rm,
|
const Register& ra);
|
inline void Mneg(const Register& rd, const Register& rn, const Register& rm);
|
inline void Sdiv(const Register& rd, const Register& rn, const Register& rm);
|
inline void Udiv(const Register& rd, const Register& rn, const Register& rm);
|
inline void Msub(const Register& rd, const Register& rn, const Register& rm,
|
const Register& ra);
|
|
inline void Lsl(const Register& rd, const Register& rn, unsigned shift);
|
inline void Lsl(const Register& rd, const Register& rn, const Register& rm);
|
inline void Umull(const Register& rd, const Register& rn, const Register& rm);
|
inline void Smull(const Register& rd, const Register& rn, const Register& rm);
|
|
inline void Sxtb(const Register& rd, const Register& rn);
|
inline void Sxth(const Register& rd, const Register& rn);
|
inline void Sxtw(const Register& rd, const Register& rn);
|
inline void Ubfiz(const Register& rd, const Register& rn, unsigned lsb,
|
unsigned width);
|
inline void Ubfx(const Register& rd, const Register& rn, unsigned lsb,
|
unsigned width);
|
inline void Lsr(const Register& rd, const Register& rn, unsigned shift);
|
inline void Lsr(const Register& rd, const Register& rn, const Register& rm);
|
inline void Ror(const Register& rd, const Register& rs, unsigned shift);
|
inline void Ror(const Register& rd, const Register& rn, const Register& rm);
|
inline void Cmn(const Register& rn, const Operand& operand);
|
inline void Fadd(const VRegister& fd, const VRegister& fn,
|
const VRegister& fm);
|
inline void Fcmp(const VRegister& fn, const VRegister& fm);
|
inline void Fcmp(const VRegister& fn, double value);
|
inline void Fabs(const VRegister& fd, const VRegister& fn);
|
inline void Fmul(const VRegister& fd, const VRegister& fn,
|
const VRegister& fm);
|
inline void Fsub(const VRegister& fd, const VRegister& fn,
|
const VRegister& fm);
|
inline void Fdiv(const VRegister& fd, const VRegister& fn,
|
const VRegister& fm);
|
inline void Fmax(const VRegister& fd, const VRegister& fn,
|
const VRegister& fm);
|
inline void Fmin(const VRegister& fd, const VRegister& fn,
|
const VRegister& fm);
|
inline void Rbit(const Register& rd, const Register& rn);
|
inline void Rev(const Register& rd, const Register& rn);
|
|
enum AdrHint {
|
// The target must be within the immediate range of adr.
|
kAdrNear,
|
// The target may be outside of the immediate range of adr. Additional
|
// instructions may be emitted.
|
kAdrFar
|
};
|
void Adr(const Register& rd, Label* label, AdrHint = kAdrNear);
|
|
// Add/sub with carry macros.
|
inline void Adc(const Register& rd, const Register& rn,
|
const Operand& operand);
|
|
// Conditional macros.
|
inline void Ccmp(const Register& rn, const Operand& operand, StatusFlags nzcv,
|
Condition cond);
|
|
inline void Clz(const Register& rd, const Register& rn);
|
|
// Poke 'src' onto the stack. The offset is in bytes. The stack pointer must
|
// be 16 byte aligned.
|
void Poke(const CPURegister& src, const Operand& offset);
|
|
// Peek at a value on the stack, and put it in 'dst'. The offset is in bytes.
|
// The stack pointer must be aligned to 16 bytes.
|
void Peek(const CPURegister& dst, const Operand& offset);
|
|
// Poke 'src1' and 'src2' onto the stack. The values written will be adjacent
|
// with 'src2' at a higher address than 'src1'. The offset is in bytes. The
|
// stack pointer must be 16 byte aligned.
|
void PokePair(const CPURegister& src1, const CPURegister& src2, int offset);
|
|
inline void Sbfx(const Register& rd, const Register& rn, unsigned lsb,
|
unsigned width);
|
|
inline void Bfi(const Register& rd, const Register& rn, unsigned lsb,
|
unsigned width);
|
|
inline void Scvtf(const VRegister& fd, const Register& rn,
|
unsigned fbits = 0);
|
void Scvtf(const VRegister& vd, const VRegister& vn, int fbits = 0) {
|
DCHECK(allow_macro_instructions());
|
scvtf(vd, vn, fbits);
|
}
|
inline void Ucvtf(const VRegister& fd, const Register& rn,
|
unsigned fbits = 0);
|
void Ucvtf(const VRegister& vd, const VRegister& vn, int fbits = 0) {
|
DCHECK(allow_macro_instructions());
|
ucvtf(vd, vn, fbits);
|
}
|
|
void AssertFPCRState(Register fpcr = NoReg);
|
void CanonicalizeNaN(const VRegister& dst, const VRegister& src);
|
void CanonicalizeNaN(const VRegister& reg) { CanonicalizeNaN(reg, reg); }
|
|
inline void CmovX(const Register& rd, const Register& rn, Condition cond);
|
inline void Cset(const Register& rd, Condition cond);
|
inline void Csetm(const Register& rd, Condition cond);
|
inline void Fccmp(const VRegister& fn, const VRegister& fm, StatusFlags nzcv,
|
Condition cond);
|
inline void Csinc(const Register& rd, const Register& rn, const Register& rm,
|
Condition cond);
|
|
inline void Fcvt(const VRegister& fd, const VRegister& fn);
|
|
int ActivationFrameAlignment();
|
|
void Ins(const VRegister& vd, int vd_index, const VRegister& vn,
|
int vn_index) {
|
DCHECK(allow_macro_instructions());
|
ins(vd, vd_index, vn, vn_index);
|
}
|
void Ins(const VRegister& vd, int vd_index, const Register& rn) {
|
DCHECK(allow_macro_instructions());
|
ins(vd, vd_index, rn);
|
}
|
|
inline void Bl(Label* label);
|
inline void Br(const Register& xn);
|
|
inline void Uxtb(const Register& rd, const Register& rn);
|
inline void Uxth(const Register& rd, const Register& rn);
|
inline void Uxtw(const Register& rd, const Register& rn);
|
|
void Dup(const VRegister& vd, const VRegister& vn, int index) {
