// Copyright 2012 the V8 project authors. All rights reserved.
|
// Use of this source code is governed by a BSD-style license that can be
|
// found in the LICENSE file.
|
|
#include <stdarg.h>
|
#include <stdlib.h>
|
#include <cmath>
|
|
#if V8_TARGET_ARCH_ARM
|
|
#include "src/arm/constants-arm.h"
|
#include "src/arm/simulator-arm.h"
|
#include "src/assembler-inl.h"
|
#include "src/base/bits.h"
|
#include "src/codegen.h"
|
#include "src/disasm.h"
|
#include "src/macro-assembler.h"
|
#include "src/objects-inl.h"
|
#include "src/runtime/runtime-utils.h"
|
|
#if defined(USE_SIMULATOR)
|
|
// Only build the simulator if not compiling for real ARM hardware.
|
namespace v8 {
|
namespace internal {
|
|
// static
|
base::LazyInstance<Simulator::GlobalMonitor>::type Simulator::global_monitor_ =
|
LAZY_INSTANCE_INITIALIZER;
|
|
// This macro provides a platform independent use of sscanf. The reason for
|
// SScanF not being implemented in a platform independent way through
|
// ::v8::internal::OS in the same way as SNPrintF is that the
|
// Windows C Run-Time Library does not provide vsscanf.
|
#define SScanF sscanf // NOLINT
|
|
// The ArmDebugger class is used by the simulator while debugging simulated ARM
|
// code.
|
class ArmDebugger {
|
public:
|
explicit ArmDebugger(Simulator* sim) : sim_(sim) { }
|
|
void Stop(Instruction* instr);
|
void Debug();
|
|
private:
|
static const Instr kBreakpointInstr =
|
(al | (7*B25) | (1*B24) | kBreakpoint);
|
static const Instr kNopInstr = (al | (13*B21));
|
|
Simulator* sim_;
|
|
int32_t GetRegisterValue(int regnum);
|
double GetRegisterPairDoubleValue(int regnum);
|
double GetVFPDoubleRegisterValue(int regnum);
|
bool GetValue(const char* desc, int32_t* value);
|
bool GetVFPSingleValue(const char* desc, float* value);
|
bool GetVFPDoubleValue(const char* desc, double* value);
|
|
// Set or delete a breakpoint. Returns true if successful.
|
bool SetBreakpoint(Instruction* breakpc);
|
bool DeleteBreakpoint(Instruction* breakpc);
|
|
// Undo and redo all breakpoints. This is needed to bracket disassembly and
|
// execution to skip past breakpoints when run from the debugger.
|
void UndoBreakpoints();
|
void RedoBreakpoints();
|
};
|
|
void ArmDebugger::Stop(Instruction* instr) {
|
// Get the stop code.
|
uint32_t code = instr->SvcValue() & kStopCodeMask;
|
// Print the stop message and code if it is not the default code.
|
if (code != kMaxStopCode) {
|
PrintF("Simulator hit stop %u\n", code);
|
} else {
|
PrintF("Simulator hit\n");
|
}
|
Debug();
|
}
|
|
int32_t ArmDebugger::GetRegisterValue(int regnum) {
|
if (regnum == kPCRegister) {
|
return sim_->get_pc();
|
} else {
|
return sim_->get_register(regnum);
|
}
|
}
|
|
double ArmDebugger::GetRegisterPairDoubleValue(int regnum) {
|
return sim_->get_double_from_register_pair(regnum);
|
}
|
|
|
double ArmDebugger::GetVFPDoubleRegisterValue(int regnum) {
|
return sim_->get_double_from_d_register(regnum).get_scalar();
|
}
|
|
|
bool ArmDebugger::GetValue(const char* desc, int32_t* value) {
|
int regnum = Registers::Number(desc);
|
if (regnum != kNoRegister) {
|
*value = GetRegisterValue(regnum);
|
return true;
|
} else {
|
if (strncmp(desc, "0x", 2) == 0) {
|
return SScanF(desc + 2, "%x", reinterpret_cast<uint32_t*>(value)) == 1;
|
} else {
|
return SScanF(desc, "%u", reinterpret_cast<uint32_t*>(value)) == 1;
|
}
|
}
|
return false;
|
}
|
|
|
bool ArmDebugger::GetVFPSingleValue(const char* desc, float* value) {
|
bool is_double;
|
int regnum = VFPRegisters::Number(desc, &is_double);
|
if (regnum != kNoRegister && !is_double) {
|
*value = sim_->get_float_from_s_register(regnum).get_scalar();
|
return true;
|
}
|
return false;
|
}
|
|
|
bool ArmDebugger::GetVFPDoubleValue(const char* desc, double* value) {
|
bool is_double;
|
int regnum = VFPRegisters::Number(desc, &is_double);
|
if (regnum != kNoRegister && is_double) {
|
*value = sim_->get_double_from_d_register(regnum).get_scalar();
|
return true;
|
}
|
return false;
|
}
|
|
|
bool ArmDebugger::SetBreakpoint(Instruction* breakpc) {
|
// Check if a breakpoint can be set. If not return without any side-effects.
|
if (sim_->break_pc_ != nullptr) {
|
return false;
|
}
|
|
// Set the breakpoint.
|
sim_->break_pc_ = breakpc;
|
sim_->break_instr_ = breakpc->InstructionBits();
|
// Not setting the breakpoint instruction in the code itself. It will be set
|
// when the debugger shell continues.
|
return true;
|
}
|
|
|
bool ArmDebugger::DeleteBreakpoint(Instruction* breakpc) {
|
if (sim_->break_pc_ != nullptr) {
|
sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
|
}
|
|
sim_->break_pc_ = nullptr;
|
sim_->break_instr_ = 0;
|
return true;
|
}
|
|
|
void ArmDebugger::UndoBreakpoints() {
|
if (sim_->break_pc_ != nullptr) {
|
sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
|
}
|
}
|
|
|
void ArmDebugger::RedoBreakpoints() {
|
if (sim_->break_pc_ != nullptr) {
|
sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
|
}
|
}
|
|
|
void ArmDebugger::Debug() {
|
intptr_t last_pc = -1;
|
bool done = false;
|
|
#define COMMAND_SIZE 63
|
#define ARG_SIZE 255
|
|
#define STR(a) #a
|
#define XSTR(a) STR(a)
|
|
char cmd[COMMAND_SIZE + 1];
|
char arg1[ARG_SIZE + 1];
|
char arg2[ARG_SIZE + 1];
|
char* argv[3] = { cmd, arg1, arg2 };
|
|
// make sure to have a proper terminating character if reaching the limit
|
cmd[COMMAND_SIZE] = 0;
|
arg1[ARG_SIZE] = 0;
|
arg2[ARG_SIZE] = 0;
|
|
// Undo all set breakpoints while running in the debugger shell. This will
|
// make them invisible to all commands.
|
UndoBreakpoints();
|
|
while (!done && !sim_->has_bad_pc()) {
|
if (last_pc != sim_->get_pc()) {
|
disasm::NameConverter converter;
|
disasm::Disassembler dasm(converter);
|
// use a reasonably large buffer
|
v8::internal::EmbeddedVector<char, 256> buffer;
|
dasm.InstructionDecode(buffer,
|
reinterpret_cast<byte*>(sim_->get_pc()));
|
PrintF(" 0x%08x %s\n", sim_->get_pc(), buffer.start());
|
last_pc = sim_->get_pc();
|
}
|
char* line = ReadLine("sim> ");
|
if (line == nullptr) {
|
break;
|
} else {
|
char* last_input = sim_->last_debugger_input();
|
if (strcmp(line, "\n") == 0 && last_input != nullptr) {
|
line = last_input;
|
} else {
|
// Ownership is transferred to sim_;
|
sim_->set_last_debugger_input(line);
|
}
|
// Use sscanf to parse the individual parts of the command line. At the
|
// moment no command expects more than two parameters.
|
int argc = SScanF(line,
|
"%" XSTR(COMMAND_SIZE) "s "
|
"%" XSTR(ARG_SIZE) "s "
|
"%" XSTR(ARG_SIZE) "s",
|
cmd, arg1, arg2);
|
if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
|
sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc()));
|
} else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
|
// Execute the one instruction we broke at with breakpoints disabled.
|
sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc()));
|
// Leave the debugger shell.
|
done = true;
|
} else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
|
if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
|
int32_t value;
|
float svalue;
|
double dvalue;
|
if (strcmp(arg1, "all") == 0) {
|
for (int i = 0; i < kNumRegisters; i++) {
|
value = GetRegisterValue(i);
|
PrintF(
|
"%3s: 0x%08x %10d",
|
RegisterConfiguration::Default()->GetGeneralRegisterName(i),
|
value, value);
|
if ((argc == 3 && strcmp(arg2, "fp") == 0) &&
|
i < 8 &&
|
(i % 2) == 0) {
|
dvalue = GetRegisterPairDoubleValue(i);
|
PrintF(" (%f)\n", dvalue);
|
} else {
|
PrintF("\n");
|
}
|
}
|
for (int i = 0; i < DwVfpRegister::NumRegisters(); i++) {
|
dvalue = GetVFPDoubleRegisterValue(i);
|
uint64_t as_words = bit_cast<uint64_t>(dvalue);
|
PrintF("%3s: %f 0x%08x %08x\n", VFPRegisters::Name(i, true),
|
dvalue, static_cast<uint32_t>(as_words >> 32),
|
static_cast<uint32_t>(as_words & 0xFFFFFFFF));
|
}
|
} else {
|
if (GetValue(arg1, &value)) {
|
PrintF("%s: 0x%08x %d \n", arg1, value, value);
|
} else if (GetVFPSingleValue(arg1, &svalue)) {
|
uint32_t as_word = bit_cast<uint32_t>(svalue);
|
PrintF("%s: %f 0x%08x\n", arg1, svalue, as_word);
|
} else if (GetVFPDoubleValue(arg1, &dvalue)) {
|
uint64_t as_words = bit_cast<uint64_t>(dvalue);
|
PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue,
|
static_cast<uint32_t>(as_words >> 32),
|
static_cast<uint32_t>(as_words & 0xFFFFFFFF));
|
} else {
|
PrintF("%s unrecognized\n", arg1);
|
}
|
}
|
} else {
|
PrintF("print <register>\n");
|
}
|
} else if ((strcmp(cmd, "po") == 0)
|
|| (strcmp(cmd, "printobject") == 0)) {
|
if (argc == 2) {
|
int32_t value;
|
StdoutStream os;
|
if (GetValue(arg1, &value)) {
|
Object* obj = reinterpret_cast<Object*>(value);
|
os << arg1 << ": \n";
|
#ifdef DEBUG
|
obj->Print(os);
|
os << "\n";
|
#else
|
os << Brief(obj) << "\n";
|
#endif
|
} else {
|
os << arg1 << " unrecognized\n";
|
}
|
} else {
|
PrintF("printobject <value>\n");
|
}
|
} else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
|
int32_t* cur = nullptr;
|
int32_t* end = nullptr;
|
int next_arg = 1;
|
|
if (strcmp(cmd, "stack") == 0) {
|
cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp));
|
} else { // "mem"
|
int32_t value;
|
if (!GetValue(arg1, &value)) {
|
PrintF("%s unrecognized\n", arg1);
|
continue;
|
}
|
cur = reinterpret_cast<int32_t*>(value);
|
next_arg++;
|
}
|
|
int32_t words;
|
if (argc == next_arg) {
|
words = 10;
|
} else {
|
if (!GetValue(argv[next_arg], &words)) {
|
words = 10;
|
}
|
}
|
end = cur + words;
|
|
while (cur < end) {
|
PrintF(" 0x%08" V8PRIxPTR ": 0x%08x %10d",
|
reinterpret_cast<intptr_t>(cur), *cur, *cur);
|
HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
|
int value = *cur;
|
Heap* current_heap = sim_->isolate_->heap();
|
if (((value & 1) == 0) ||
|
current_heap->ContainsSlow(obj->address())) {
|
PrintF(" (");
|
if ((value & 1) == 0) {
|
PrintF("smi %d", value / 2);
|
} else {
|
obj->ShortPrint();
|
}
|
PrintF(")");
|
}
|
PrintF("\n");
|
cur++;
|
}
|
} else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
|
disasm::NameConverter converter;
|
disasm::Disassembler dasm(converter);
|
// use a reasonably large buffer
|
v8::internal::EmbeddedVector<char, 256> buffer;
|
|
byte* prev = nullptr;
|
byte* cur = nullptr;
|
byte* end = nullptr;
|
|
if (argc == 1) {
|
cur = reinterpret_cast<byte*>(sim_->get_pc());
|
end = cur + (10 * kInstrSize);
|
} else if (argc == 2) {
|
int regnum = Registers::Number(arg1);
|
if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
|
// The argument is an address or a register name.
|
int32_t value;
|
if (GetValue(arg1, &value)) {
|
cur = reinterpret_cast<byte*>(value);
|
// Disassemble 10 instructions at <arg1>.
|
end = cur + (10 * kInstrSize);
|
}
|
} else {
|
// The argument is the number of instructions.
|
int32_t value;
|
if (GetValue(arg1, &value)) {
|
cur = reinterpret_cast<byte*>(sim_->get_pc());
|
// Disassemble <arg1> instructions.
|
end = cur + (value * kInstrSize);
|
}
|
}
|
} else {
|
int32_t value1;
|
int32_t value2;
|
if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
|
cur = reinterpret_cast<byte*>(value1);
|
end = cur + (value2 * kInstrSize);
|
}
|
}
|
|
while (cur < end) {
|
prev = cur;
|
cur += dasm.InstructionDecode(buffer, cur);
|
PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev),
|
buffer.start());
|
}
|
} else if (strcmp(cmd, "gdb") == 0) {
|
PrintF("relinquishing control to gdb\n");
|
v8::base::OS::DebugBreak();
|
PrintF("regaining control from gdb\n");
|
} else if (strcmp(cmd, "break") == 0) {
|
if (argc == 2) {
|
int32_t value;
|
if (GetValue(arg1, &value)) {
|
if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
|
PrintF("setting breakpoint failed\n");
|
}
|
} else {
|
PrintF("%s unrecognized\n", arg1);
|
}
|
} else {
|
PrintF("break <address>\n");
|
}
|
} else if (strcmp(cmd, "del") == 0) {
|
if (!DeleteBreakpoint(nullptr)) {
|
PrintF("deleting breakpoint failed\n");
|
}
|
} else if (strcmp(cmd, "flags") == 0) {
|
PrintF("N flag: %d; ", sim_->n_flag_);
|
PrintF("Z flag: %d; ", sim_->z_flag_);
|
PrintF("C flag: %d; ", sim_->c_flag_);
|
PrintF("V flag: %d\n", sim_->v_flag_);
|
PrintF("INVALID OP flag: %d; ", sim_->inv_op_vfp_flag_);
|
PrintF("DIV BY ZERO flag: %d; ", sim_->div_zero_vfp_flag_);
|
PrintF("OVERFLOW flag: %d; ", sim_->overflow_vfp_flag_);
|
PrintF("UNDERFLOW flag: %d; ", sim_->underflow_vfp_flag_);
|
PrintF("INEXACT flag: %d;\n", sim_->inexact_vfp_flag_);
|
} else if (strcmp(cmd, "stop") == 0) {
|
int32_t value;
|
intptr_t stop_pc = sim_->get_pc() - kInstrSize;
|
Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
|
if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
|
// Remove the current stop.
|
if (sim_->isStopInstruction(stop_instr)) {
|
stop_instr->SetInstructionBits(kNopInstr);
|
} else {
|
PrintF("Not at debugger stop.\n");
|
}
|
} else if (argc == 3) {
|
// Print information about all/the specified breakpoint(s).
|
if (strcmp(arg1, "info") == 0) {
|
if (strcmp(arg2, "all") == 0) {
|
PrintF("Stop information:\n");
|
for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
|
sim_->PrintStopInfo(i);
|
}
|
} else if (GetValue(arg2, &value)) {
|
sim_->PrintStopInfo(value);
|
} else {
|
PrintF("Unrecognized argument.\n");
|
}
|
} else if (strcmp(arg1, "enable") == 0) {
|
// Enable all/the specified breakpoint(s).
|
if (strcmp(arg2, "all") == 0) {
|
for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
|
sim_->EnableStop(i);
|
}
|
} else if (GetValue(arg2, &value)) {
|
sim_->EnableStop(value);
|
} else {
|
PrintF("Unrecognized argument.\n");
|
}
|
} else if (strcmp(arg1, "disable") == 0) {
|
// Disable all/the specified breakpoint(s).
|
if (strcmp(arg2, "all") == 0) {
|
for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
|
sim_->DisableStop(i);
|
}
|
} else if (GetValue(arg2, &value)) {
|
sim_->DisableStop(value);
|
} else {
|
PrintF("Unrecognized argument.\n");
|
}
|
}
|
} else {
|
PrintF("Wrong usage. Use help command for more information.\n");
|
}
|
} else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
|
::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
|
PrintF("Trace of executed instructions is %s\n",
|
::v8::internal::FLAG_trace_sim ? "on" : "off");
|
} else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
|
PrintF("cont\n");
|
PrintF(" continue execution (alias 'c')\n");
|
PrintF("stepi\n");
|
PrintF(" step one instruction (alias 'si')\n");
|
PrintF("print <register>\n");
|
PrintF(" print register content (alias 'p')\n");
|
PrintF(" use register name 'all' to print all registers\n");
|
PrintF(" add argument 'fp' to print register pair double values\n");
|
PrintF("printobject <register>\n");
|
PrintF(" print an object from a register (alias 'po')\n");
|
PrintF("flags\n");
|
PrintF(" print flags\n");
|
PrintF("stack [<words>]\n");
|
PrintF(" dump stack content, default dump 10 words)\n");
|
PrintF("mem <address> [<words>]\n");
|
PrintF(" dump memory content, default dump 10 words)\n");
|
PrintF("disasm [<instructions>]\n");
|
PrintF("disasm [<address/register>]\n");
|
PrintF("disasm [[<address/register>] <instructions>]\n");
|
PrintF(" disassemble code, default is 10 instructions\n");
|
PrintF(" from pc (alias 'di')\n");
|
PrintF("gdb\n");
|
PrintF(" enter gdb\n");
|
PrintF("break <address>\n");
|
PrintF(" set a break point on the address\n");
|
PrintF("del\n");
|
PrintF(" delete the breakpoint\n");
|
PrintF("trace (alias 't')\n");
|
PrintF(" toogle the tracing of all executed statements\n");
|
PrintF("stop feature:\n");
|
PrintF(" Description:\n");
|
PrintF(" Stops are debug instructions inserted by\n");
|
PrintF(" the Assembler::stop() function.\n");
|
PrintF(" When hitting a stop, the Simulator will\n");
|
PrintF(" stop and give control to the ArmDebugger.\n");
|
PrintF(" The first %d stop codes are watched:\n",
|
Simulator::kNumOfWatchedStops);
|
PrintF(" - They can be enabled / disabled: the Simulator\n");
|
PrintF(" will / won't stop when hitting them.\n");
|
PrintF(" - The Simulator keeps track of how many times they \n");
|
PrintF(" are met. (See the info command.) Going over a\n");
|
PrintF(" disabled stop still increases its counter. \n");
|
PrintF(" Commands:\n");
|
PrintF(" stop info all/<code> : print infos about number <code>\n");
|
PrintF(" or all stop(s).\n");
|
PrintF(" stop enable/disable all/<code> : enables / disables\n");
|
PrintF(" all or number <code> stop(s)\n");
|
PrintF(" stop unstop\n");
|
PrintF(" ignore the stop instruction at the current location\n");
|
PrintF(" from now on\n");
|
} else {
|
PrintF("Unknown command: %s\n", cmd);
|
}
|
}
|
}
|
|
// Add all the breakpoints back to stop execution and enter the debugger
|
// shell when hit.
|
RedoBreakpoints();
|
|
#undef COMMAND_SIZE
|
#undef ARG_SIZE
|
|
#undef STR
|
#undef XSTR
|
}
|
|
bool Simulator::ICacheMatch(void* one, void* two) {
|
DCHECK_EQ(reinterpret_cast<intptr_t>(one) & CachePage::kPageMask, 0);
|
DCHECK_EQ(reinterpret_cast<intptr_t>(two) & CachePage::kPageMask, 0);
|
return one == two;
|
}
|
|
|
static uint32_t ICacheHash(void* key) {
|
return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
|
}
|
|
|
static bool AllOnOnePage(uintptr_t start, int size) {
|
intptr_t start_page = (start & ~CachePage::kPageMask);
|
intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
|
return start_page == end_page;
|
}
|
|
void Simulator::set_last_debugger_input(char* input) {
|
DeleteArray(last_debugger_input_);
|
last_debugger_input_ = input;
|
}
|
|
void Simulator::SetRedirectInstruction(Instruction* instruction) {
|
instruction->SetInstructionBits(al | (0xF * B24) | kCallRtRedirected);
|
}
|
|
void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache,
|
void* start_addr, size_t size) {
|
intptr_t start = reinterpret_cast<intptr_t>(start_addr);
|
int intra_line = (start & CachePage::kLineMask);
|
start -= intra_line;
|
size += intra_line;
|
size = ((size - 1) | CachePage::kLineMask) + 1;
|
int offset = (start & CachePage::kPageMask);
|
while (!AllOnOnePage(start, size - 1)) {
|
int bytes_to_flush = CachePage::kPageSize - offset;
|
FlushOnePage(i_cache, start, bytes_to_flush);
|
start += bytes_to_flush;
|
size -= bytes_to_flush;
|
DCHECK_EQ(0, start & CachePage::kPageMask);
|
offset = 0;
|
}
|
if (size != 0) {
|
FlushOnePage(i_cache, start, size);
|
}
|
}
|
|
CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache,
|
void* page) {
|
base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page));
|
if (entry->value == nullptr) {
|
CachePage* new_page = new CachePage();
|
entry->value = new_page;
|
}
|
return reinterpret_cast<CachePage*>(entry->value);
|
}
|
|
|
// Flush from start up to and not including start + size.
|
void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache,
|
intptr_t start, int size) {
|
DCHECK_LE(size, CachePage::kPageSize);
|
DCHECK(AllOnOnePage(start, size - 1));
|
DCHECK_EQ(start & CachePage::kLineMask, 0);
|
DCHECK_EQ(size & CachePage::kLineMask, 0);
|
void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
|
int offset = (start & CachePage::kPageMask);
|
CachePage* cache_page = GetCachePage(i_cache, page);
|
char* valid_bytemap = cache_page->ValidityByte(offset);
|
memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
|
}
|
|
void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache,
|
Instruction* instr) {
|
intptr_t address = reinterpret_cast<intptr_t>(instr);
|
void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
|
void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
|
int offset = (address & CachePage::kPageMask);
|
CachePage* cache_page = GetCachePage(i_cache, page);
|
char* cache_valid_byte = cache_page->ValidityByte(offset);
|
bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
|
char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
|
if (cache_hit) {
|
// Check that the data in memory matches the contents of the I-cache.
|
CHECK_EQ(0, memcmp(reinterpret_cast<void*>(instr),
|
cache_page->CachedData(offset), kInstrSize));
|
} else {
|
// Cache miss. Load memory into the cache.
|
memcpy(cached_line, line, CachePage::kLineLength);
|
*cache_valid_byte = CachePage::LINE_VALID;
|
}
|
}
|
|
|
Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
|
// Set up simulator support first. Some of this information is needed to
|
// setup the architecture state.
|
size_t stack_size = 1 * 1024*1024; // allocate 1MB for stack
|
stack_ = reinterpret_cast<char*>(malloc(stack_size));
|
pc_modified_ = false;
|
icount_ = 0;
|
break_pc_ = nullptr;
|
break_instr_ = 0;
|
|
// Set up architecture state.
|
// All registers are initialized to zero to start with.
|
for (int i = 0; i < num_registers; i++) {
|
registers_[i] = 0;
|
}
|
n_flag_ = false;
|
z_flag_ = false;
|
c_flag_ = false;
|
v_flag_ = false;
|
|
// Initializing VFP registers.
|
// All registers are initialized to zero to start with
|
// even though s_registers_ & d_registers_ share the same
|
// physical registers in the target.
|
for (int i = 0; i < num_d_registers * 2; i++) {
|
vfp_registers_[i] = 0;
|
}
|
n_flag_FPSCR_ = false;
|
z_flag_FPSCR_ = false;
|
c_flag_FPSCR_ = false;
|
v_flag_FPSCR_ = false;
|
FPSCR_rounding_mode_ = RN;
|
FPSCR_default_NaN_mode_ = false;
|
|
inv_op_vfp_flag_ = false;
|
div_zero_vfp_flag_ = false;
|
overflow_vfp_flag_ = false;
|
underflow_vfp_flag_ = false;
|
inexact_vfp_flag_ = false;
|
|
// The sp is initialized to point to the bottom (high address) of the
|
// allocated stack area. To be safe in potential stack underflows we leave
|
// some buffer below.
|
registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size - 64;
|
// The lr and pc are initialized to a known bad value that will cause an
|
// access violation if the simulator ever tries to execute it.
|
registers_[pc] = bad_lr;
|
registers_[lr] = bad_lr;
|
|
last_debugger_input_ = nullptr;
|
}
|
|
Simulator::~Simulator() {
|
global_monitor_.Pointer()->RemoveProcessor(&global_monitor_processor_);
|
free(stack_);
|
}
|
|
|
// Get the active Simulator for the current thread.
|
Simulator* Simulator::current(Isolate* isolate) {
|
v8::internal::Isolate::PerIsolateThreadData* isolate_data =
|
isolate->FindOrAllocatePerThreadDataForThisThread();
|
DCHECK_NOT_NULL(isolate_data);
|
|
Simulator* sim = isolate_data->simulator();
|
if (sim == nullptr) {
|
// TODO(146): delete the simulator object when a thread/isolate goes away.
|
sim = new Simulator(isolate);
|
isolate_data->set_simulator(sim);
|
}
|
return sim;
|
}
|
|
|
// Sets the register in the architecture state. It will also deal with updating
|
// Simulator internal state for special registers such as PC.
|
void Simulator::set_register(int reg, int32_t value) {
|
DCHECK((reg >= 0) && (reg < num_registers));
|
if (reg == pc) {
|
pc_modified_ = true;
|
}
|
registers_[reg] = value;
|
}
|
|
|
// Get the register from the architecture state. This function does handle
|
// the special case of accessing the PC register.
|
int32_t Simulator::get_register(int reg) const {
|
DCHECK((reg >= 0) && (reg < num_registers));
|
// Stupid code added to avoid bug in GCC.
|
// See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
|
if (reg >= num_registers) return 0;
|
// End stupid code.
|
return registers_[reg] + ((reg == pc) ? Instruction::kPcLoadDelta : 0);
|
}
|
|
|
double Simulator::get_double_from_register_pair(int reg) {
|
DCHECK((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0));
|
|
double dm_val = 0.0;
|
// Read the bits from the unsigned integer register_[] array
|
// into the double precision floating point value and return it.
|
char buffer[2 * sizeof(vfp_registers_[0])];
|
memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0]));
|
memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
|
return(dm_val);
|
}
|
|
|
void Simulator::set_register_pair_from_double(int reg, double* value) {
|
DCHECK((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0));
|
memcpy(registers_ + reg, value, sizeof(*value));
|
}
|
|
|
void Simulator::set_dw_register(int dreg, const int* dbl) {
|
DCHECK((dreg >= 0) && (dreg < num_d_registers));
|
registers_[dreg] = dbl[0];
|
registers_[dreg + 1] = dbl[1];
|
}
|
|
|
void Simulator::get_d_register(int dreg, uint64_t* value) {
|
DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters()));
|
memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value));
|
}
|
|
|
void Simulator::set_d_register(int dreg, const uint64_t* value) {
|
DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters()));
|
memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value));
|
}
|
|
|
void Simulator::get_d_register(int dreg, uint32_t* value) {
|
DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters()));
|
memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value) * 2);
|
}
|
|
|
void Simulator::set_d_register(int dreg, const uint32_t* value) {
|
DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters()));
|
memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value) * 2);
|
}
|
|
template <typename T, int SIZE>
|
void Simulator::get_neon_register(int reg, T (&value)[SIZE / sizeof(T)]) {
|
DCHECK(SIZE == kSimd128Size || SIZE == kDoubleSize);
|
DCHECK_LE(0, reg);
|
DCHECK_GT(SIZE == kSimd128Size ? num_q_registers : num_d_registers, reg);
|
memcpy(value, vfp_registers_ + reg * (SIZE / 4), SIZE);
|
}
|
|
template <typename T, int SIZE>
|
void Simulator::set_neon_register(int reg, const T (&value)[SIZE / sizeof(T)]) {
|
DCHECK(SIZE == kSimd128Size || SIZE == kDoubleSize);
|
DCHECK_LE(0, reg);
|
DCHECK_GT(SIZE == kSimd128Size ? num_q_registers : num_d_registers, reg);
|
memcpy(vfp_registers_ + reg * (SIZE / 4), value, SIZE);
|
}
|
|
// Raw access to the PC register.
|
void Simulator::set_pc(int32_t value) {
|
pc_modified_ = true;
|
registers_[pc] = value;
|
}
|
|
|
bool Simulator::has_bad_pc() const {
|
return ((registers_[pc] == bad_lr) || (registers_[pc] == end_sim_pc));
|
}
|
|
|
// Raw access to the PC register without the special adjustment when reading.
|
int32_t Simulator::get_pc() const {
|
return registers_[pc];
|
}
|
|
|
// Getting from and setting into VFP registers.