|
DCHECK(allow_macro_instructions());
|
dup(vd, vn, index);
|
}
|
void Dup(const VRegister& vd, const Register& rn) {
|
DCHECK(allow_macro_instructions());
|
dup(vd, rn);
|
}
|
|
#define DECLARE_FUNCTION(FN, REGTYPE, REG, REG2, OP) \
|
inline void FN(const REGTYPE REG, const REGTYPE REG2, const MemOperand& addr);
|
LSPAIR_MACRO_LIST(DECLARE_FUNCTION)
|
#undef DECLARE_FUNCTION
|
|
#define NEON_2VREG_SHIFT_MACRO_LIST(V) \
|
V(rshrn, Rshrn) \
|
V(rshrn2, Rshrn2) \
|
V(shl, Shl) \
|
V(shll, Shll) \
|
V(shll2, Shll2) \
|
V(shrn, Shrn) \
|
V(shrn2, Shrn2) \
|
V(sli, Sli) \
|
V(sqrshrn, Sqrshrn) \
|
V(sqrshrn2, Sqrshrn2) \
|
V(sqrshrun, Sqrshrun) \
|
V(sqrshrun2, Sqrshrun2) \
|
V(sqshl, Sqshl) \
|
V(sqshlu, Sqshlu) \
|
V(sqshrn, Sqshrn) \
|
V(sqshrn2, Sqshrn2) \
|
V(sqshrun, Sqshrun) \
|
V(sqshrun2, Sqshrun2) \
|
V(sri, Sri) \
|
V(srshr, Srshr) \
|
V(srsra, Srsra) \
|
V(sshll, Sshll) \
|
V(sshll2, Sshll2) \
|
V(sshr, Sshr) \
|
V(ssra, Ssra) \
|
V(uqrshrn, Uqrshrn) \
|
V(uqrshrn2, Uqrshrn2) \
|
V(uqshl, Uqshl) \
|
V(uqshrn, Uqshrn) \
|
V(uqshrn2, Uqshrn2) \
|
V(urshr, Urshr) \
|
V(ursra, Ursra) \
|
V(ushll, Ushll) \
|
V(ushll2, Ushll2) \
|
V(ushr, Ushr) \
|
V(usra, Usra)
|
|
#define DEFINE_MACRO_ASM_FUNC(ASM, MASM) \
|
void MASM(const VRegister& vd, const VRegister& vn, int shift) { \
|
DCHECK(allow_macro_instructions()); \
|
ASM(vd, vn, shift); \
|
}
|
NEON_2VREG_SHIFT_MACRO_LIST(DEFINE_MACRO_ASM_FUNC)
|
#undef DEFINE_MACRO_ASM_FUNC
|
|
void Umov(const Register& rd, const VRegister& vn, int vn_index) {
|
DCHECK(allow_macro_instructions());
|
umov(rd, vn, vn_index);
|
}
|
void Tbl(const VRegister& vd, const VRegister& vn, const VRegister& vm) {
|
DCHECK(allow_macro_instructions());
|
tbl(vd, vn, vm);
|
}
|
void Tbl(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
|
const VRegister& vm) {
|
DCHECK(allow_macro_instructions());
|
tbl(vd, vn, vn2, vm);
|
}
|
void Tbl(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
|
const VRegister& vn3, const VRegister& vm) {
|
DCHECK(allow_macro_instructions());
|
tbl(vd, vn, vn2, vn3, vm);
|
}
|
void Tbl(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
|
const VRegister& vn3, const VRegister& vn4, const VRegister& vm) {
|
DCHECK(allow_macro_instructions());
|
tbl(vd, vn, vn2, vn3, vn4, vm);
|
}
|
void Ext(const VRegister& vd, const VRegister& vn, const VRegister& vm,
|
int index) {
|
DCHECK(allow_macro_instructions());
|
ext(vd, vn, vm, index);
|
}
|
|
void Smov(const Register& rd, const VRegister& vn, int vn_index) {
|
DCHECK(allow_macro_instructions());
|
smov(rd, vn, vn_index);
|
}
|
|
// Load-acquire/store-release macros.
|
#define DECLARE_FUNCTION(FN, OP) \
|
inline void FN(const Register& rt, const Register& rn);
|
LDA_STL_MACRO_LIST(DECLARE_FUNCTION)
|
#undef DECLARE_FUNCTION
|
|
// Load an object from the root table.
|
void LoadRoot(Register destination, Heap::RootListIndex index) override;
|
|
inline void Ret(const Register& xn = lr);
|
|
// Perform a conversion from a double to a signed int64. If the input fits in
|
// range of the 64-bit result, execution branches to done. Otherwise,
|
// execution falls through, and the sign of the result can be used to
|
// determine if overflow was towards positive or negative infinity.
|
//
|
// On successful conversion, the least significant 32 bits of the result are
|
// equivalent to the ECMA-262 operation "ToInt32".
|
//
|
// Only public for the test code in test-code-stubs-arm64.cc.
|
void TryConvertDoubleToInt64(Register result, DoubleRegister input,
|
Label* done);
|
|
inline void Mrs(const Register& rt, SystemRegister sysreg);
|
|
// Generates function prologue code.
|
void Prologue();
|
|
void Cmgt(const VRegister& vd, const VRegister& vn, int imm) {
|
DCHECK(allow_macro_instructions());
|
cmgt(vd, vn, imm);
|
}
|
void Cmge(const VRegister& vd, const VRegister& vn, int imm) {
|
DCHECK(allow_macro_instructions());
|
cmge(vd, vn, imm);
|
}
|
void Cmeq(const VRegister& vd, const VRegister& vn, int imm) {
|
DCHECK(allow_macro_instructions());
|
cmeq(vd, vn, imm);
|
}
|
|
inline void Neg(const Register& rd, const Operand& operand);
|
inline void Negs(const Register& rd, const Operand& operand);
|
|
// Compute rd = abs(rm).
|
// This function clobbers the condition flags. On output the overflow flag is
|
// set iff the negation overflowed.
|
//
|
// If rm is the minimum representable value, the result is not representable.
|
// Handlers for each case can be specified using the relevant labels.
|
void Abs(const Register& rd, const Register& rm,
|
Label* is_not_representable = nullptr,
|
Label* is_representable = nullptr);
|
|
inline void Cls(const Register& rd, const Register& rn);
|
inline void Cneg(const Register& rd, const Register& rn, Condition cond);
|
inline void Rev16(const Register& rd, const Register& rn);
|
inline void Rev32(const Register& rd, const Register& rn);
|
inline void Fcvtns(const Register& rd, const VRegister& fn);
|
inline void Fcvtnu(const Register& rd, const VRegister& fn);
|
inline void Fcvtms(const Register& rd, const VRegister& fn);
|
inline void Fcvtmu(const Register& rd, const VRegister& fn);
|
inline void Fcvtas(const Register& rd, const VRegister& fn);
|
inline void Fcvtau(const Register& rd, const VRegister& fn);
|
|
// Compute the start of the generated instruction stream from the current PC.
|
// This is an alternative to embedding the {CodeObject} handle as a reference.
|
void ComputeCodeStartAddress(const Register& rd);
|
|
void ResetSpeculationPoisonRegister();
|
|
protected:
|
// The actual Push and Pop implementations. These don't generate any code
|
// other than that required for the push or pop. This allows
|
// (Push|Pop)CPURegList to bundle together run-time assertions for a large
|
// block of registers.
|
//
|
// Note that size is per register, and is specified in bytes.
|
void PushHelper(int count, int size, const CPURegister& src0,
|
const CPURegister& src1, const CPURegister& src2,
|
const CPURegister& src3);
|
void PopHelper(int count, int size, const CPURegister& dst0,
|
const CPURegister& dst1, const CPURegister& dst2,
|
const CPURegister& dst3);
|
|
void ConditionalCompareMacro(const Register& rn, const Operand& operand,
|
StatusFlags nzcv, Condition cond,
|
ConditionalCompareOp op);
|
|
void AddSubWithCarryMacro(const Register& rd, const Register& rn,
|
const Operand& operand, FlagsUpdate S,
|
AddSubWithCarryOp op);
|
|
// Call Printf. On a native build, a simple call will be generated, but if the
|
// simulator is being used then a suitable pseudo-instruction is used. The
|
// arguments and stack must be prepared by the caller as for a normal AAPCS64
|
// call to 'printf'.
|
//
|
// The 'args' argument should point to an array of variable arguments in their
|
// proper PCS registers (and in calling order). The argument registers can
|
// have mixed types. The format string (x0) should not be included.
|
void CallPrintf(int arg_count = 0, const CPURegister* args = nullptr);
|
|
private:
|
#if DEBUG
|
// Tell whether any of the macro instruction can be used. When false the
|
// MacroAssembler will assert if a method which can emit a variable number
|
// of instructions is called.
|
bool allow_macro_instructions_ = true;
|
#endif
|
|
|
// Scratch registers available for use by the MacroAssembler.
|
CPURegList tmp_list_ = DefaultTmpList();
|
CPURegList fptmp_list_ = DefaultFPTmpList();
|
|
// Helps resolve branching to labels potentially out of range.
|
// If the label is not bound, it registers the information necessary to later
|
// be able to emit a veneer for this branch if necessary.
|
// If the label is bound, it returns true if the label (or the previous link
|
// in the label chain) is out of range. In that case the caller is responsible
|
// for generating appropriate code.
|
// Otherwise it returns false.
|
// This function also checks wether veneers need to be emitted.
|
bool NeedExtraInstructionsOrRegisterBranch(Label* label,
|
ImmBranchType branch_type);
|
|
void Movi16bitHelper(const VRegister& vd, uint64_t imm);
|
void Movi32bitHelper(const VRegister& vd, uint64_t imm);
|
void Movi64bitHelper(const VRegister& vd, uint64_t imm);
|
|
void LoadStoreMacro(const CPURegister& rt, const MemOperand& addr,
|
LoadStoreOp op);
|
|
void LoadStorePairMacro(const CPURegister& rt, const CPURegister& rt2,
|
const MemOperand& addr, LoadStorePairOp op);
|
|
static bool IsNearCallOffset(int64_t offset);
|
void JumpHelper(int64_t offset, RelocInfo::Mode rmode, Condition cond = al);
|
};
|
|
class MacroAssembler : public TurboAssembler {
|
public:
|
MacroAssembler(Isolate* isolate, void* buffer, int size,
|
CodeObjectRequired create_code_object)
|
: MacroAssembler(isolate, AssemblerOptions::Default(isolate), buffer,
|
size, create_code_object) {}
|
MacroAssembler(Isolate* isolate, const AssemblerOptions& options,
|
void* buffer, int size, CodeObjectRequired create_code_object);
|
|
// Instruction set functions ------------------------------------------------
|
// Logical macros.
|
inline void Bics(const Register& rd, const Register& rn,
|
const Operand& operand);
|
|
inline void Adcs(const Register& rd, const Register& rn,
|
const Operand& operand);
|
inline void Sbc(const Register& rd, const Register& rn,
|
const Operand& operand);
|
inline void Sbcs(const Register& rd, const Register& rn,
|
const Operand& operand);
|
inline void Ngc(const Register& rd, const Operand& operand);
|
inline void Ngcs(const Register& rd, const Operand& operand);
|
|
inline void Ccmn(const Register& rn, const Operand& operand, StatusFlags nzcv,
|
Condition cond);
|
|
#define DECLARE_FUNCTION(FN, OP) \
|
inline void FN(const Register& rs, const Register& rt, const Register& rn);
|
STLX_MACRO_LIST(DECLARE_FUNCTION)
|
#undef DECLARE_FUNCTION
|
|
// Branch type inversion relies on these relations.
|
STATIC_ASSERT((reg_zero == (reg_not_zero ^ 1)) &&
|
(reg_bit_clear == (reg_bit_set ^ 1)) &&
|
(always == (never ^ 1)));
|
|
inline void Bfxil(const Register& rd, const Register& rn, unsigned lsb,
|
unsigned width);
|
inline void Cinc(const Register& rd, const Register& rn, Condition cond);
|
inline void Cinv(const Register& rd, const Register& rn, Condition cond);
|
inline void CzeroX(const Register& rd, Condition cond);
|
inline void Csinv(const Register& rd, const Register& rn, const Register& rm,
|
Condition cond);
|
inline void Csneg(const Register& rd, const Register& rn, const Register& rm,
|
Condition cond);
|
inline void Extr(const Register& rd, const Register& rn, const Register& rm,
|
unsigned lsb);
|
inline void Fcsel(const VRegister& fd, const VRegister& fn,
|
const VRegister& fm, Condition cond);
|
void Fcvtl(const VRegister& vd, const VRegister& vn) {
|
DCHECK(allow_macro_instructions());
|
fcvtl(vd, vn);
|
}
|
void Fcvtl2(const VRegister& vd, const VRegister& vn) {
|
DCHECK(allow_macro_instructions());
|
fcvtl2(vd, vn);
|
}
|
void Fcvtn(const VRegister& vd, const VRegister& vn) {
|
DCHECK(allow_macro_instructions());
|
fcvtn(vd, vn);
|
}
|
void Fcvtn2(const VRegister& vd, const VRegister& vn) {
|
DCHECK(allow_macro_instructions());
|
fcvtn2(vd, vn);
|
}
|
void Fcvtxn(const VRegister& vd, const VRegister& vn) {
|
DCHECK(allow_macro_instructions());
|
fcvtxn(vd, vn);
|
}
|