|
void Simulator::set_s_register(int sreg, unsigned int value) {
|
DCHECK((sreg >= 0) && (sreg < num_s_registers));
|
vfp_registers_[sreg] = value;
|
}
|
|
|
unsigned int Simulator::get_s_register(int sreg) const {
|
DCHECK((sreg >= 0) && (sreg < num_s_registers));
|
return vfp_registers_[sreg];
|
}
|
|
|
template<class InputType, int register_size>
|
void Simulator::SetVFPRegister(int reg_index, const InputType& value) {
|
unsigned bytes = register_size * sizeof(vfp_registers_[0]);
|
DCHECK_EQ(sizeof(InputType), bytes);
|
DCHECK_GE(reg_index, 0);
|
if (register_size == 1) DCHECK(reg_index < num_s_registers);
|
if (register_size == 2) DCHECK(reg_index < DwVfpRegister::NumRegisters());
|
|
memcpy(&vfp_registers_[reg_index * register_size], &value, bytes);
|
}
|
|
|
template<class ReturnType, int register_size>
|
ReturnType Simulator::GetFromVFPRegister(int reg_index) {
|
unsigned bytes = register_size * sizeof(vfp_registers_[0]);
|
DCHECK_EQ(sizeof(ReturnType), bytes);
|
DCHECK_GE(reg_index, 0);
|
if (register_size == 1) DCHECK(reg_index < num_s_registers);
|
if (register_size == 2) DCHECK(reg_index < DwVfpRegister::NumRegisters());
|
|
ReturnType value;
|
memcpy(&value, &vfp_registers_[register_size * reg_index], bytes);
|
return value;
|
}
|
|
void Simulator::SetSpecialRegister(SRegisterFieldMask reg_and_mask,
|
uint32_t value) {
|
// Only CPSR_f is implemented. Of that, only N, Z, C and V are implemented.
|
if ((reg_and_mask == CPSR_f) && ((value & ~kSpecialCondition) == 0)) {
|
n_flag_ = ((value & (1 << 31)) != 0);
|
z_flag_ = ((value & (1 << 30)) != 0);
|
c_flag_ = ((value & (1 << 29)) != 0);
|
v_flag_ = ((value & (1 << 28)) != 0);
|
} else {
|
UNIMPLEMENTED();
|
}
|
}
|
|
uint32_t Simulator::GetFromSpecialRegister(SRegister reg) {
|
uint32_t result = 0;
|
// Only CPSR_f is implemented.
|
if (reg == CPSR) {
|
if (n_flag_) result |= (1 << 31);
|
if (z_flag_) result |= (1 << 30);
|
if (c_flag_) result |= (1 << 29);
|
if (v_flag_) result |= (1 << 28);
|
} else {
|
UNIMPLEMENTED();
|
}
|
return result;
|
}
|
|
// Runtime FP routines take:
|
// - two double arguments
|
// - one double argument and zero or one integer arguments.
|
// All are consructed here from r0-r3 or d0, d1 and r0.
|
void Simulator::GetFpArgs(double* x, double* y, int32_t* z) {
|
if (use_eabi_hardfloat()) {
|
*x = get_double_from_d_register(0).get_scalar();
|
*y = get_double_from_d_register(1).get_scalar();
|
*z = get_register(0);
|
} else {
|
// Registers 0 and 1 -> x.
|
*x = get_double_from_register_pair(0);
|
// Register 2 and 3 -> y.
|
*y = get_double_from_register_pair(2);
|
// Register 2 -> z
|
*z = get_register(2);
|
}
|
}
|
|
|
// The return value is either in r0/r1 or d0.
|
void Simulator::SetFpResult(const double& result) {
|
if (use_eabi_hardfloat()) {
|
char buffer[2 * sizeof(vfp_registers_[0])];
|
memcpy(buffer, &result, sizeof(buffer));
|
// Copy result to d0.
|
memcpy(vfp_registers_, buffer, sizeof(buffer));
|
} else {
|
char buffer[2 * sizeof(registers_[0])];
|
memcpy(buffer, &result, sizeof(buffer));
|
// Copy result to r0 and r1.
|
memcpy(registers_, buffer, sizeof(buffer));
|
}
|
}
|
|
|
void Simulator::TrashCallerSaveRegisters() {
|
// We don't trash the registers with the return value.
|
registers_[2] = 0x50BAD4U;
|
registers_[3] = 0x50BAD4U;
|
registers_[12] = 0x50BAD4U;
|
}
|
|
int Simulator::ReadW(int32_t addr) {
|
// All supported ARM targets allow unaligned accesses, so we don't need to
|
// check the alignment here.
|
base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex);
|
local_monitor_.NotifyLoad(addr);
|
intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
|
return *ptr;
|
}
|
|
int Simulator::ReadExW(int32_t addr) {
|
base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex);
|
local_monitor_.NotifyLoadExcl(addr, TransactionSize::Word);
|
global_monitor_.Pointer()->NotifyLoadExcl_Locked(addr,
|
&global_monitor_processor_);
|
intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
|
return *ptr;
|
}
|
|
void Simulator::WriteW(int32_t addr, int value) {
|
// All supported ARM targets allow unaligned accesses, so we don't need to
|
// check the alignment here.
|
base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex);
|
local_monitor_.NotifyStore(addr);
|
global_monitor_.Pointer()->NotifyStore_Locked(addr,
|
&global_monitor_processor_);
|
intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
|
*ptr = value;
|
}
|
|
int Simulator::WriteExW(int32_t addr, int value) {
|
base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex);
|
if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::Word) &&
|
global_monitor_.Pointer()->NotifyStoreExcl_Locked(
|
addr, &global_monitor_processor_)) {
|
intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
|
*ptr = value;
|
return 0;
|
} else {
|
return 1;
|
}
|
}
|
|
uint16_t Simulator::ReadHU(int32_t addr) {
|
// All supported ARM targets allow unaligned accesses, so we don't need to
|
// check the alignment here.
|
base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex);
|
local_monitor_.NotifyLoad(addr);
|
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
|
return *ptr;
|
}
|
|
int16_t Simulator::ReadH(int32_t addr) {
|
// All supported ARM targets allow unaligned accesses, so we don't need to
|
// check the alignment here.
|
base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex);
|
local_monitor_.NotifyLoad(addr);
|
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
|
return *ptr;
|
}
|
|
uint16_t Simulator::ReadExHU(int32_t addr) {
|
base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex);
|
local_monitor_.NotifyLoadExcl(addr, TransactionSize::HalfWord);
|
global_monitor_.Pointer()->NotifyLoadExcl_Locked(addr,
|
&global_monitor_processor_);
|
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
|
return *ptr;
|
}
|
|
void Simulator::WriteH(int32_t addr, uint16_t value) {
|
// All supported ARM targets allow unaligned accesses, so we don't need to
|
// check the alignment here.
|
base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex);
|
local_monitor_.NotifyStore(addr);
|
global_monitor_.Pointer()->NotifyStore_Locked(addr,
|
&global_monitor_processor_);
|
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
|
*ptr = value;
|
}
|
|
void Simulator::WriteH(int32_t addr, int16_t value) {
|
// All supported ARM targets allow unaligned accesses, so we don't need to
|
// check the alignment here.
|
base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex);
|
local_monitor_.NotifyStore(addr);
|
global_monitor_.Pointer()->NotifyStore_Locked(addr,
|
&global_monitor_processor_);
|
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
|
*ptr = value;
|
}
|
|
int Simulator::WriteExH(int32_t addr, uint16_t value) {
|
base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex);
|
if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::HalfWord) &&
|
global_monitor_.Pointer()->NotifyStoreExcl_Locked(
|
addr, &global_monitor_processor_)) {
|
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
|
*ptr = value;
|
return 0;
|
} else {
|
return 1;
|
}
|
}
|
|
uint8_t Simulator::ReadBU(int32_t addr) {
|
base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex);
|
local_monitor_.NotifyLoad(addr);
|
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
|
return *ptr;
|
}
|
|
int8_t Simulator::ReadB(int32_t addr) {
|
base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex);
|
local_monitor_.NotifyLoad(addr);
|
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
|
return *ptr;
|
}
|
|
uint8_t Simulator::ReadExBU(int32_t addr) {
|
base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex);
|
local_monitor_.NotifyLoadExcl(addr, TransactionSize::Byte);
|
global_monitor_.Pointer()->NotifyLoadExcl_Locked(addr,
|
&global_monitor_processor_);
|
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
|
return *ptr;
|
}
|
|
void Simulator::WriteB(int32_t addr, uint8_t value) {
|
base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex);
|
local_monitor_.NotifyStore(addr);
|
global_monitor_.Pointer()->NotifyStore_Locked(addr,
|
&global_monitor_processor_);
|
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
|
*ptr = value;
|
}
|
|
void Simulator::WriteB(int32_t addr, int8_t value) {
|
base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex);
|
local_monitor_.NotifyStore(addr);
|
global_monitor_.Pointer()->NotifyStore_Locked(addr,
|
&global_monitor_processor_);
|
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
|
*ptr = value;
|
}
|
|
int Simulator::WriteExB(int32_t addr, uint8_t value) {
|
base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex);
|
if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::Byte) &&
|
global_monitor_.Pointer()->NotifyStoreExcl_Locked(
|
addr, &global_monitor_processor_)) {
|
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
|
*ptr = value;
|
return 0;
|
} else {
|
return 1;
|
}
|
}
|
|
int32_t* Simulator::ReadDW(int32_t addr) {
|
// All supported ARM targets allow unaligned accesses, so we don't need to
|
// check the alignment here.
|
base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex);
|
local_monitor_.NotifyLoad(addr);
|
int32_t* ptr = reinterpret_cast<int32_t*>(addr);
|
return ptr;
|
}
|
|
int32_t* Simulator::ReadExDW(int32_t addr) {
|
base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex);
|
local_monitor_.NotifyLoadExcl(addr, TransactionSize::DoubleWord);
|
global_monitor_.Pointer()->NotifyLoadExcl_Locked(addr,
|
&global_monitor_processor_);
|
int32_t* ptr = reinterpret_cast<int32_t*>(addr);
|
return ptr;
|
}
|
|
void Simulator::WriteDW(int32_t addr, int32_t value1, int32_t value2) {
|
// All supported ARM targets allow unaligned accesses, so we don't need to
|
// check the alignment here.
|
base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex);
|
local_monitor_.NotifyStore(addr);
|
global_monitor_.Pointer()->NotifyStore_Locked(addr,
|
&global_monitor_processor_);
|
int32_t* ptr = reinterpret_cast<int32_t*>(addr);
|
*ptr++ = value1;
|
*ptr = value2;
|
}
|
|
int Simulator::WriteExDW(int32_t addr, int32_t value1, int32_t value2) {
|
base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex);
|
if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::DoubleWord) &&
|
global_monitor_.Pointer()->NotifyStoreExcl_Locked(
|
addr, &global_monitor_processor_)) {
|
intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
|
*ptr++ = value1;
|
*ptr = value2;
|
return 0;
|
} else {
|
return 1;
|
}
|
}
|
|
// Returns the limit of the stack area to enable checking for stack overflows.
|
uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
|
// The simulator uses a separate JS stack. If we have exhausted the C stack,
|
// we also drop down the JS limit to reflect the exhaustion on the JS stack.
|
if (GetCurrentStackPosition() < c_limit) {
|
return reinterpret_cast<uintptr_t>(get_sp());
|
}
|
|
// Otherwise the limit is the JS stack. Leave a safety margin of 1024 bytes
|
// to prevent overrunning the stack when pushing values.
|
return reinterpret_cast<uintptr_t>(stack_) + 1024;
|
}
|
|
|
// Unsupported instructions use Format to print an error and stop execution.
|
void Simulator::Format(Instruction* instr, const char* format) {
|
PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n",
|
reinterpret_cast<intptr_t>(instr), format);
|
UNIMPLEMENTED();
|
}
|
|
|
// Checks if the current instruction should be executed based on its
|
// condition bits.
|
bool Simulator::ConditionallyExecute(Instruction* instr) {
|
switch (instr->ConditionField()) {
|
case eq: return z_flag_;
|
case ne: return !z_flag_;
|
case cs: return c_flag_;
|
case cc: return !c_flag_;
|
case mi: return n_flag_;
|
case pl: return !n_flag_;
|
case vs: return v_flag_;
|
case vc: return !v_flag_;
|
case hi: return c_flag_ && !z_flag_;
|
case ls: return !c_flag_ || z_flag_;
|
case ge: return n_flag_ == v_flag_;
|
case lt: return n_flag_ != v_flag_;
|
case gt: return !z_flag_ && (n_flag_ == v_flag_);
|
case le: return z_flag_ || (n_flag_ != v_flag_);
|
case al: return true;
|
default: UNREACHABLE();
|
}
|
return false;
|
}
|
|
|
// Calculate and set the Negative and Zero flags.
|
void Simulator::SetNZFlags(int32_t val) {
|
n_flag_ = (val < 0);
|
z_flag_ = (val == 0);
|
}
|
|
|
// Set the Carry flag.
|
void Simulator::SetCFlag(bool val) {
|
c_flag_ = val;
|
}
|
|
|
// Set the oVerflow flag.
|
void Simulator::SetVFlag(bool val) {
|
v_flag_ = val;
|
}
|
|
|
// Calculate C flag value for additions.
|
bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
|
uint32_t uleft = static_cast<uint32_t>(left);
|
uint32_t uright = static_cast<uint32_t>(right);
|
uint32_t urest = 0xFFFFFFFFU - uleft;
|
|
return (uright > urest) ||
|
(carry && (((uright + 1) > urest) || (uright > (urest - 1))));
|
}
|
|
|
// Calculate C flag value for subtractions.
|
bool Simulator::BorrowFrom(int32_t left, int32_t right, int32_t carry) {
|
uint32_t uleft = static_cast<uint32_t>(left);
|
uint32_t uright = static_cast<uint32_t>(right);
|
|
return (uright > uleft) ||
|
(!carry && (((uright + 1) > uleft) || (uright > (uleft - 1))));
|
}
|
|
|
// Calculate V flag value for additions and subtractions.
|
bool Simulator::OverflowFrom(int32_t alu_out,
|
int32_t left, int32_t right, bool addition) {
|
bool overflow;
|
if (addition) {
|
// operands have the same sign
|
overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
|
// and operands and result have different sign
|
&& ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
|
} else {
|
// operands have different signs
|
overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
|
// and first operand and result have different signs
|
&& ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
|
}
|
return overflow;
|
}
|
|
|
// Support for VFP comparisons.
|
void Simulator::Compute_FPSCR_Flags(float val1, float val2) {
|
if (std::isnan(val1) || std::isnan(val2)) {
|
n_flag_FPSCR_ = false;
|
z_flag_FPSCR_ = false;
|
c_flag_FPSCR_ = true;
|
v_flag_FPSCR_ = true;
|
// All non-NaN cases.
|
} else if (val1 == val2) {
|
n_flag_FPSCR_ = false;
|
z_flag_FPSCR_ = true;
|
c_flag_FPSCR_ = true;
|
v_flag_FPSCR_ = false;
|
} else if (val1 < val2) {
|
n_flag_FPSCR_ = true;
|
z_flag_FPSCR_ = false;
|
c_flag_FPSCR_ = false;
|
v_flag_FPSCR_ = false;
|
} else {
|
// Case when (val1 > val2).