void Fcvtxn2(const VRegister& vd, const VRegister& vn) {
|
DCHECK(allow_macro_instructions());
|
fcvtxn2(vd, vn);
|
}
|
inline void Fmadd(const VRegister& fd, const VRegister& fn,
|
const VRegister& fm, const VRegister& fa);
|
inline void Fmaxnm(const VRegister& fd, const VRegister& fn,
|
const VRegister& fm);
|
inline void Fminnm(const VRegister& fd, const VRegister& fn,
|
const VRegister& fm);
|
inline void Fmsub(const VRegister& fd, const VRegister& fn,
|
const VRegister& fm, const VRegister& fa);
|
inline void Fnmadd(const VRegister& fd, const VRegister& fn,
|
const VRegister& fm, const VRegister& fa);
|
inline void Fnmsub(const VRegister& fd, const VRegister& fn,
|
const VRegister& fm, const VRegister& fa);
|
inline void Hint(SystemHint code);
|
inline void Hlt(int code);
|
inline void Ldnp(const CPURegister& rt, const CPURegister& rt2,
|
const MemOperand& src);
|
inline void Movk(const Register& rd, uint64_t imm, int shift = -1);
|
inline void Msr(SystemRegister sysreg, const Register& rt);
|
inline void Nop() { nop(); }
|
void Mvni(const VRegister& vd, const int imm8, Shift shift = LSL,
|
const int shift_amount = 0) {
|
DCHECK(allow_macro_instructions());
|
mvni(vd, imm8, shift, shift_amount);
|
}
|
inline void Rev(const Register& rd, const Register& rn);
|
inline void Sbfiz(const Register& rd, const Register& rn, unsigned lsb,
|
unsigned width);
|
inline void Smaddl(const Register& rd, const Register& rn, const Register& rm,
|
const Register& ra);
|
inline void Smsubl(const Register& rd, const Register& rn, const Register& rm,
|
const Register& ra);
|
inline void Smulh(const Register& rd, const Register& rn, const Register& rm);
|
inline void Stnp(const CPURegister& rt, const CPURegister& rt2,
|
const MemOperand& dst);
|
inline void Umaddl(const Register& rd, const Register& rn, const Register& rm,
|
const Register& ra);
|
inline void Umsubl(const Register& rd, const Register& rn, const Register& rm,
|
const Register& ra);
|
|
void Cmle(const VRegister& vd, const VRegister& vn, int imm) {
|
DCHECK(allow_macro_instructions());
|
cmle(vd, vn, imm);
|
}
|
void Cmlt(const VRegister& vd, const VRegister& vn, int imm) {
|
DCHECK(allow_macro_instructions());
|
cmlt(vd, vn, imm);
|
}
|
|
void Ld1(const VRegister& vt, const MemOperand& src) {
|
DCHECK(allow_macro_instructions());
|
ld1(vt, src);
|
}
|
void Ld1(const VRegister& vt, const VRegister& vt2, const MemOperand& src) {
|
DCHECK(allow_macro_instructions());
|
ld1(vt, vt2, src);
|
}
|
void Ld1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
|
const MemOperand& src) {
|
DCHECK(allow_macro_instructions());
|
ld1(vt, vt2, vt3, src);
|
}
|
void Ld1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
|
const VRegister& vt4, const MemOperand& src) {
|
DCHECK(allow_macro_instructions());
|
ld1(vt, vt2, vt3, vt4, src);
|
}
|
void Ld1(const VRegister& vt, int lane, const MemOperand& src) {
|
DCHECK(allow_macro_instructions());
|
ld1(vt, lane, src);
|
}
|
void Ld1r(const VRegister& vt, const MemOperand& src) {
|
DCHECK(allow_macro_instructions());
|
ld1r(vt, src);
|
}
|
void Ld2(const VRegister& vt, const VRegister& vt2, const MemOperand& src) {
|
DCHECK(allow_macro_instructions());
|
ld2(vt, vt2, src);
|
}
|
void Ld2(const VRegister& vt, const VRegister& vt2, int lane,
|
const MemOperand& src) {
|
DCHECK(allow_macro_instructions());
|
ld2(vt, vt2, lane, src);
|
}
|
void Ld2r(const VRegister& vt, const VRegister& vt2, const MemOperand& src) {
|
DCHECK(allow_macro_instructions());
|
ld2r(vt, vt2, src);
|
}
|
void Ld3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
|
const MemOperand& src) {
|
DCHECK(allow_macro_instructions());
|
ld3(vt, vt2, vt3, src);
|
}
|
void Ld3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
|
int lane, const MemOperand& src) {
|
DCHECK(allow_macro_instructions());
|
ld3(vt, vt2, vt3, lane, src);
|
}
|
void Ld3r(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
|
const MemOperand& src) {
|
DCHECK(allow_macro_instructions());
|
ld3r(vt, vt2, vt3, src);
|
}
|
void Ld4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
|
const VRegister& vt4, const MemOperand& src) {
|
DCHECK(allow_macro_instructions());
|
ld4(vt, vt2, vt3, vt4, src);
|
}
|
void Ld4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
|
const VRegister& vt4, int lane, const MemOperand& src) {
|
DCHECK(allow_macro_instructions());
|
ld4(vt, vt2, vt3, vt4, lane, src);
|
}
|
void Ld4r(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
|
const VRegister& vt4, const MemOperand& src) {
|
DCHECK(allow_macro_instructions());
|
ld4r(vt, vt2, vt3, vt4, src);
|
}
|
void St1(const VRegister& vt, const MemOperand& dst) {
|
DCHECK(allow_macro_instructions());
|
st1(vt, dst);
|
}
|
void St1(const VRegister& vt, const VRegister& vt2, const MemOperand& dst) {
|
DCHECK(allow_macro_instructions());
|
st1(vt, vt2, dst);
|
}
|
void St1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
|
const MemOperand& dst) {
|
DCHECK(allow_macro_instructions());
|
st1(vt, vt2, vt3, dst);
|
}
|
void St1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
|
const VRegister& vt4, const MemOperand& dst) {
|
DCHECK(allow_macro_instructions());
|
st1(vt, vt2, vt3, vt4, dst);
|
}
|
void St1(const VRegister& vt, int lane, const MemOperand& dst) {
|
DCHECK(allow_macro_instructions());
|
st1(vt, lane, dst);
|
}
|
void St2(const VRegister& vt, const VRegister& vt2, const MemOperand& dst) {
|
DCHECK(allow_macro_instructions());
|
st2(vt, vt2, dst);
|
}
|
void St3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
|
const MemOperand& dst) {
|
DCHECK(allow_macro_instructions());
|
st3(vt, vt2, vt3, dst);
|
}
|
void St4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
|
const VRegister& vt4, const MemOperand& dst) {
|
DCHECK(allow_macro_instructions());
|
st4(vt, vt2, vt3, vt4, dst);
|
}
|
void St2(const VRegister& vt, const VRegister& vt2, int lane,
|
const MemOperand& dst) {
|
DCHECK(allow_macro_instructions());
|
st2(vt, vt2, lane, dst);
|
}
|
void St3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
|
int lane, const MemOperand& dst) {
|
DCHECK(allow_macro_instructions());
|
st3(vt, vt2, vt3, lane, dst);
|
}
|
void St4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
|
const VRegister& vt4, int lane, const MemOperand& dst) {
|
DCHECK(allow_macro_instructions());
|
st4(vt, vt2, vt3, vt4, lane, dst);
|
}
|
void Tbx(const VRegister& vd, const VRegister& vn, const VRegister& vm) {
|
DCHECK(allow_macro_instructions());
|
tbx(vd, vn, vm);
|
}
|
void Tbx(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
|
const VRegister& vm) {
|
DCHECK(allow_macro_instructions());
|
tbx(vd, vn, vn2, vm);
|
}
|
void Tbx(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
|
const VRegister& vn3, const VRegister& vm) {
|
DCHECK(allow_macro_instructions());
|
tbx(vd, vn, vn2, vn3, vm);
|
}
|
void Tbx(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
|
const VRegister& vn3, const VRegister& vn4, const VRegister& vm) {
|
DCHECK(allow_macro_instructions());
|
tbx(vd, vn, vn2, vn3, vn4, vm);
|
}
|
|
void LoadObject(Register result, Handle<Object> object);
|
|
inline void PushSizeRegList(RegList registers, unsigned reg_size,
|
CPURegister::RegisterType type = CPURegister::kRegister) {
|
PushCPURegList(CPURegList(type, reg_size, registers));
|
}
|
inline void PopSizeRegList(RegList registers, unsigned reg_size,
|
CPURegister::RegisterType type = CPURegister::kRegister) {
|
PopCPURegList(CPURegList(type, reg_size, registers));
|
}
|
inline void PushXRegList(RegList regs) {
|
PushSizeRegList(regs, kXRegSizeInBits);
|
}
|
inline void PopXRegList(RegList regs) {
|
PopSizeRegList(regs, kXRegSizeInBits);
|
}
|
inline void PushWRegList(RegList regs) {
|
PushSizeRegList(regs, kWRegSizeInBits);
|
}
|
inline void PopWRegList(RegList regs) {
|
PopSizeRegList(regs, kWRegSizeInBits);
|
}
|
inline void PushDRegList(RegList regs) {
|
PushSizeRegList(regs, kDRegSizeInBits, CPURegister::kVRegister);
|
}
|
inline void PopDRegList(RegList regs) {
|
PopSizeRegList(regs, kDRegSizeInBits, CPURegister::kVRegister);
|
}
|
inline void PushSRegList(RegList regs) {
|
PushSizeRegList(regs, kSRegSizeInBits, CPURegister::kVRegister);
|
}
|
inline void PopSRegList(RegList regs) {
|
PopSizeRegList(regs, kSRegSizeInBits, CPURegister::kVRegister);
|
}
|
|
// Push the specified register 'count' times.
|
void PushMultipleTimes(CPURegister src, Register count);
|
|
// Sometimes callers need to push or pop multiple registers in a way that is
|
// difficult to structure efficiently for fixed Push or Pop calls. This scope
|
// allows push requests to be queued up, then flushed at once. The
|
// MacroAssembler will try to generate the most efficient sequence required.
|
//
|
// Unlike the other Push and Pop macros, PushPopQueue can handle mixed sets of
|
// register sizes and types.
|
class PushPopQueue {
|
public:
|
explicit PushPopQueue(MacroAssembler* masm) : masm_(masm), size_(0) {}
|
|
~PushPopQueue() {
|
DCHECK(queued_.empty());
|
}
|
|
void Queue(const CPURegister& rt) {
|
size_ += rt.SizeInBytes();
|
queued_.push_back(rt);
|
}
|
|
void PushQueued();
|
void PopQueued();
|
|
private:
|
MacroAssembler* masm_;
|
int size_;
|
std::vector<CPURegister> queued_;
|
};
|
|
// Peek at two values on the stack, and put them in 'dst1' and 'dst2'. The
|
// values peeked will be adjacent, with the value in 'dst2' being from a
|
// higher address than 'dst1'. The offset is in bytes. The stack pointer must
|
// be aligned to 16 bytes.
|
void PeekPair(const CPURegister& dst1, const CPURegister& dst2, int offset);
|
|
// Variants of Claim and Drop, where the 'count' parameter is a SMI held in a
|
// register.
|
inline void ClaimBySMI(const Register& count_smi,
|
uint64_t unit_size = kXRegSize);
|
inline void DropBySMI(const Register& count_smi,
|
uint64_t unit_size = kXRegSize);
|
|
// Compare a register with an operand, and branch to label depending on the
|
// condition. May corrupt the status flags.
|
inline void CompareAndBranch(const Register& lhs,
|
const Operand& rhs,
|
Condition cond,
|
Label* label);
|
|
// Insert one or more instructions into the instruction stream that encode
|
// some caller-defined data. The instructions used will be executable with no
|
// side effects.
|
inline void InlineData(uint64_t data);
|
|
// Insert an instrumentation enable marker into the instruction stream.
|
inline void EnableInstrumentation();
|
|
// Insert an instrumentation disable marker into the instruction stream.
|
inline void DisableInstrumentation();
|
|
// Insert an instrumentation event marker into the instruction stream. These
|
// will be picked up by the instrumentation system to annotate an instruction
|
// profile. The argument marker_name must be a printable two character string;
|
// it will be encoded in the event marker.
|
inline void AnnotateInstrumentation(const char* marker_name);
|
|
// Preserve the callee-saved registers (as defined by AAPCS64).
|
//
|
// Higher-numbered registers are pushed before lower-numbered registers, and
|
// thus get higher addresses.
|
// Floating-point registers are pushed before general-purpose registers, and
|
// thus get higher addresses.
|
//
|
// Note that registers are not checked for invalid values. Use this method
|
// only if you know that the GC won't try to examine the values on the stack.
|
void PushCalleeSavedRegisters();
|
|
// Restore the callee-saved registers (as defined by AAPCS64).
|
//
|
// Higher-numbered registers are popped after lower-numbered registers, and
|
// thus come from higher addresses.
|
// Floating-point registers are popped after general-purpose registers, and
|
// thus come from higher addresses.