|
n_flag_FPSCR_ = false;
|
z_flag_FPSCR_ = false;
|
c_flag_FPSCR_ = true;
|
v_flag_FPSCR_ = false;
|
}
|
}
|
|
|
void Simulator::Compute_FPSCR_Flags(double val1, double val2) {
|
if (std::isnan(val1) || std::isnan(val2)) {
|
n_flag_FPSCR_ = false;
|
z_flag_FPSCR_ = false;
|
c_flag_FPSCR_ = true;
|
v_flag_FPSCR_ = true;
|
// All non-NaN cases.
|
} else if (val1 == val2) {
|
n_flag_FPSCR_ = false;
|
z_flag_FPSCR_ = true;
|
c_flag_FPSCR_ = true;
|
v_flag_FPSCR_ = false;
|
} else if (val1 < val2) {
|
n_flag_FPSCR_ = true;
|
z_flag_FPSCR_ = false;
|
c_flag_FPSCR_ = false;
|
v_flag_FPSCR_ = false;
|
} else {
|
// Case when (val1 > val2).
|
n_flag_FPSCR_ = false;
|
z_flag_FPSCR_ = false;
|
c_flag_FPSCR_ = true;
|
v_flag_FPSCR_ = false;
|
}
|
}
|
|
|
void Simulator::Copy_FPSCR_to_APSR() {
|
n_flag_ = n_flag_FPSCR_;
|
z_flag_ = z_flag_FPSCR_;
|
c_flag_ = c_flag_FPSCR_;
|
v_flag_ = v_flag_FPSCR_;
|
}
|
|
|
// Addressing Mode 1 - Data-processing operands:
|
// Get the value based on the shifter_operand with register.
|
int32_t Simulator::GetShiftRm(Instruction* instr, bool* carry_out) {
|
ShiftOp shift = instr->ShiftField();
|
int shift_amount = instr->ShiftAmountValue();
|
int32_t result = get_register(instr->RmValue());
|
if (instr->Bit(4) == 0) {
|
// by immediate
|
if ((shift == ROR) && (shift_amount == 0)) {
|
UNIMPLEMENTED();
|
return result;
|
} else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) {
|
shift_amount = 32;
|
}
|
switch (shift) {
|
case ASR: {
|
if (shift_amount == 0) {
|
if (result < 0) {
|
result = 0xFFFFFFFF;
|
*carry_out = true;
|
} else {
|
result = 0;
|
*carry_out = false;
|
}
|
} else {
|
result >>= (shift_amount - 1);
|
*carry_out = (result & 1) == 1;
|
result >>= 1;
|
}
|
break;
|
}
|
|
case LSL: {
|
if (shift_amount == 0) {
|
*carry_out = c_flag_;
|
} else {
|
result <<= (shift_amount - 1);
|
*carry_out = (result < 0);
|
result <<= 1;
|
}
|
break;
|
}
|
|
case LSR: {
|
if (shift_amount == 0) {
|
result = 0;
|
*carry_out = c_flag_;
|
} else {
|
uint32_t uresult = static_cast<uint32_t>(result);
|
uresult >>= (shift_amount - 1);
|
*carry_out = (uresult & 1) == 1;
|
uresult >>= 1;
|
result = static_cast<int32_t>(uresult);
|
}
|
break;
|
}
|
|
case ROR: {
|
if (shift_amount == 0) {
|
*carry_out = c_flag_;
|
} else {
|
uint32_t left = static_cast<uint32_t>(result) >> shift_amount;
|
uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount);
|
result = right | left;
|
*carry_out = (static_cast<uint32_t>(result) >> 31) != 0;
|
}
|
break;
|
}
|
|
default: {
|
UNREACHABLE();
|
break;
|
}
|
}
|
} else {
|
// by register
|
int rs = instr->RsValue();
|
shift_amount = get_register(rs) & 0xFF;
|
switch (shift) {
|
case ASR: {
|
if (shift_amount == 0) {
|
*carry_out = c_flag_;
|
} else if (shift_amount < 32) {
|
result >>= (shift_amount - 1);
|
*carry_out = (result & 1) == 1;
|
result >>= 1;
|
} else {
|
DCHECK_GE(shift_amount, 32);
|
if (result < 0) {
|
*carry_out = true;
|
result = 0xFFFFFFFF;
|
} else {
|
*carry_out = false;
|
result = 0;
|
}
|
}
|
break;
|
}
|
|
case LSL: {
|
if (shift_amount == 0) {
|
*carry_out = c_flag_;
|
} else if (shift_amount < 32) {
|
result <<= (shift_amount - 1);
|
*carry_out = (result < 0);
|
result <<= 1;
|
} else if (shift_amount == 32) {
|
*carry_out = (result & 1) == 1;
|
result = 0;
|
} else {
|
DCHECK_GT(shift_amount, 32);
|
*carry_out = false;
|
result = 0;
|
}
|
break;
|
}
|
|
case LSR: {
|
if (shift_amount == 0) {
|
*carry_out = c_flag_;
|
} else if (shift_amount < 32) {
|
uint32_t uresult = static_cast<uint32_t>(result);
|
uresult >>= (shift_amount - 1);
|
*carry_out = (uresult & 1) == 1;
|
uresult >>= 1;
|
result = static_cast<int32_t>(uresult);
|
} else if (shift_amount == 32) {
|
*carry_out = (result < 0);
|
result = 0;
|
} else {
|
*carry_out = false;
|
result = 0;
|
}
|
break;
|
}
|
|
case ROR: {
|
if (shift_amount == 0) {
|
*carry_out = c_flag_;
|
} else {
|
uint32_t left = static_cast<uint32_t>(result) >> shift_amount;
|
uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount);
|
result = right | left;
|
*carry_out = (static_cast<uint32_t>(result) >> 31) != 0;
|
}
|
break;
|
}
|
|
default: {
|
UNREACHABLE();
|
break;
|
}
|
}
|
}
|
return result;
|
}
|
|
|
// Addressing Mode 1 - Data-processing operands:
|
// Get the value based on the shifter_operand with immediate.
|
int32_t Simulator::GetImm(Instruction* instr, bool* carry_out) {
|
int rotate = instr->RotateValue() * 2;
|
int immed8 = instr->Immed8Value();
|
int imm = base::bits::RotateRight32(immed8, rotate);
|
*carry_out = (rotate == 0) ? c_flag_ : (imm < 0);
|
return imm;
|
}
|
|
|
static int count_bits(int bit_vector) {
|
int count = 0;
|
while (bit_vector != 0) {
|
if ((bit_vector & 1) != 0) {
|
count++;
|
}
|
bit_vector >>= 1;
|
}
|
return count;
|
}
|
|
|
int32_t Simulator::ProcessPU(Instruction* instr,
|
int num_regs,
|
int reg_size,
|
intptr_t* start_address,
|
intptr_t* end_address) {
|
int rn = instr->RnValue();
|
int32_t rn_val = get_register(rn);
|
switch (instr->PUField()) {
|
case da_x: {
|
UNIMPLEMENTED();
|
break;
|
}
|
case ia_x: {
|
*start_address = rn_val;
|
*end_address = rn_val + (num_regs * reg_size) - reg_size;
|
rn_val = rn_val + (num_regs * reg_size);
|
break;
|
}
|
case db_x: {
|
*start_address = rn_val - (num_regs * reg_size);
|
*end_address = rn_val - reg_size;
|
rn_val = *start_address;
|
break;
|
}
|
case ib_x: {
|
*start_address = rn_val + reg_size;
|
*end_address = rn_val + (num_regs * reg_size);
|
rn_val = *end_address;
|
break;
|
}
|
default: {
|
UNREACHABLE();
|
break;
|
}
|
}
|
return rn_val;
|
}
|
|
|
// Addressing Mode 4 - Load and Store Multiple
|
void Simulator::HandleRList(Instruction* instr, bool load) {
|
int rlist = instr->RlistValue();
|
int num_regs = count_bits(rlist);
|
|
intptr_t start_address = 0;
|
intptr_t end_address = 0;
|
int32_t rn_val =
|
ProcessPU(instr, num_regs, kPointerSize, &start_address, &end_address);
|
|
intptr_t* address = reinterpret_cast<intptr_t*>(start_address);
|
// Catch null pointers a little earlier.
|
DCHECK(start_address > 8191 || start_address < 0);
|
int reg = 0;
|
while (rlist != 0) {
|
if ((rlist & 1) != 0) {
|
if (load) {
|
set_register(reg, *address);
|
} else {
|
*address = get_register(reg);
|
}
|
address += 1;
|
}
|
reg++;
|
rlist >>= 1;
|
}
|
DCHECK(end_address == ((intptr_t)address) - 4);
|
if (instr->HasW()) {
|
set_register(instr->RnValue(), rn_val);
|
}
|
}
|
|
|
// Addressing Mode 6 - Load and Store Multiple Coprocessor registers.
|
void Simulator::HandleVList(Instruction* instr) {
|
VFPRegPrecision precision =
|
(instr->SzValue() == 0) ? kSinglePrecision : kDoublePrecision;
|
int operand_size = (precision == kSinglePrecision) ? 4 : 8;
|
|
bool load = (instr->VLValue() == 0x1);
|
|
int vd;
|
int num_regs;
|
vd = instr->VFPDRegValue(precision);
|
if (precision == kSinglePrecision) {
|
num_regs = instr->Immed8Value();
|
} else {
|
num_regs = instr->Immed8Value() / 2;
|
}
|
|
intptr_t start_address = 0;
|
intptr_t end_address = 0;
|
int32_t rn_val =
|
ProcessPU(instr, num_regs, operand_size, &start_address, &end_address);
|
|
intptr_t* address = reinterpret_cast<intptr_t*>(start_address);
|
for (int reg = vd; reg < vd + num_regs; reg++) {
|
if (precision == kSinglePrecision) {
|
if (load) {
|
set_s_register_from_sinteger(reg,
|
ReadW(reinterpret_cast<int32_t>(address)));
|
} else {
|
WriteW(reinterpret_cast<int32_t>(address),
|
get_sinteger_from_s_register(reg));
|
}
|
address += 1;
|
} else {
|
if (load) {
|
int32_t data[] = {ReadW(reinterpret_cast<int32_t>(address)),
|
ReadW(reinterpret_cast<int32_t>(address + 1))};
|
set_d_register(reg, reinterpret_cast<uint32_t*>(data));
|
} else {
|
uint32_t data[2];
|
get_d_register(reg, data);
|
WriteW(reinterpret_cast<int32_t>(address), data[0]);
|
WriteW(reinterpret_cast<int32_t>(address + 1), data[1]);
|
}
|
address += 2;
|
}
|
}
|
DCHECK(reinterpret_cast<intptr_t>(address) - operand_size == end_address);
|
if (instr->HasW()) {
|
set_register(instr->RnValue(), rn_val);
|
}
|
}
|
|
|
// Calls into the V8 runtime are based on this very simple interface.
|
// Note: To be able to return two values from some calls the code in runtime.cc
|
// uses the ObjectPair which is essentially two 32-bit values stuffed into a
|
// 64-bit value. With the code below we assume that all runtime calls return
|
// 64 bits of result. If they don't, the r1 result register contains a bogus
|
// value, which is fine because it is caller-saved.
|
typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0, int32_t arg1,
|
int32_t arg2, int32_t arg3,
|
int32_t arg4, int32_t arg5,
|
int32_t arg6, int32_t arg7,
|
int32_t arg8);
|
|
// These prototypes handle the four types of FP calls.
|
typedef int64_t (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
|
typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
|
typedef double (*SimulatorRuntimeFPCall)(double darg0);
|
typedef double (*SimulatorRuntimeFPIntCall)(double darg0, int32_t arg0);
|
|
// This signature supports direct call in to API function native callback
|
// (refer to InvocationCallback in v8.h).
|
typedef void (*SimulatorRuntimeDirectApiCall)(int32_t arg0);
|
typedef void (*SimulatorRuntimeProfilingApiCall)(int32_t arg0, void* arg1);
|
|
// This signature supports direct call to accessor getter callback.
|
typedef void (*SimulatorRuntimeDirectGetterCall)(int32_t arg0, int32_t arg1);
|
typedef void (*SimulatorRuntimeProfilingGetterCall)(
|
int32_t arg0, int32_t arg1, void* arg2);
|
|
// Software interrupt instructions are used by the simulator to call into the
|
// C-based V8 runtime.
|
void Simulator::SoftwareInterrupt(Instruction* instr) {
|
int svc = instr->SvcValue();
|
switch (svc) {
|
case kCallRtRedirected: {
|
// Check if stack is aligned. Error if not aligned is reported below to
|
// include information on the function called.
|
bool stack_aligned =
|
(get_register(sp)
|
& (::v8::internal::FLAG_sim_stack_alignment - 1)) == 0;
|
Redirection* redirection = Redirection::FromInstruction(instr);
|
int32_t arg0 = get_register(r0);
|
int32_t arg1 = get_register(r1);
|
int32_t arg2 = get_register(r2);
|
int32_t arg3 = get_register(r3);
|
int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp));
|
int32_t arg4 = stack_pointer[0];
|
int32_t arg5 = stack_pointer[1];
|
int32_t arg6 = stack_pointer[2];
|
int32_t arg7 = stack_pointer[3];
|
int32_t arg8 = stack_pointer[4];
|
STATIC_ASSERT(kMaxCParameters == 9);
|
|
bool fp_call =
|
(redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
|
(redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
|
(redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
|
(redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
|
// This is dodgy but it works because the C entry stubs are never moved.
|
// See comment in codegen-arm.cc and bug 1242173.