|
void PopCalleeSavedRegisters();
|
|
// Helpers ------------------------------------------------------------------
|
|
static int SafepointRegisterStackIndex(int reg_code);
|
|
template<typename Field>
|
void DecodeField(Register dst, Register src) {
|
static const int shift = Field::kShift;
|
static const int setbits = CountSetBits(Field::kMask, 32);
|
Ubfx(dst, src, shift, setbits);
|
}
|
|
template<typename Field>
|
void DecodeField(Register reg) {
|
DecodeField<Field>(reg, reg);
|
}
|
|
// ---- SMI and Number Utilities ----
|
|
inline void SmiTag(Register dst, Register src);
|
inline void SmiTag(Register smi);
|
|
inline void JumpIfNotSmi(Register value, Label* not_smi_label);
|
inline void JumpIfBothSmi(Register value1, Register value2,
|
Label* both_smi_label,
|
Label* not_smi_label = nullptr);
|
inline void JumpIfEitherSmi(Register value1, Register value2,
|
Label* either_smi_label,
|
Label* not_smi_label = nullptr);
|
inline void JumpIfEitherNotSmi(Register value1,
|
Register value2,
|
Label* not_smi_label);
|
inline void JumpIfBothNotSmi(Register value1,
|
Register value2,
|
Label* not_smi_label);
|
|
// Abort execution if argument is a smi, enabled via --debug-code.
|
void AssertNotSmi(Register object,
|
AbortReason reason = AbortReason::kOperandIsASmi);
|
|
inline void ObjectTag(Register tagged_obj, Register obj);
|
inline void ObjectUntag(Register untagged_obj, Register obj);
|
|
// Abort execution if argument is not a Constructor, enabled via --debug-code.
|
void AssertConstructor(Register object);
|
|
// Abort execution if argument is not a JSFunction, enabled via --debug-code.
|
void AssertFunction(Register object);
|
|
// Abort execution if argument is not a JSGeneratorObject (or subclass),
|
// enabled via --debug-code.
|
void AssertGeneratorObject(Register object);
|
|
// Abort execution if argument is not a JSBoundFunction,
|
// enabled via --debug-code.
|
void AssertBoundFunction(Register object);
|
|
// Abort execution if argument is not undefined or an AllocationSite, enabled
|
// via --debug-code.
|
void AssertUndefinedOrAllocationSite(Register object);
|
|
// Try to represent a double as a signed 64-bit int.
|
// This succeeds if the result compares equal to the input, so inputs of -0.0
|
// are represented as 0 and handled as a success.
|
//
|
// On output the Z flag is set if the operation was successful.
|
void TryRepresentDoubleAsInt64(Register as_int, VRegister value,
|
VRegister scratch_d,
|
Label* on_successful_conversion = nullptr,
|
Label* on_failed_conversion = nullptr) {
|
DCHECK(as_int.Is64Bits());
|
TryRepresentDoubleAsInt(as_int, value, scratch_d, on_successful_conversion,
|
on_failed_conversion);
|
}
|
|
// ---- Calling / Jumping helpers ----
|
|
void CallStub(CodeStub* stub);
|
void TailCallStub(CodeStub* stub);
|
|
void CallRuntime(const Runtime::Function* f,
|
int num_arguments,
|
SaveFPRegsMode save_doubles = kDontSaveFPRegs);
|
|
// Convenience function: Same as above, but takes the fid instead.
|
void CallRuntime(Runtime::FunctionId fid, int num_arguments,
|
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
|
CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
|
}
|
|
// Convenience function: Same as above, but takes the fid instead.
|
void CallRuntime(Runtime::FunctionId fid,
|
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
|
const Runtime::Function* function = Runtime::FunctionForId(fid);
|
CallRuntime(function, function->nargs, save_doubles);
|
}
|
|
void TailCallRuntime(Runtime::FunctionId fid);
|
|
// Jump to a runtime routine.
|
void JumpToExternalReference(const ExternalReference& builtin,
|
bool builtin_exit_frame = false);
|
|
// Generates a trampoline to jump to the off-heap instruction stream.
|
void JumpToInstructionStream(Address entry);
|
|
// Registers used through the invocation chain are hard-coded.
|
// We force passing the parameters to ensure the contracts are correctly
|
// honoured by the caller.
|
// 'function' must be x1.
|
// 'actual' must use an immediate or x0.
|
// 'expected' must use an immediate or x2.
|
// 'call_kind' must be x5.
|
void InvokePrologue(const ParameterCount& expected,
|
const ParameterCount& actual, Label* done,
|
InvokeFlag flag, bool* definitely_mismatches);
|
|
// On function call, call into the debugger if necessary.
|
void CheckDebugHook(Register fun, Register new_target,
|
const ParameterCount& expected,
|
const ParameterCount& actual);
|
void InvokeFunctionCode(Register function, Register new_target,
|
const ParameterCount& expected,
|
const ParameterCount& actual, InvokeFlag flag);
|
// Invoke the JavaScript function in the given register.
|
// Changes the current context to the context in the function before invoking.
|
void InvokeFunction(Register function, Register new_target,
|
const ParameterCount& actual, InvokeFlag flag);
|
void InvokeFunction(Register function, const ParameterCount& expected,
|
const ParameterCount& actual, InvokeFlag flag);
|
|
// ---- Code generation helpers ----
|
|
// Frame restart support
|
void MaybeDropFrames();
|
|
// ---------------------------------------------------------------------------
|
// Support functions.
|
|
// Compare object type for heap object. heap_object contains a non-Smi
|
// whose object type should be compared with the given type. This both
|
// sets the flags and leaves the object type in the type_reg register.
|
// It leaves the map in the map register (unless the type_reg and map register
|
// are the same register). It leaves the heap object in the heap_object
|
// register unless the heap_object register is the same register as one of the
|
// other registers.
|
void CompareObjectType(Register heap_object,
|
Register map,
|
Register type_reg,
|
InstanceType type);
|
|
|
// Compare object type for heap object, and branch if equal (or not.)
|
// heap_object contains a non-Smi whose object type should be compared with
|
// the given type. This both sets the flags and leaves the object type in
|
// the type_reg register. It leaves the map in the map register (unless the
|
// type_reg and map register are the same register). It leaves the heap
|
// object in the heap_object register unless the heap_object register is the
|
// same register as one of the other registers.
|
void JumpIfObjectType(Register object,
|
Register map,
|
Register type_reg,
|
InstanceType type,
|
Label* if_cond_pass,
|
Condition cond = eq);
|
|
// Compare instance type in a map. map contains a valid map object whose
|
// object type should be compared with the given type. This both
|
// sets the flags and leaves the object type in the type_reg register.
|
void CompareInstanceType(Register map,
|
Register type_reg,
|
InstanceType type);
|
|
// Load the elements kind field from a map, and return it in the result
|
// register.
|
void LoadElementsKindFromMap(Register result, Register map);
|
|
// Compare the object in a register to a value from the root list.
|
void CompareRoot(const Register& obj, Heap::RootListIndex index);
|
|
// Compare the object in a register to a value and jump if they are equal.
|
void JumpIfRoot(const Register& obj,
|
Heap::RootListIndex index,
|
Label* if_equal);
|
|
// Compare the object in a register to a value and jump if they are not equal.