|
int32_t saved_lr = get_register(lr);
|
intptr_t external =
|
reinterpret_cast<intptr_t>(redirection->external_function());
|
if (fp_call) {
|
double dval0, dval1; // one or two double parameters
|
int32_t ival; // zero or one integer parameters
|
int64_t iresult = 0; // integer return value
|
double dresult = 0; // double return value
|
GetFpArgs(&dval0, &dval1, &ival);
|
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
SimulatorRuntimeCall generic_target =
|
reinterpret_cast<SimulatorRuntimeCall>(external);
|
switch (redirection->type()) {
|
case ExternalReference::BUILTIN_FP_FP_CALL:
|
case ExternalReference::BUILTIN_COMPARE_CALL:
|
PrintF("Call to host function at %p with args %f, %f",
|
reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)),
|
dval0, dval1);
|
break;
|
case ExternalReference::BUILTIN_FP_CALL:
|
PrintF("Call to host function at %p with arg %f",
|
reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)),
|
dval0);
|
break;
|
case ExternalReference::BUILTIN_FP_INT_CALL:
|
PrintF("Call to host function at %p with args %f, %d",
|
reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)),
|
dval0, ival);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
if (!stack_aligned) {
|
PrintF(" with unaligned stack %08x\n", get_register(sp));
|
}
|
PrintF("\n");
|
}
|
CHECK(stack_aligned);
|
switch (redirection->type()) {
|
case ExternalReference::BUILTIN_COMPARE_CALL: {
|
SimulatorRuntimeCompareCall target =
|
reinterpret_cast<SimulatorRuntimeCompareCall>(external);
|
iresult = target(dval0, dval1);
|
set_register(r0, static_cast<int32_t>(iresult));
|
set_register(r1, static_cast<int32_t>(iresult >> 32));
|
break;
|
}
|
case ExternalReference::BUILTIN_FP_FP_CALL: {
|
SimulatorRuntimeFPFPCall target =
|
reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
|
dresult = target(dval0, dval1);
|
SetFpResult(dresult);
|
break;
|
}
|
case ExternalReference::BUILTIN_FP_CALL: {
|
SimulatorRuntimeFPCall target =
|
reinterpret_cast<SimulatorRuntimeFPCall>(external);
|
dresult = target(dval0);
|
SetFpResult(dresult);
|
break;
|
}
|
case ExternalReference::BUILTIN_FP_INT_CALL: {
|
SimulatorRuntimeFPIntCall target =
|
reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
|
dresult = target(dval0, ival);
|
SetFpResult(dresult);
|
break;
|
}
|
default:
|
UNREACHABLE();
|
break;
|
}
|
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
switch (redirection->type()) {
|
case ExternalReference::BUILTIN_COMPARE_CALL:
|
PrintF("Returned %08x\n", static_cast<int32_t>(iresult));
|
break;
|
case ExternalReference::BUILTIN_FP_FP_CALL:
|
case ExternalReference::BUILTIN_FP_CALL:
|
case ExternalReference::BUILTIN_FP_INT_CALL:
|
PrintF("Returned %f\n", dresult);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
}
|
} else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
|
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
PrintF("Call to host function at %p args %08x",
|
reinterpret_cast<void*>(external), arg0);
|
if (!stack_aligned) {
|
PrintF(" with unaligned stack %08x\n", get_register(sp));
|
}
|
PrintF("\n");
|
}
|
CHECK(stack_aligned);
|
SimulatorRuntimeDirectApiCall target =
|
reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
|
target(arg0);
|
} else if (
|
redirection->type() == ExternalReference::PROFILING_API_CALL) {
|
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
PrintF("Call to host function at %p args %08x %08x",
|
reinterpret_cast<void*>(external), arg0, arg1);
|
if (!stack_aligned) {
|
PrintF(" with unaligned stack %08x\n", get_register(sp));
|
}
|
PrintF("\n");
|
}
|
CHECK(stack_aligned);
|
SimulatorRuntimeProfilingApiCall target =
|
reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
|
target(arg0, Redirection::ReverseRedirection(arg1));
|
} else if (
|
redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
|
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
PrintF("Call to host function at %p args %08x %08x",
|
reinterpret_cast<void*>(external), arg0, arg1);
|
if (!stack_aligned) {
|
PrintF(" with unaligned stack %08x\n", get_register(sp));
|
}
|
PrintF("\n");
|
}
|
CHECK(stack_aligned);
|
SimulatorRuntimeDirectGetterCall target =
|
reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
|
target(arg0, arg1);
|
} else if (
|
redirection->type() == ExternalReference::PROFILING_GETTER_CALL) {
|
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
PrintF("Call to host function at %p args %08x %08x %08x",
|
reinterpret_cast<void*>(external), arg0, arg1, arg2);
|
if (!stack_aligned) {
|
PrintF(" with unaligned stack %08x\n", get_register(sp));
|
}
|
PrintF("\n");
|
}
|
CHECK(stack_aligned);
|
SimulatorRuntimeProfilingGetterCall target =
|
reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(
|
external);
|
target(arg0, arg1, Redirection::ReverseRedirection(arg2));
|
} else {
|
// builtin call.
|
DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL ||
|
redirection->type() == ExternalReference::BUILTIN_CALL_PAIR);
|
SimulatorRuntimeCall target =
|
reinterpret_cast<SimulatorRuntimeCall>(external);
|
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
PrintF(
|
"Call to host function at %p "
|
"args %08x, %08x, %08x, %08x, %08x, %08x, %08x, %08x, %08x",
|
reinterpret_cast<void*>(FUNCTION_ADDR(target)), arg0, arg1, arg2,
|
arg3, arg4, arg5, arg6, arg7, arg8);
|
if (!stack_aligned) {
|
PrintF(" with unaligned stack %08x\n", get_register(sp));
|
}
|
PrintF("\n");
|
}
|
CHECK(stack_aligned);
|
int64_t result =
|
target(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8);
|
int32_t lo_res = static_cast<int32_t>(result);
|
int32_t hi_res = static_cast<int32_t>(result >> 32);
|
if (::v8::internal::FLAG_trace_sim) {
|
PrintF("Returned %08x\n", lo_res);
|
}
|
set_register(r0, lo_res);
|
set_register(r1, hi_res);
|
}
|
set_register(lr, saved_lr);
|
set_pc(get_register(lr));
|
break;
|
}
|
case kBreakpoint: {
|
ArmDebugger dbg(this);
|
dbg.Debug();
|
break;
|
}
|
// stop uses all codes greater than 1 << 23.
|
default: {
|
if (svc >= (1 << 23)) {
|
uint32_t code = svc & kStopCodeMask;
|
if (isWatchedStop(code)) {
|
IncreaseStopCounter(code);
|
}
|
// Stop if it is enabled, otherwise go on jumping over the stop
|
// and the message address.
|
if (isEnabledStop(code)) {
|
ArmDebugger dbg(this);
|
dbg.Stop(instr);
|
}
|
} else {
|
// This is not a valid svc code.
|
UNREACHABLE();
|
break;
|
}
|
}
|
}
|
}
|
|
|
float Simulator::canonicalizeNaN(float value) {
|
// Default NaN value, see "NaN handling" in "IEEE 754 standard implementation
|
// choices" of the ARM Reference Manual.
|
constexpr uint32_t kDefaultNaN = 0x7FC00000u;
|
if (FPSCR_default_NaN_mode_ && std::isnan(value)) {
|
value = bit_cast<float>(kDefaultNaN);
|
}
|
return value;
|
}
|
|
Float32 Simulator::canonicalizeNaN(Float32 value) {
|
// Default NaN value, see "NaN handling" in "IEEE 754 standard implementation
|
// choices" of the ARM Reference Manual.
|
constexpr Float32 kDefaultNaN = Float32::FromBits(0x7FC00000u);
|
return FPSCR_default_NaN_mode_ && value.is_nan() ? kDefaultNaN : value;
|
}
|
|
double Simulator::canonicalizeNaN(double value) {
|
// Default NaN value, see "NaN handling" in "IEEE 754 standard implementation
|
// choices" of the ARM Reference Manual.
|
constexpr uint64_t kDefaultNaN = uint64_t{0x7FF8000000000000};
|
if (FPSCR_default_NaN_mode_ && std::isnan(value)) {
|
value = bit_cast<double>(kDefaultNaN);
|
}
|
return value;
|
}
|
|
Float64 Simulator::canonicalizeNaN(Float64 value) {
|
// Default NaN value, see "NaN handling" in "IEEE 754 standard implementation
|
// choices" of the ARM Reference Manual.
|
constexpr Float64 kDefaultNaN =
|
Float64::FromBits(uint64_t{0x7FF8000000000000});
|
return FPSCR_default_NaN_mode_ && value.is_nan() ? kDefaultNaN : value;
|
}
|
|
// Stop helper functions.
|
bool Simulator::isStopInstruction(Instruction* instr) {
|
return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode);
|
}
|
|
|
bool Simulator::isWatchedStop(uint32_t code) {
|
DCHECK_LE(code, kMaxStopCode);
|
return code < kNumOfWatchedStops;
|
}
|
|
|
bool Simulator::isEnabledStop(uint32_t code) {
|
DCHECK_LE(code, kMaxStopCode);
|
// Unwatched stops are always enabled.
|
return !isWatchedStop(code) ||
|
!(watched_stops_[code].count & kStopDisabledBit);
|
}
|
|
|
void Simulator::EnableStop(uint32_t code) {
|
DCHECK(isWatchedStop(code));
|
if (!isEnabledStop(code)) {
|
watched_stops_[code].count &= ~kStopDisabledBit;
|
}
|
}
|
|
|
void Simulator::DisableStop(uint32_t code) {
|
DCHECK(isWatchedStop(code));
|
if (isEnabledStop(code)) {
|
watched_stops_[code].count |= kStopDisabledBit;
|
}
|
}
|
|
|
void Simulator::IncreaseStopCounter(uint32_t code) {
|
DCHECK_LE(code, kMaxStopCode);
|
DCHECK(isWatchedStop(code));
|
if ((watched_stops_[code].count & ~(1 << 31)) == 0x7FFFFFFF) {
|
PrintF("Stop counter for code %i has overflowed.\n"
|
"Enabling this code and reseting the counter to 0.\n", code);
|
watched_stops_[code].count = 0;
|
EnableStop(code);
|
} else {
|
watched_stops_[code].count++;
|
}
|
}
|
|
|
// Print a stop status.
|
void Simulator::PrintStopInfo(uint32_t code) {
|
DCHECK_LE(code, kMaxStopCode);
|
if (!isWatchedStop(code)) {
|
PrintF("Stop not watched.");
|
} else {
|
const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
|
int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
|
// Don't print the state of unused breakpoints.
|
if (count != 0) {
|
if (watched_stops_[code].desc) {
|
PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n",
|
code, code, state, count, watched_stops_[code].desc);
|
} else {
|
PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n",
|
code, code, state, count);
|
}
|
}
|
}
|
}
|
|
|
// Handle execution based on instruction types.
|
|
// Instruction types 0 and 1 are both rolled into one function because they
|
// only differ in the handling of the shifter_operand.
|
void Simulator::DecodeType01(Instruction* instr) {
|
int type = instr->TypeValue();
|
if ((type == 0) && instr->IsSpecialType0()) {
|
// multiply instruction or extra loads and stores
|
if (instr->Bits(7, 4) == 9) {
|
if (instr->Bit(24) == 0) {
|
// Raw field decoding here. Multiply instructions have their Rd in
|
// funny places.
|
int rn = instr->RnValue();
|
int rm = instr->RmValue();
|
int rs = instr->RsValue();
|
int32_t rs_val = get_register(rs);
|
int32_t rm_val = get_register(rm);
|
if (instr->Bit(23) == 0) {
|
if (instr->Bit(21) == 0) {
|
// The MUL instruction description (A 4.1.33) refers to Rd as being
|
// the destination for the operation, but it confusingly uses the
|
// Rn field to encode it.
|
// Format(instr, "mul'cond's 'rn, 'rm, 'rs");
|
int rd = rn; // Remap the rn field to the Rd register.
|
int32_t alu_out = rm_val * rs_val;
|
set_register(rd, alu_out);
|
if (instr->HasS()) {
|
SetNZFlags(alu_out);
|
}
|
} else {
|
int rd = instr->RdValue();
|
int32_t acc_value = get_register(rd);
|
if (instr->Bit(22) == 0) {
|
// The MLA instruction description (A 4.1.28) refers to the order
|
// of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the
|
// Rn field to encode the Rd register and the Rd field to encode
|
// the Rn register.
|
// Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd");
|
int32_t mul_out = rm_val * rs_val;
|
int32_t result = acc_value + mul_out;
|
set_register(rn, result);
|
} else {
|
// Format(instr, "mls'cond's 'rn, 'rm, 'rs, 'rd");
|
int32_t mul_out = rm_val * rs_val;
|
int32_t result = acc_value - mul_out;
|
set_register(rn, result);
|
}
|
}
|
} else {
|
// The signed/long multiply instructions use the terms RdHi and RdLo
|
// when referring to the target registers. They are mapped to the Rn
|
// and Rd fields as follows:
|
// RdLo == Rd
|
// RdHi == Rn (This is confusingly stored in variable rd here
|
// because the mul instruction from above uses the
|
// Rn field to encode the Rd register. Good luck figuring
|
// this out without reading the ARM instruction manual
|
// at a very detailed level.)
|
// Format(instr, "'um'al'cond's 'rd, 'rn, 'rs, 'rm");
|
int rd_hi = rn; // Remap the rn field to the RdHi register.
|
int rd_lo = instr->RdValue();
|
int32_t hi_res = 0;
|
int32_t lo_res = 0;
|
if (instr->Bit(22) == 1) {
|
int64_t left_op = static_cast<int32_t>(rm_val);
|
int64_t right_op = static_cast<int32_t>(rs_val);
|
uint64_t result = left_op * right_op;
|
hi_res = static_cast<int32_t>(result >> 32);
|
lo_res = static_cast<int32_t>(result & 0xFFFFFFFF);
|
} else {
|
// unsigned multiply
|
uint64_t left_op = static_cast<uint32_t>(rm_val);
|
uint64_t right_op = static_cast<uint32_t>(rs_val);
|
uint64_t result = left_op * right_op;
|
hi_res = static_cast<int32_t>(result >> 32);
|
lo_res = static_cast<int32_t>(result & 0xFFFFFFFF);
|
}
|
set_register(rd_lo, lo_res);
|
set_register(rd_hi, hi_res);
|
if (instr->HasS()) {
|
UNIMPLEMENTED();
|
}
|
}
|
} else {
|
if (instr->Bits(24, 23) == 3) {
|
if (instr->Bit(20) == 1) {
|
// ldrex
|
int rt = instr->RtValue();
|
int rn = instr->RnValue();
|
int32_t addr = get_register(rn);
|
switch (instr->Bits(22, 21)) {
|
case 0: {
|
// Format(instr, "ldrex'cond 'rt, ['rn]");
|
int value = ReadExW(addr);
|
set_register(rt, value);
|
break;
|
}
|
case 1: {
|
// Format(instr, "ldrexd'cond 'rt, ['rn]");
|
int* rn_data = ReadExDW(addr);
|
set_dw_register(rt, rn_data);
|
break;
|
}
|
case 2: {
|
// Format(instr, "ldrexb'cond 'rt, ['rn]");
|
uint8_t value = ReadExBU(addr);
|
set_register(rt, value);
|
break;
|
}
|
case 3: {
|
// Format(instr, "ldrexh'cond 'rt, ['rn]");
|
uint16_t value = ReadExHU(addr);
|
set_register(rt, value);
|
break;
|
}
|
default:
|
UNREACHABLE();
|
break;
|
}
|
} else {
|
// The instruction is documented as strex rd, rt, [rn], but the
|
// "rt" register is using the rm bits.
|
int rd = instr->RdValue();
|
int rt = instr->RmValue();
|
int rn = instr->RnValue();
|
DCHECK_NE(rd, rn);
|
DCHECK_NE(rd, rt);
|
int32_t addr = get_register(rn);
|
switch (instr->Bits(22, 21)) {
|
case 0: {
|
// Format(instr, "strex'cond 'rd, 'rm, ['rn]");
|
int value = get_register(rt);
|
int status = WriteExW(addr, value);
|
set_register(rd, status);
|
break;
|
}
|
case 1: {
|
// Format(instr, "strexd'cond 'rd, 'rm, ['rn]");
|
DCHECK_EQ(rt % 2, 0);
|
int32_t value1 = get_register(rt);
|
int32_t value2 = get_register(rt + 1);
|
int status = WriteExDW(addr, value1, value2);
|
set_register(rd, status);
|
break;
|
}
|
case 2: {
|
// Format(instr, "strexb'cond 'rd, 'rm, ['rn]");
|
uint8_t value = get_register(rt);
|
int status = WriteExB(addr, value);
|
set_register(rd, status);
|
break;
|
}
|
case 3: {
|
// Format(instr, "strexh'cond 'rd, 'rm, ['rn]");
|
uint16_t value = get_register(rt);
|
int status = WriteExH(addr, value);
|
set_register(rd, status);
|
break;
|
}
|
default:
|
UNREACHABLE();
|
break;
|
}
|
}
|
} else {
|
UNIMPLEMENTED(); // Not used by V8.
|
}
|
}
|
} else {
|
// extra load/store instructions
|
int rd = instr->RdValue();
|
int rn = instr->RnValue();
|
int32_t rn_val = get_register(rn);
|
int32_t addr = 0;
|
if (instr->Bit(22) == 0) {
|
int rm = instr->RmValue();
|
int32_t rm_val = get_register(rm);
|
switch (instr->PUField()) {
|
case da_x: {
|
// Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm");
|
DCHECK(!instr->HasW());
|
addr = rn_val;
|
rn_val -= rm_val;
|
set_register(rn, rn_val);
|
break;
|
}
|
case ia_x: {
|
// Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm");
|
DCHECK(!instr->HasW());
|
addr = rn_val;
|
rn_val += rm_val;
|
set_register(rn, rn_val);
|
break;
|
}
|
case db_x: {
|
// Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w");
|
rn_val -= rm_val;
|
addr = rn_val;
|
if (instr->HasW()) {
|
set_register(rn, rn_val);
|
}
|
break;
|
}
|
case ib_x: {
|
// Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w");
|
rn_val += rm_val;
|
addr = rn_val;
|
if (instr->HasW()) {
|
set_register(rn, rn_val);
|
}
|
break;
|
}
|
default: {
|
// The PU field is a 2-bit field.
|
UNREACHABLE();
|
break;
|
}
|
}
|
} else {
|
int32_t imm_val = (instr->ImmedHValue() << 4) | instr->ImmedLValue();
|
switch (instr->PUField()) {
|
case da_x: {
|
// Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8");
|
DCHECK(!instr->HasW());
|
addr = rn_val;
|
rn_val -= imm_val;
|
set_register(rn, rn_val);
|
break;
|
}
|
case ia_x: {
|
// Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8");
|
DCHECK(!instr->HasW());
|
addr = rn_val;
|
rn_val += imm_val;
|
set_register(rn, rn_val);
|
break;
|
}
|
case db_x: {
|
// Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w");
|
rn_val -= imm_val;
|
addr = rn_val;
|
if (instr->HasW()) {
|
set_register(rn, rn_val);
|
}
|
break;
|
}
|
case ib_x: {
|
// Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w");
|
rn_val += imm_val;
|
addr = rn_val;
|
if (instr->HasW()) {
|
set_register(rn, rn_val);
|
}
|
break;
|
}
|
default: {
|
// The PU field is a 2-bit field.
|
UNREACHABLE();
|
break;
|
}
|
}
|
}
|
if (((instr->Bits(7, 4) & 0xD) == 0xD) && (instr->Bit(20) == 0)) {
|
DCHECK_EQ(rd % 2, 0);
|
if (instr->HasH()) {
|
// The strd instruction.
|
int32_t value1 = get_register(rd);
|
int32_t value2 = get_register(rd+1);
|
WriteDW(addr, value1, value2);
|
} else {
|
// The ldrd instruction.
|
int* rn_data = ReadDW(addr);
|
set_dw_register(rd, rn_data);
|
}
|
} else if (instr->HasH()) {
|
if (instr->HasSign()) {
|
if (instr->HasL()) {
|
int16_t val = ReadH(addr);
|
set_register(rd, val);
|
} else {
|
int16_t val = get_register(rd);
|
WriteH(addr, val);
|
}
|
} else {
|
if (instr->HasL()) {
|
uint16_t val = ReadHU(addr);
|
set_register(rd, val);
|
} else {
|
uint16_t val = get_register(rd);
|
WriteH(addr, val);
|
}
|
}
|
} else {
|
// signed byte loads
|
DCHECK(instr->HasSign());
|
DCHECK(instr->HasL());
|
int8_t val = ReadB(addr);
|
set_register(rd, val);
|
}
|
return;
|
}
|
} else if ((type == 0) && instr->IsMiscType0()) {
|
if ((instr->Bits(27, 23) == 2) && (instr->Bits(21, 20) == 2) &&
|
(instr->Bits(15, 4) == 0xF00)) {
|
// MSR
|
int rm = instr->RmValue();
|
DCHECK_NE(pc, rm); // UNPREDICTABLE
|
SRegisterFieldMask sreg_and_mask =
|
instr->BitField(22, 22) | instr->BitField(19, 16);
|
SetSpecialRegister(sreg_and_mask, get_register(rm));
|
} else if ((instr->Bits(27, 23) == 2) && (instr->Bits(21, 20) == 0) &&
|
(instr->Bits(11, 0) == 0)) {
|
// MRS
|
int rd = instr->RdValue();
|
DCHECK_NE(pc, rd); // UNPREDICTABLE
|
SRegister sreg = static_cast<SRegister>(instr->BitField(22, 22));
|
set_register(rd, GetFromSpecialRegister(sreg));
|
} else if (instr->Bits(22, 21) == 1) {
|
int rm = instr->RmValue();
|
switch (instr->BitField(7, 4)) {
|
case BX:
|
set_pc(get_register(rm));
|
break;
|
case BLX: {
|
uint32_t old_pc = get_pc();
|
set_pc(get_register(rm));
|
set_register(lr, old_pc + kInstrSize);
|
break;
|
}
|
case BKPT: {
|
ArmDebugger dbg(this);
|
PrintF("Simulator hit BKPT.\n");
|
dbg.Debug();
|
break;
|
}
|
default:
|
UNIMPLEMENTED();
|
}
|
} else if (instr->Bits(22, 21) == 3) {
|
int rm = instr->RmValue();
|
int rd = instr->RdValue();
|
switch (instr->BitField(7, 4)) {
|
case CLZ: {
|
uint32_t bits = get_register(rm);
|
int leading_zeros = 0;
|
if (bits == 0) {
|
leading_zeros = 32;
|
} else {
|
while ((bits & 0x80000000u) == 0) {
|
bits <<= 1;
|
leading_zeros++;
|
}
|
}
|
set_register(rd, leading_zeros);
|
break;
|
}
|
default:
|
UNIMPLEMENTED();
|
}
|
} else {
|
PrintF("%08x\n", instr->InstructionBits());
|
UNIMPLEMENTED();
|
}
|
} else if ((type == 1) && instr->IsNopLikeType1()) {
|
if (instr->BitField(7, 0) == 0) {
|
// NOP.
|
} else if (instr->BitField(7, 0) == 20) {
|
// CSDB.
|
} else {
|
PrintF("%08x\n", instr->InstructionBits());
|
UNIMPLEMENTED();
|
}
|
} else {
|
int rd = instr->RdValue();
|
int rn = instr->RnValue();
|
int32_t rn_val = get_register(rn);
|
int32_t shifter_operand = 0;
|
bool shifter_carry_out = 0;
|
if (type == 0) {
|
shifter_operand = GetShiftRm(instr, &shifter_carry_out);
|
} else {
|
DCHECK_EQ(instr->TypeValue(), 1);
|
shifter_operand = GetImm(instr, &shifter_carry_out);
|
}
|
int32_t alu_out;
|
|
switch (instr->OpcodeField()) {
|
case AND: {
|
// Format(instr, "and'cond's 'rd, 'rn, 'shift_rm");
|
// Format(instr, "and'cond's 'rd, 'rn, 'imm");
|
alu_out = rn_val & shifter_operand;
|
set_register(rd, alu_out);
|
if (instr->HasS()) {
|
SetNZFlags(alu_out);
|
SetCFlag(shifter_carry_out);
|
}
|
break;
|
}
|
|
case EOR: {
|
// Format(instr, "eor'cond's 'rd, 'rn, 'shift_rm");
|
// Format(instr, "eor'cond's 'rd, 'rn, 'imm");
|
alu_out = rn_val ^ shifter_operand;
|
set_register(rd, alu_out);
|
if (instr->HasS()) {
|
SetNZFlags(alu_out);
|
SetCFlag(shifter_carry_out);
|
}
|
break;
|
}
|
|
case SUB: {
|
// Format(instr, "sub'cond's 'rd, 'rn, 'shift_rm");
|
// Format(instr, "sub'cond's 'rd, 'rn, 'imm");
|
alu_out = rn_val - shifter_operand;
|
set_register(rd, alu_out);
|
if (instr->HasS()) {
|
SetNZFlags(alu_out);
|
SetCFlag(!BorrowFrom(rn_val, shifter_operand));
|
SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
|
}
|
break;
|
}
|
|
case RSB: {
|
// Format(instr, "rsb'cond's 'rd, 'rn, 'shift_rm");
|
// Format(instr, "rsb'cond's 'rd, 'rn, 'imm");
|
alu_out = shifter_operand - rn_val;
|
set_register(rd, alu_out);
|
if (instr->HasS()) {
|
SetNZFlags(alu_out);
|
SetCFlag(!BorrowFrom(shifter_operand, rn_val));
|
SetVFlag(OverflowFrom(alu_out, shifter_operand, rn_val, false));
|
}
|
break;
|
}
|
|
case ADD: {
|
// Format(instr, "add'cond's 'rd, 'rn, 'shift_rm");
|
// Format(instr, "add'cond's 'rd, 'rn, 'imm");
|
alu_out = rn_val + shifter_operand;
|
set_register(rd, alu_out);
|
if (instr->HasS()) {
|
SetNZFlags(alu_out);
|
SetCFlag(CarryFrom(rn_val, shifter_operand));
|
SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
|
}
|
break;
|
}
|
|
case ADC: {
|
// Format(instr, "adc'cond's 'rd, 'rn, 'shift_rm");
|
// Format(instr, "adc'cond's 'rd, 'rn, 'imm");
|
alu_out = rn_val + shifter_operand + GetCarry();
|
set_register(rd, alu_out);
|
if (instr->HasS()) {
|
SetNZFlags(alu_out);
|
SetCFlag(CarryFrom(rn_val, shifter_operand, GetCarry()));
|
SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
|
}
|
break;
|
}
|
|
case SBC: {
|
// Format(instr, "sbc'cond's 'rd, 'rn, 'shift_rm");
|
// Format(instr, "sbc'cond's 'rd, 'rn, 'imm");
|
alu_out = (rn_val - shifter_operand) - (GetCarry() ? 0 : 1);
|
set_register(rd, alu_out);
|
if (instr->HasS()) {
|
SetNZFlags(alu_out);
|
SetCFlag(!BorrowFrom(rn_val, shifter_operand, GetCarry()));
|
SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
|
}
|
break;
|
}
|
|
case RSC: {
|
Format(instr, "rsc'cond's 'rd, 'rn, 'shift_rm");
|
Format(instr, "rsc'cond's 'rd, 'rn, 'imm");
|
break;
|
}
|
|
case TST: {
|
if (instr->HasS()) {
|
// Format(instr, "tst'cond 'rn, 'shift_rm");
|
// Format(instr, "tst'cond 'rn, 'imm");
|
alu_out = rn_val & shifter_operand;
|
SetNZFlags(alu_out);
|
SetCFlag(shifter_carry_out);
|
} else {
|
// Format(instr, "movw'cond 'rd, 'imm").
|
alu_out = instr->ImmedMovwMovtValue();
|
set_register(rd, alu_out);
|
}
|
break;
|
}
|
|
case TEQ: {
|
if (instr->HasS()) {
|
// Format(instr, "teq'cond 'rn, 'shift_rm");
|
// Format(instr, "teq'cond 'rn, 'imm");
|
alu_out = rn_val ^ shifter_operand;
|
SetNZFlags(alu_out);
|
SetCFlag(shifter_carry_out);
|
} else {
|
// Other instructions matching this pattern are handled in the
|
// miscellaneous instructions part above.
|
UNREACHABLE();
|
}
|
break;
|
}
|
|
case CMP: {
|
if (instr->HasS()) {
|
// Format(instr, "cmp'cond 'rn, 'shift_rm");
|
// Format(instr, "cmp'cond 'rn, 'imm");
|
alu_out = rn_val - shifter_operand;
|
SetNZFlags(alu_out);
|
SetCFlag(!BorrowFrom(rn_val, shifter_operand));
|
SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
|
} else {
|
// Format(instr, "movt'cond 'rd, 'imm").
|
alu_out =
|
(get_register(rd) & 0xFFFF) | (instr->ImmedMovwMovtValue() << 16);
|
set_register(rd, alu_out);
|
}
|
break;
|
}
|
|
case CMN: {
|
if (instr->HasS()) {
|
// Format(instr, "cmn'cond 'rn, 'shift_rm");
|
// Format(instr, "cmn'cond 'rn, 'imm");
|
alu_out = rn_val + shifter_operand;
|
SetNZFlags(alu_out);
|
SetCFlag(CarryFrom(rn_val, shifter_operand));
|
SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
|
} else {
|
// Other instructions matching this pattern are handled in the
|
// miscellaneous instructions part above.
|
UNREACHABLE();
|
}
|
break;
|
}
|
|
case ORR: {
|
// Format(instr, "orr'cond's 'rd, 'rn, 'shift_rm");
|
// Format(instr, "orr'cond's 'rd, 'rn, 'imm");
|
alu_out = rn_val | shifter_operand;
|
set_register(rd, alu_out);
|
if (instr->HasS()) {
|
SetNZFlags(alu_out);
|
SetCFlag(shifter_carry_out);
|
}
|
break;
|
}
|
|
case MOV: {
|
// Format(instr, "mov'cond's 'rd, 'shift_rm");
|
// Format(instr, "mov'cond's 'rd, 'imm");
|
alu_out = shifter_operand;
|
set_register(rd, alu_out);
|
if (instr->HasS()) {
|
SetNZFlags(alu_out);
|
SetCFlag(shifter_carry_out);
|
}
|
break;
|
}
|
|
case BIC: {
|
// Format(instr, "bic'cond's 'rd, 'rn, 'shift_rm");
|
// Format(instr, "bic'cond's 'rd, 'rn, 'imm");
|
alu_out = rn_val & ~shifter_operand;
|
set_register(rd, alu_out);
|
if (instr->HasS()) {
|
SetNZFlags(alu_out);
|
SetCFlag(shifter_carry_out);
|
}
|
break;
|
}
|
|
case MVN: {
|
// Format(instr, "mvn'cond's 'rd, 'shift_rm");
|
// Format(instr, "mvn'cond's 'rd, 'imm");
|
alu_out = ~shifter_operand;
|
set_register(rd, alu_out);
|
if (instr->HasS()) {
|
SetNZFlags(alu_out);
|
SetCFlag(shifter_carry_out);
|
}
|
break;
|
}
|
|
default: {
|
UNREACHABLE();
|
break;
|
}
|
}
|
}
|
}
|
|
|
void Simulator::DecodeType2(Instruction* instr) {
|
int rd = instr->RdValue();
|
int rn = instr->RnValue();
|
int32_t rn_val = get_register(rn);
|
int32_t im_val = instr->Offset12Value();
|
int32_t addr = 0;
|
switch (instr->PUField()) {
|
case da_x: {
|
// Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12");
|
DCHECK(!instr->HasW());
|
addr = rn_val;
|
rn_val -= im_val;
|
set_register(rn, rn_val);
|
break;
|
}
|
case ia_x: {
|
// Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12");
|
DCHECK(!instr->HasW());
|
addr = rn_val;
|
rn_val += im_val;
|
set_register(rn, rn_val);
|
break;
|
}
|
case db_x: {
|
// Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w");
|
rn_val -= im_val;
|
addr = rn_val;
|
if (instr->HasW()) {
|
set_register(rn, rn_val);
|
}
|
break;
|
}
|
case ib_x: {
|
// Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w");
|
rn_val += im_val;
|
addr = rn_val;
|
if (instr->HasW()) {
|
set_register(rn, rn_val);
|
}
|
break;
|
}
|
default: {
|
UNREACHABLE();
|
break;
|
}
|
}
|
if (instr->HasB()) {
|
if (instr->HasL()) {
|
byte val = ReadBU(addr);
|
set_register(rd, val);
|
} else {
|
byte val = get_register(rd);
|
WriteB(addr, val);
|
}
|
} else {
|
if (instr->HasL()) {
|
set_register(rd, ReadW(addr));
|
} else {
|
WriteW(addr, get_register(rd));
|
}
|
}
|
}
|
|
|
void Simulator::DecodeType3(Instruction* instr) {
|
int rd = instr->RdValue();
|
int rn = instr->RnValue();
|
int32_t rn_val = get_register(rn);
|
bool shifter_carry_out = 0;
|
int32_t shifter_operand = GetShiftRm(instr, &shifter_carry_out);
|
int32_t addr = 0;
|
switch (instr->PUField()) {
|
case da_x: {
|
DCHECK(!instr->HasW());
|
Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm");
|
UNIMPLEMENTED();
|
break;
|
}
|
case ia_x: {
|
if (instr->Bit(4) == 0) {
|
// Memop.