|
void JumpIfNotRoot(const Register& obj,
|
Heap::RootListIndex index,
|
Label* if_not_equal);
|
|
// Compare the contents of a register with an operand, and branch to true,
|
// false or fall through, depending on condition.
|
void CompareAndSplit(const Register& lhs,
|
const Operand& rhs,
|
Condition cond,
|
Label* if_true,
|
Label* if_false,
|
Label* fall_through);
|
|
// Test the bits of register defined by bit_pattern, and branch to
|
// if_any_set, if_all_clear or fall_through accordingly.
|
void TestAndSplit(const Register& reg,
|
uint64_t bit_pattern,
|
Label* if_all_clear,
|
Label* if_any_set,
|
Label* fall_through);
|
|
// ---------------------------------------------------------------------------
|
// Frames.
|
|
void ExitFramePreserveFPRegs();
|
void ExitFrameRestoreFPRegs();
|
|
// Enter exit frame. Exit frames are used when calling C code from generated
|
// (JavaScript) code.
|
//
|
// The only registers modified by this function are the provided scratch
|
// register, the frame pointer and the stack pointer.
|
//
|
// The 'extra_space' argument can be used to allocate some space in the exit
|
// frame that will be ignored by the GC. This space will be reserved in the
|
// bottom of the frame immediately above the return address slot.
|
//
|
// Set up a stack frame and registers as follows:
|
// fp[8]: CallerPC (lr)
|
// fp -> fp[0]: CallerFP (old fp)
|
// fp[-8]: SPOffset (new sp)
|
// fp[-16]: CodeObject()
|
// fp[-16 - fp-size]: Saved doubles, if saved_doubles is true.
|
// sp[8]: Memory reserved for the caller if extra_space != 0.
|
// Alignment padding, if necessary.
|
// sp -> sp[0]: Space reserved for the return address.
|
//
|
// This function also stores the new frame information in the top frame, so
|
// that the new frame becomes the current frame.
|
void EnterExitFrame(bool save_doubles, const Register& scratch,
|
int extra_space = 0,
|
StackFrame::Type frame_type = StackFrame::EXIT);
|
|
// Leave the current exit frame, after a C function has returned to generated
|
// (JavaScript) code.
|
//
|
// This effectively unwinds the operation of EnterExitFrame:
|
// * Preserved doubles are restored (if restore_doubles is true).
|
// * The frame information is removed from the top frame.
|
// * The exit frame is dropped.
|
void LeaveExitFrame(bool save_doubles, const Register& scratch,
|
const Register& scratch2);
|
|
// Load the global proxy from the current context.
|
void LoadGlobalProxy(Register dst) {
|
LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
|
}
|
|
// ---------------------------------------------------------------------------
|
// In-place weak references.
|
void LoadWeakValue(Register out, Register in, Label* target_if_cleared);
|
|
// ---------------------------------------------------------------------------
|
// StatsCounter support
|
|
void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
|
Register scratch2);
|
void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
|
Register scratch2);
|
|
// ---------------------------------------------------------------------------
|
// Garbage collector support (GC).
|
|
// Push and pop the registers that can hold pointers, as defined by the
|
// RegList constant kSafepointSavedRegisters.
|
void PushSafepointRegisters();
|
void PopSafepointRegisters();
|
|
void CheckPageFlag(const Register& object, const Register& scratch, int mask,
|
Condition cc, Label* condition_met);
|
|
// Notify the garbage collector that we wrote a pointer into an object.
|
// |object| is the object being stored into, |value| is the object being
|
// stored. value and scratch registers are clobbered by the operation.
|
// The offset is the offset from the start of the object, not the offset from
|
// the tagged HeapObject pointer. For use with FieldMemOperand(reg, off).
|
void RecordWriteField(
|
Register object, int offset, Register value, Register scratch,
|
LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
|
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
|
SmiCheck smi_check = INLINE_SMI_CHECK);
|
|
// For a given |object| notify the garbage collector that the slot |address|
|
// has been written. |value| is the object being stored. The value and
|
// address registers are clobbered by the operation.
|
void RecordWrite(
|
Register object, Register address, Register value,
|
LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
|
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
|
SmiCheck smi_check = INLINE_SMI_CHECK);
|
|
// ---------------------------------------------------------------------------
|
// Debugging.
|
|
void AssertRegisterIsRoot(
|
Register reg, Heap::RootListIndex index,
|
AbortReason reason = AbortReason::kRegisterDidNotMatchExpectedRoot);
|
|
// Abort if the specified register contains the invalid color bit pattern.
|
// The pattern must be in bits [1:0] of 'reg' register.
|
//
|
// If emit_debug_code() is false, this emits no code.
|
void AssertHasValidColor(const Register& reg);
|
|
void LoadNativeContextSlot(int index, Register dst);
|
|
// Like printf, but print at run-time from generated code.
|
//
|
// The caller must ensure that arguments for floating-point placeholders
|
// (such as %e, %f or %g) are VRegisters, and that arguments for integer
|
// placeholders are Registers.
|
//
|
// Format placeholders that refer to more than one argument, or to a specific
|
// argument, are not supported. This includes formats like "%1$d" or "%.*d".
|
//
|
// This function automatically preserves caller-saved registers so that
|
// calling code can use Printf at any point without having to worry about
|
// corruption. The preservation mechanism generates a lot of code. If this is
|
// a problem, preserve the important registers manually and then call
|
// PrintfNoPreserve. Callee-saved registers are not used by Printf, and are
|
// implicitly preserved.
|
void Printf(const char * format,
|
CPURegister arg0 = NoCPUReg,
|
CPURegister arg1 = NoCPUReg,
|
CPURegister arg2 = NoCPUReg,
|
CPURegister arg3 = NoCPUReg);
|
|
// Like Printf, but don't preserve any caller-saved registers, not even 'lr'.
|
//
|
// The return code from the system printf call will be returned in x0.
|
void PrintfNoPreserve(const char * format,
|
const CPURegister& arg0 = NoCPUReg,
|
const CPURegister& arg1 = NoCPUReg,
|
const CPURegister& arg2 = NoCPUReg,
|
const CPURegister& arg3 = NoCPUReg);
|
|
private:
|
// Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
|
void InNewSpace(Register object,
|
Condition cond, // eq for new space, ne otherwise.
|
Label* branch);
|
|
// Try to represent a double as an int so that integer fast-paths may be
|
// used. Not every valid integer value is guaranteed to be caught.
|
// It supports both 32-bit and 64-bit integers depending whether 'as_int'
|
// is a W or X register.
|
//
|
// This does not distinguish between +0 and -0, so if this distinction is
|
// important it must be checked separately.