|
} else {
|
if (instr->Bit(5) == 0) {
|
switch (instr->Bits(22, 21)) {
|
case 0:
|
if (instr->Bit(20) == 0) {
|
if (instr->Bit(6) == 0) {
|
// Pkhbt.
|
uint32_t rn_val = get_register(rn);
|
uint32_t rm_val = get_register(instr->RmValue());
|
int32_t shift = instr->Bits(11, 7);
|
rm_val <<= shift;
|
set_register(rd, (rn_val & 0xFFFF) | (rm_val & 0xFFFF0000U));
|
} else {
|
// Pkhtb.
|
uint32_t rn_val = get_register(rn);
|
int32_t rm_val = get_register(instr->RmValue());
|
int32_t shift = instr->Bits(11, 7);
|
if (shift == 0) {
|
shift = 32;
|
}
|
rm_val >>= shift;
|
set_register(rd, (rn_val & 0xFFFF0000U) | (rm_val & 0xFFFF));
|
}
|
} else {
|
UNIMPLEMENTED();
|
}
|
break;
|
case 1:
|
UNIMPLEMENTED();
|
break;
|
case 2:
|
UNIMPLEMENTED();
|
break;
|
case 3: {
|
// Usat.
|
int32_t sat_pos = instr->Bits(20, 16);
|
int32_t sat_val = (1 << sat_pos) - 1;
|
int32_t shift = instr->Bits(11, 7);
|
int32_t shift_type = instr->Bit(6);
|
int32_t rm_val = get_register(instr->RmValue());
|
if (shift_type == 0) { // LSL
|
rm_val <<= shift;
|
} else { // ASR
|
rm_val >>= shift;
|
}
|
// If saturation occurs, the Q flag should be set in the CPSR.
|
// There is no Q flag yet, and no instruction (MRS) to read the
|
// CPSR directly.
|
if (rm_val > sat_val) {
|
rm_val = sat_val;
|
} else if (rm_val < 0) {
|
rm_val = 0;
|
}
|
set_register(rd, rm_val);
|
break;
|
}
|
}
|
} else {
|
switch (instr->Bits(22, 21)) {
|
case 0:
|
UNIMPLEMENTED();
|
break;
|
case 1:
|
if (instr->Bits(9, 6) == 1) {
|
if (instr->Bit(20) == 0) {
|
if (instr->Bits(19, 16) == 0xF) {
|
// Sxtb.
|
int32_t rm_val = get_register(instr->RmValue());
|
int32_t rotate = instr->Bits(11, 10);
|
switch (rotate) {
|
case 0:
|
break;
|
case 1:
|
rm_val = (rm_val >> 8) | (rm_val << 24);
|
break;
|
case 2:
|
rm_val = (rm_val >> 16) | (rm_val << 16);
|
break;
|
case 3:
|
rm_val = (rm_val >> 24) | (rm_val << 8);
|
break;
|
}
|
set_register(rd, static_cast<int8_t>(rm_val));
|
} else {
|
// Sxtab.
|
int32_t rn_val = get_register(rn);
|
int32_t rm_val = get_register(instr->RmValue());
|
int32_t rotate = instr->Bits(11, 10);
|
switch (rotate) {
|
case 0:
|
break;
|
case 1:
|
rm_val = (rm_val >> 8) | (rm_val << 24);
|
break;
|
case 2:
|
rm_val = (rm_val >> 16) | (rm_val << 16);
|
break;
|
case 3:
|
rm_val = (rm_val >> 24) | (rm_val << 8);
|
break;
|
}
|
set_register(rd, rn_val + static_cast<int8_t>(rm_val));
|
}
|
} else {
|
if (instr->Bits(19, 16) == 0xF) {
|
// Sxth.
|
int32_t rm_val = get_register(instr->RmValue());
|
int32_t rotate = instr->Bits(11, 10);
|
switch (rotate) {
|
case 0:
|
break;
|
case 1:
|
rm_val = (rm_val >> 8) | (rm_val << 24);
|
break;
|
case 2:
|
rm_val = (rm_val >> 16) | (rm_val << 16);
|
break;
|
case 3:
|
rm_val = (rm_val >> 24) | (rm_val << 8);
|
break;
|
}
|
set_register(rd, static_cast<int16_t>(rm_val));
|
} else {
|
// Sxtah.
|
int32_t rn_val = get_register(rn);
|
int32_t rm_val = get_register(instr->RmValue());
|
int32_t rotate = instr->Bits(11, 10);
|
switch (rotate) {
|
case 0:
|
break;
|
case 1:
|
rm_val = (rm_val >> 8) | (rm_val << 24);
|
break;
|
case 2:
|
rm_val = (rm_val >> 16) | (rm_val << 16);
|
break;
|
case 3:
|
rm_val = (rm_val >> 24) | (rm_val << 8);
|
break;
|
}
|
set_register(rd, rn_val + static_cast<int16_t>(rm_val));
|
}
|
}
|
} else if (instr->Bits(27, 16) == 0x6BF &&
|
instr->Bits(11, 4) == 0xF3) {
|
// Rev.
|
uint32_t rm_val = get_register(instr->RmValue());
|
set_register(rd, ByteReverse(rm_val));
|
} else {
|
UNREACHABLE();
|
}
|
break;
|
case 2:
|
if ((instr->Bit(20) == 0) && (instr->Bits(9, 6) == 1)) {
|
if (instr->Bits(19, 16) == 0xF) {
|
// Uxtb16.
|
uint32_t rm_val = get_register(instr->RmValue());
|
int32_t rotate = instr->Bits(11, 10);
|
switch (rotate) {
|
case 0:
|
break;
|
case 1:
|
rm_val = (rm_val >> 8) | (rm_val << 24);
|
break;
|
case 2:
|
rm_val = (rm_val >> 16) | (rm_val << 16);
|
break;
|
case 3:
|
rm_val = (rm_val >> 24) | (rm_val << 8);
|
break;
|
}
|
set_register(rd, (rm_val & 0xFF) | (rm_val & 0xFF0000));
|
} else {
|
UNIMPLEMENTED();
|
}
|
} else {
|
UNIMPLEMENTED();
|
}
|
break;
|
case 3:
|
if ((instr->Bits(9, 6) == 1)) {
|
if (instr->Bit(20) == 0) {
|
if (instr->Bits(19, 16) == 0xF) {
|
// Uxtb.
|
uint32_t rm_val = get_register(instr->RmValue());
|
int32_t rotate = instr->Bits(11, 10);
|
switch (rotate) {
|
case 0:
|
break;
|
case 1:
|
rm_val = (rm_val >> 8) | (rm_val << 24);
|
break;
|
case 2:
|
rm_val = (rm_val >> 16) | (rm_val << 16);
|
break;
|
case 3:
|
rm_val = (rm_val >> 24) | (rm_val << 8);
|
break;
|
}
|
set_register(rd, (rm_val & 0xFF));
|
} else {
|
// Uxtab.
|
uint32_t rn_val = get_register(rn);
|
uint32_t rm_val = get_register(instr->RmValue());
|
int32_t rotate = instr->Bits(11, 10);
|
switch (rotate) {
|
case 0:
|
break;
|
case 1:
|
rm_val = (rm_val >> 8) | (rm_val << 24);
|
break;
|
case 2:
|
rm_val = (rm_val >> 16) | (rm_val << 16);
|
break;
|
case 3:
|
rm_val = (rm_val >> 24) | (rm_val << 8);
|
break;
|
}
|
set_register(rd, rn_val + (rm_val & 0xFF));
|
}
|
} else {
|
if (instr->Bits(19, 16) == 0xF) {
|
// Uxth.
|
uint32_t rm_val = get_register(instr->RmValue());
|
int32_t rotate = instr->Bits(11, 10);
|
switch (rotate) {
|
case 0:
|
break;
|
case 1:
|
rm_val = (rm_val >> 8) | (rm_val << 24);
|
break;
|
case 2:
|
rm_val = (rm_val >> 16) | (rm_val << 16);
|
break;
|
case 3:
|
rm_val = (rm_val >> 24) | (rm_val << 8);
|
break;
|
}
|
set_register(rd, (rm_val & 0xFFFF));
|
} else {
|
// Uxtah.
|
uint32_t rn_val = get_register(rn);
|
uint32_t rm_val = get_register(instr->RmValue());
|
int32_t rotate = instr->Bits(11, 10);
|
switch (rotate) {
|
case 0:
|
break;
|
case 1:
|
rm_val = (rm_val >> 8) | (rm_val << 24);
|
break;
|
case 2:
|
rm_val = (rm_val >> 16) | (rm_val << 16);
|
break;
|
case 3:
|
rm_val = (rm_val >> 24) | (rm_val << 8);
|
break;
|
}
|
set_register(rd, rn_val + (rm_val & 0xFFFF));
|
}
|
}
|
} else {
|
// PU == 0b01, BW == 0b11, Bits(9, 6) != 0b0001
|
if ((instr->Bits(20, 16) == 0x1F) &&
|
(instr->Bits(11, 4) == 0xF3)) {
|
// Rbit.
|
uint32_t rm_val = get_register(instr->RmValue());
|
set_register(rd, base::bits::ReverseBits(rm_val));
|
} else {
|
UNIMPLEMENTED();
|
}
|
}
|
break;
|
}
|
}
|
return;
|
}
|
break;
|
}
|
case db_x: {
|
if (instr->Bits(22, 20) == 0x5) {
|
if (instr->Bits(7, 4) == 0x1) {
|
int rm = instr->RmValue();
|
int32_t rm_val = get_register(rm);
|
int rs = instr->RsValue();
|
int32_t rs_val = get_register(rs);
|
if (instr->Bits(15, 12) == 0xF) {
|
// SMMUL (in V8 notation matching ARM ISA format)
|
// Format(instr, "smmul'cond 'rn, 'rm, 'rs");
|
rn_val = base::bits::SignedMulHigh32(rm_val, rs_val);
|
} else {
|
// SMMLA (in V8 notation matching ARM ISA format)
|
// Format(instr, "smmla'cond 'rn, 'rm, 'rs, 'rd");
|
int rd = instr->RdValue();
|
int32_t rd_val = get_register(rd);
|
rn_val = base::bits::SignedMulHighAndAdd32(rm_val, rs_val, rd_val);
|
}
|
set_register(rn, rn_val);
|
return;
|
}
|
}
|
if (instr->Bits(5, 4) == 0x1) {
|
if ((instr->Bit(22) == 0x0) && (instr->Bit(20) == 0x1)) {
|
// (s/u)div (in V8 notation matching ARM ISA format) rn = rm/rs
|
// Format(instr, "'(s/u)div'cond'b 'rn, 'rm, 'rs);
|
int rm = instr->RmValue();
|
int32_t rm_val = get_register(rm);
|
int rs = instr->RsValue();
|
int32_t rs_val = get_register(rs);
|
int32_t ret_val = 0;
|
// udiv
|
if (instr->Bit(21) == 0x1) {
|
ret_val = bit_cast<int32_t>(base::bits::UnsignedDiv32(
|
bit_cast<uint32_t>(rm_val), bit_cast<uint32_t>(rs_val)));
|
} else {
|
ret_val = base::bits::SignedDiv32(rm_val, rs_val);
|
}
|
set_register(rn, ret_val);
|
return;
|
}
|
}
|
// Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w");
|
addr = rn_val - shifter_operand;
|
if (instr->HasW()) {
|
set_register(rn, addr);
|
}
|
break;
|
}
|
case ib_x: {
|
if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) {
|
uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16));
|
uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
|
uint32_t msbit = widthminus1 + lsbit;
|
if (msbit <= 31) {
|
if (instr->Bit(22)) {
|
// ubfx - unsigned bitfield extract.
|
uint32_t rm_val =
|
static_cast<uint32_t>(get_register(instr->RmValue()));
|
uint32_t extr_val = rm_val << (31 - msbit);
|
extr_val = extr_val >> (31 - widthminus1);
|
set_register(instr->RdValue(), extr_val);
|
} else {
|
// sbfx - signed bitfield extract.
|
int32_t rm_val = get_register(instr->RmValue());
|
int32_t extr_val = rm_val << (31 - msbit);
|
extr_val = extr_val >> (31 - widthminus1);
|
set_register(instr->RdValue(), extr_val);
|
}
|
} else {
|
UNREACHABLE();
|
}
|
return;
|
} else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) {
|
uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
|
uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16));
|
if (msbit >= lsbit) {
|
// bfc or bfi - bitfield clear/insert.
|
uint32_t rd_val =
|
static_cast<uint32_t>(get_register(instr->RdValue()));
|
uint32_t bitcount = msbit - lsbit + 1;
|
uint32_t mask = 0xFFFFFFFFu >> (32 - bitcount);
|
rd_val &= ~(mask << lsbit);
|
if (instr->RmValue() != 15) {
|
// bfi - bitfield insert.