|
//
|
// On output the Z flag is set if the operation was successful.
|
void TryRepresentDoubleAsInt(Register as_int, VRegister value,
|
VRegister scratch_d,
|
Label* on_successful_conversion = nullptr,
|
Label* on_failed_conversion = nullptr);
|
|
public:
|
// Far branches resolving.
|
//
|
// The various classes of branch instructions with immediate offsets have
|
// different ranges. While the Assembler will fail to assemble a branch
|
// exceeding its range, the MacroAssembler offers a mechanism to resolve
|
// branches to too distant targets, either by tweaking the generated code to
|
// use branch instructions with wider ranges or generating veneers.
|
//
|
// Currently branches to distant targets are resolved using unconditional
|
// branch isntructions with a range of +-128MB. If that becomes too little
|
// (!), the mechanism can be extended to generate special veneers for really
|
// far targets.
|
};
|
|
|
// Use this scope when you need a one-to-one mapping between methods and
|
// instructions. This scope prevents the MacroAssembler from being called and
|
// literal pools from being emitted. It also asserts the number of instructions
|
// emitted is what you specified when creating the scope.
|
class InstructionAccurateScope BASE_EMBEDDED {
|
public:
|
explicit InstructionAccurateScope(TurboAssembler* tasm, size_t count = 0)
|
: tasm_(tasm)
|
#ifdef DEBUG
|
,
|
size_(count * kInstrSize)
|
#endif
|
{
|
// Before blocking the const pool, see if it needs to be emitted.
|
tasm_->CheckConstPool(false, true);
|
tasm_->CheckVeneerPool(false, true);
|
|
tasm_->StartBlockPools();
|
#ifdef DEBUG
|
if (count != 0) {
|
tasm_->bind(&start_);
|
}
|
previous_allow_macro_instructions_ = tasm_->allow_macro_instructions();
|
tasm_->set_allow_macro_instructions(false);
|
#endif
|
}
|
|
~InstructionAccurateScope() {
|
tasm_->EndBlockPools();
|
#ifdef DEBUG
|
if (start_.is_bound()) {
|
DCHECK(tasm_->SizeOfCodeGeneratedSince(&start_) == size_);
|
}
|
tasm_->set_allow_macro_instructions(previous_allow_macro_instructions_);
|
#endif
|
}
|
|
private:
|
TurboAssembler* tasm_;
|
#ifdef DEBUG
|
size_t size_;
|
Label start_;
|
bool previous_allow_macro_instructions_;
|
#endif
|
};
|
|
// This scope utility allows scratch registers to be managed safely. The
|
// TurboAssembler's TmpList() (and FPTmpList()) is used as a pool of scratch
|
// registers. These registers can be allocated on demand, and will be returned
|
// at the end of the scope.
|
//
|
// When the scope ends, the MacroAssembler's lists will be restored to their
|
// original state, even if the lists were modified by some other means. Note
|
// that this scope can be nested but the destructors need to run in the opposite
|
// order as the constructors. We do not have assertions for this.
|
class UseScratchRegisterScope {
|
public:
|
explicit UseScratchRegisterScope(TurboAssembler* tasm)
|
: available_(tasm->TmpList()),
|
availablefp_(tasm->FPTmpList()),
|
old_available_(available_->list()),
|
old_availablefp_(availablefp_->list()) {
|
DCHECK_EQ(available_->type(), CPURegister::kRegister);
|
DCHECK_EQ(availablefp_->type(), CPURegister::kVRegister);
|
}
|
|
~UseScratchRegisterScope();
|
|
// Take a register from the appropriate temps list. It will be returned
|
// automatically when the scope ends.
|
Register AcquireW() { return AcquireNextAvailable(available_).W(); }
|
Register AcquireX() { return AcquireNextAvailable(available_).X(); }
|
VRegister AcquireS() { return AcquireNextAvailable(availablefp_).S(); }
|
VRegister AcquireD() { return AcquireNextAvailable(availablefp_).D(); }
|
VRegister AcquireQ() { return AcquireNextAvailable(availablefp_).Q(); }
|
VRegister AcquireV(VectorFormat format) {
|
return VRegister::Create(AcquireNextAvailable(availablefp_).code(), format);
|
}
|
|
Register AcquireSameSizeAs(const Register& reg);
|
VRegister AcquireSameSizeAs(const VRegister& reg);
|
|
private:
|
static CPURegister AcquireNextAvailable(CPURegList* available);
|
|
// Available scratch registers.
|
CPURegList* available_; // kRegister
|
CPURegList* availablefp_; // kVRegister
|
|
// The state of the available lists at the start of this scope.
|
RegList old_available_; // kRegister
|
RegList old_availablefp_; // kVRegister
|
};
|
|
MemOperand ContextMemOperand(Register context, int index = 0);
|
MemOperand NativeContextMemOperand();
|
|
// Encode and decode information about patchable inline SMI checks.
|
class InlineSmiCheckInfo {
|
public:
|
explicit InlineSmiCheckInfo(Address info);
|
|
bool HasSmiCheck() const { return smi_check_ != nullptr; }
|
|
const Register& SmiRegister() const {
|
return reg_;
|
}
|
|
Instruction* SmiCheck() const {
|
return smi_check_;
|
}
|
|
int SmiCheckDelta() const { return smi_check_delta_; }
|
|
// Use MacroAssembler::InlineData to emit information about patchable inline
|
// SMI checks. The caller may specify 'reg' as NoReg and an unbound 'site' to
|
// indicate that there is no inline SMI check. Note that 'reg' cannot be sp.
|
//
|
// The generated patch information can be read using the InlineSMICheckInfo
|
// class.
|
static void Emit(MacroAssembler* masm, const Register& reg,
|
const Label* smi_check);
|
|
// Emit information to indicate that there is no inline SMI check.
|
static void EmitNotInlined(MacroAssembler* masm) {
|
Label unbound;
|
Emit(masm, NoReg, &unbound);
|
}
|
|
private:
|
Register reg_;
|
int smi_check_delta_;
|
Instruction* smi_check_;
|
|
// Fields in the data encoded by InlineData.
|
|
// A width of 5 (Rd_width) for the SMI register precludes the use of sp,
|
// since kSPRegInternalCode is 63. However, sp should never hold a SMI or be
|
// used in a patchable check. The Emit() method checks this.
|
//
|
// Note that the total size of the fields is restricted by the underlying
|
// storage size handled by the BitField class, which is a uint32_t.
|
class RegisterBits : public BitField<unsigned, 0, 5> {};
|
class DeltaBits : public BitField<uint32_t, 5, 32-5> {};
|
};
|
|
} // namespace internal
|
} // namespace v8
|
|
#define ACCESS_MASM(masm) masm->
|
|
#endif // V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
|