|
uint32_t rm_val =
|
static_cast<uint32_t>(get_register(instr->RmValue()));
|
rm_val &= mask;
|
rd_val |= rm_val << lsbit;
|
}
|
set_register(instr->RdValue(), rd_val);
|
} else {
|
UNREACHABLE();
|
}
|
return;
|
} else {
|
// Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w");
|
addr = rn_val + shifter_operand;
|
if (instr->HasW()) {
|
set_register(rn, addr);
|
}
|
}
|
break;
|
}
|
default: {
|
UNREACHABLE();
|
break;
|
}
|
}
|
if (instr->HasB()) {
|
if (instr->HasL()) {
|
uint8_t byte = ReadB(addr);
|
set_register(rd, byte);
|
} else {
|
uint8_t byte = get_register(rd);
|
WriteB(addr, byte);
|
}
|
} else {
|
if (instr->HasL()) {
|
set_register(rd, ReadW(addr));
|
} else {
|
WriteW(addr, get_register(rd));
|
}
|
}
|
}
|
|
|
void Simulator::DecodeType4(Instruction* instr) {
|
DCHECK_EQ(instr->Bit(22), 0); // only allowed to be set in privileged mode
|
if (instr->HasL()) {
|
// Format(instr, "ldm'cond'pu 'rn'w, 'rlist");
|
HandleRList(instr, true);
|
} else {
|
// Format(instr, "stm'cond'pu 'rn'w, 'rlist");
|
HandleRList(instr, false);
|
}
|
}
|
|
|
void Simulator::DecodeType5(Instruction* instr) {
|
// Format(instr, "b'l'cond 'target");
|
int off = (instr->SImmed24Value() << 2);
|
intptr_t pc_address = get_pc();
|
if (instr->HasLink()) {
|
set_register(lr, pc_address + kInstrSize);
|
}
|
int pc_reg = get_register(pc);
|
set_pc(pc_reg + off);
|
}
|
|
|
void Simulator::DecodeType6(Instruction* instr) {
|
DecodeType6CoprocessorIns(instr);
|
}
|
|
|
void Simulator::DecodeType7(Instruction* instr) {
|
if (instr->Bit(24) == 1) {
|
SoftwareInterrupt(instr);
|
} else {
|
switch (instr->CoprocessorValue()) {
|
case 10: // Fall through.
|
case 11:
|
DecodeTypeVFP(instr);
|
break;
|
case 15:
|
DecodeTypeCP15(instr);
|
break;
|
default:
|
UNIMPLEMENTED();
|
}
|
}
|
}
|
|
|
// void Simulator::DecodeTypeVFP(Instruction* instr)
|
// The Following ARMv7 VFPv instructions are currently supported.
|
// vmov :Sn = Rt
|
// vmov :Rt = Sn
|
// vcvt: Dd = Sm
|
// vcvt: Sd = Dm
|
// vcvt.f64.s32 Dd, Dd, #<fbits>
|
// Dd = vabs(Dm)
|
// Sd = vabs(Sm)
|
// Dd = vneg(Dm)
|
// Sd = vneg(Sm)
|
// Dd = vadd(Dn, Dm)
|
// Sd = vadd(Sn, Sm)
|
// Dd = vsub(Dn, Dm)
|
// Sd = vsub(Sn, Sm)
|
// Dd = vmul(Dn, Dm)
|
// Sd = vmul(Sn, Sm)
|
// Dd = vdiv(Dn, Dm)
|
// Sd = vdiv(Sn, Sm)
|
// vcmp(Dd, Dm)
|
// vcmp(Sd, Sm)
|
// Dd = vsqrt(Dm)
|
// Sd = vsqrt(Sm)
|
// vmrs
|
// vdup.size Qd, Rt.
|
void Simulator::DecodeTypeVFP(Instruction* instr) {
|
DCHECK((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0) );
|
DCHECK_EQ(instr->Bits(11, 9), 0x5);
|
// Obtain single precision register codes.
|
int m = instr->VFPMRegValue(kSinglePrecision);
|
int d = instr->VFPDRegValue(kSinglePrecision);
|
int n = instr->VFPNRegValue(kSinglePrecision);
|
// Obtain double precision register codes.
|
int vm = instr->VFPMRegValue(kDoublePrecision);
|
int vd = instr->VFPDRegValue(kDoublePrecision);
|
int vn = instr->VFPNRegValue(kDoublePrecision);
|
|
if (instr->Bit(4) == 0) {
|
if (instr->Opc1Value() == 0x7) {
|
// Other data processing instructions
|
if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x1)) {
|
// vmov register to register.
|
if (instr->SzValue() == 0x1) {
|
uint32_t data[2];
|
get_d_register(vm, data);
|
set_d_register(vd, data);
|
} else {
|
set_s_register(d, get_s_register(m));
|
}
|
} else if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x3)) {
|
// vabs
|
if (instr->SzValue() == 0x1) {
|
Float64 dm = get_double_from_d_register(vm);
|
constexpr uint64_t kSignBit64 = uint64_t{1} << 63;
|
Float64 dd = Float64::FromBits(dm.get_bits() & ~kSignBit64);
|
dd = canonicalizeNaN(dd);
|
set_d_register_from_double(vd, dd);
|
} else {
|
Float32 sm = get_float_from_s_register(m);
|
constexpr uint32_t kSignBit32 = uint32_t{1} << 31;
|
Float32 sd = Float32::FromBits(sm.get_bits() & ~kSignBit32);
|
sd = canonicalizeNaN(sd);
|
set_s_register_from_float(d, sd);
|
}
|
} else if ((instr->Opc2Value() == 0x1) && (instr->Opc3Value() == 0x1)) {
|
// vneg
|
if (instr->SzValue() == 0x1) {
|
Float64 dm = get_double_from_d_register(vm);
|
constexpr uint64_t kSignBit64 = uint64_t{1} << 63;
|
Float64 dd = Float64::FromBits(dm.get_bits() ^ kSignBit64);
|
dd = canonicalizeNaN(dd);
|
set_d_register_from_double(vd, dd);
|
} else {
|
Float32 sm = get_float_from_s_register(m);
|
constexpr uint32_t kSignBit32 = uint32_t{1} << 31;
|
Float32 sd = Float32::FromBits(sm.get_bits() ^ kSignBit32);
|
sd = canonicalizeNaN(sd);
|
set_s_register_from_float(d, sd);
|
}
|
} else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) {
|
DecodeVCVTBetweenDoubleAndSingle(instr);
|
} else if ((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) {
|
DecodeVCVTBetweenFloatingPointAndInteger(instr);
|
} else if ((instr->Opc2Value() == 0xA) && (instr->Opc3Value() == 0x3) &&
|
(instr->Bit(8) == 1)) {
|
// vcvt.f64.s32 Dd, Dd, #<fbits>
|
int fraction_bits = 32 - ((instr->Bits(3, 0) << 1) | instr->Bit(5));
|
int fixed_value = get_sinteger_from_s_register(vd * 2);
|
double divide = 1 << fraction_bits;
|
set_d_register_from_double(vd, fixed_value / divide);
|
} else if (((instr->Opc2Value() >> 1) == 0x6) &&
|
(instr->Opc3Value() & 0x1)) {
|
DecodeVCVTBetweenFloatingPointAndInteger(instr);
|
} else if (((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
|
(instr->Opc3Value() & 0x1)) {
|
DecodeVCMP(instr);
|
} else if (((instr->Opc2Value() == 0x1)) && (instr->Opc3Value() == 0x3)) {
|
// vsqrt
|
lazily_initialize_fast_sqrt(isolate_);
|
if (instr->SzValue() == 0x1) {
|
double dm_value = get_double_from_d_register(vm).get_scalar();
|
double dd_value = fast_sqrt(dm_value, isolate_);
|
dd_value = canonicalizeNaN(dd_value);
|
set_d_register_from_double(vd, dd_value);
|
} else {
|
float sm_value = get_float_from_s_register(m).get_scalar();
|
float sd_value = fast_sqrt(sm_value, isolate_);
|
sd_value = canonicalizeNaN(sd_value);
|
set_s_register_from_float(d, sd_value);
|
}
|
} else if (instr->Opc3Value() == 0x0) {
|
// vmov immediate.
|
if (instr->SzValue() == 0x1) {
|
set_d_register_from_double(vd, instr->DoubleImmedVmov());
|
} else {
|
// Cast double to float.
|
float value = instr->DoubleImmedVmov().get_scalar();
|
set_s_register_from_float(d, value);
|
}
|
} else if (((instr->Opc2Value() == 0x6)) && (instr->Opc3Value() == 0x3)) {
|
// vrintz - truncate
|
if (instr->SzValue() == 0x1) {
|
double dm_value = get_double_from_d_register(vm).get_scalar();
|
double dd_value = trunc(dm_value);
|
dd_value = canonicalizeNaN(dd_value);
|
set_d_register_from_double(vd, dd_value);
|
} else {
|
float sm_value = get_float_from_s_register(m).get_scalar();
|
float sd_value = truncf(sm_value);
|
sd_value = canonicalizeNaN(sd_value);
|
set_s_register_from_float(d, sd_value);
|
}
|
} else {
|
UNREACHABLE(); // Not used by V8.
|
}
|
} else if (instr->Opc1Value() == 0x3) {
|
if (instr->Opc3Value() & 0x1) {
|
// vsub
|
if (instr->SzValue() == 0x1) {
|
double dn_value = get_double_from_d_register(vn).get_scalar();
|
double dm_value = get_double_from_d_register(vm).get_scalar();
|
double dd_value = dn_value - dm_value;
|
dd_value = canonicalizeNaN(dd_value);
|
set_d_register_from_double(vd, dd_value);
|
} else {
|
float sn_value = get_float_from_s_register(n).get_scalar();
|
float sm_value = get_float_from_s_register(m).get_scalar();
|
float sd_value = sn_value - sm_value;
|
sd_value = canonicalizeNaN(sd_value);
|
set_s_register_from_float(d, sd_value);
|
}
|
} else {
|
// vadd
|
if (instr->SzValue() == 0x1) {
|
double dn_value = get_double_from_d_register(vn).get_scalar();
|
double dm_value = get_double_from_d_register(vm).get_scalar();
|
double dd_value = dn_value + dm_value;
|
dd_value = canonicalizeNaN(dd_value);
|
set_d_register_from_double(vd, dd_value);
|
} else {
|
float sn_value = get_float_from_s_register(n).get_scalar();
|
float sm_value = get_float_from_s_register(m).get_scalar();
|
float sd_value = sn_value + sm_value;
|
sd_value = canonicalizeNaN(sd_value);
|
set_s_register_from_float(d, sd_value);
|
}
|
}
|
} else if ((instr->Opc1Value() == 0x2) && !(instr->Opc3Value() & 0x1)) {
|
// vmul
|
if (instr->SzValue() == 0x1) {
|
double dn_value = get_double_from_d_register(vn).get_scalar();
|
double dm_value = get_double_from_d_register(vm).get_scalar();
|
double dd_value = dn_value * dm_value;
|
dd_value = canonicalizeNaN(dd_value);
|
set_d_register_from_double(vd, dd_value);
|
} else {
|
float sn_value = get_float_from_s_register(n).get_scalar();
|
float sm_value = get_float_from_s_register(m).get_scalar();
|
float sd_value = sn_value * sm_value;
|
sd_value = canonicalizeNaN(sd_value);
|
set_s_register_from_float(d, sd_value);
|
}
|
} else if ((instr->Opc1Value() == 0x0)) {
|
// vmla, vmls
|
const bool is_vmls = (instr->Opc3Value() & 0x1);
|
if (instr->SzValue() == 0x1) {
|
const double dd_val = get_double_from_d_register(vd).get_scalar();
|
const double dn_val = get_double_from_d_register(vn).get_scalar();
|
const double dm_val = get_double_from_d_register(vm).get_scalar();
|
|
// Note: we do the mul and add/sub in separate steps to avoid getting a
|
// result with too high precision.
|
const double res = dn_val * dm_val;
|
set_d_register_from_double(vd, res);
|
if (is_vmls) {
|
set_d_register_from_double(vd, canonicalizeNaN(dd_val - res));
|
} else {
|
set_d_register_from_double(vd, canonicalizeNaN(dd_val + res));
|
}
|
} else {
|
const float sd_val = get_float_from_s_register(d).get_scalar();
|
const float sn_val = get_float_from_s_register(n).get_scalar();
|
const float sm_val = get_float_from_s_register(m).get_scalar();
|
|
// Note: we do the mul and add/sub in separate steps to avoid getting a
|
// result with too high precision.
|
const float res = sn_val * sm_val;
|
set_s_register_from_float(d, res);
|
if (is_vmls) {
|
set_s_register_from_float(d, canonicalizeNaN(sd_val - res));
|
} else {
|
set_s_register_from_float(d, canonicalizeNaN(sd_val + res));
|
}
|
}
|
} else if ((instr->Opc1Value() == 0x4) && !(instr->Opc3Value() & 0x1)) {
|
// vdiv
|
if (instr->SzValue() == 0x1) {
|
double dn_value = get_double_from_d_register(vn).get_scalar();
|
double dm_value = get_double_from_d_register(vm).get_scalar();
|
double dd_value = dn_value / dm_value;
|
div_zero_vfp_flag_ = (dm_value == 0);
|
dd_value = canonicalizeNaN(dd_value);
|
set_d_register_from_double(vd, dd_value);
|
} else {
|
float sn_value = get_float_from_s_register(n).get_scalar();
|
float sm_value = get_float_from_s_register(m).get_scalar();
|
float sd_value = sn_value / sm_value;
|
div_zero_vfp_flag_ = (sm_value == 0);
|
sd_value = canonicalizeNaN(sd_value);
|
set_s_register_from_float(d, sd_value);
|
}
|
} else {
|
UNIMPLEMENTED(); // Not used by V8.
|
}
|
} else {
|
if ((instr->VCValue() == 0x0) &&
|
(instr->VAValue() == 0x0)) {
|
DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr);
|
} else if ((instr->VLValue() == 0x0) && (instr->VCValue() == 0x1)) {
|
if (instr->Bit(23) == 0) {
|
// vmov (ARM core register to scalar)
|
int vd = instr->VFPNRegValue(kDoublePrecision);
|
int rt = instr->RtValue();
|
int opc1_opc2 = (instr->Bits(22, 21) << 2) | instr->Bits(6, 5);
|
if ((opc1_opc2 & 0xB) == 0) {
|
// NeonS32/NeonU32
|
uint32_t data[2];
|
get_d_register(vd, data);
|
data[instr->Bit(21)] = get_register(rt);
|
set_d_register(vd, data);
|
} else {
|
uint64_t data;
|
get_d_register(vd, &data);
|
uint64_t rt_value = get_register(rt);
|
if ((opc1_opc2 & 0x8) != 0) {
|
// NeonS8 / NeonU8
|
int i = opc1_opc2 & 0x7;
|
int shift = i * kBitsPerByte;
|
const uint64_t mask = 0xFF;
|
data &= ~(mask << shift);
|
data |= (rt_value & mask) << shift;
|
set_d_register(vd, &data);
|
} else if ((opc1_opc2 & 0x1) != 0) {
|
// NeonS16 / NeonU16
|
int i = (opc1_opc2 >> 1) & 0x3;
|
int shift = i * kBitsPerByte * kShortSize;
|
const uint64_t mask = 0xFFFF;
|
data &= ~(mask << shift);
|
data |= (rt_value & mask) << shift;
|
set_d_register(vd, &data);
|
} else {
|
UNREACHABLE(); // Not used by V8.
|
}
|
}
|
} else {
|
// vdup.size Qd, Rt.
|
NeonSize size = Neon32;
|
if (instr->Bit(5) != 0)
|
size = Neon16;
|
else if (instr->Bit(22) != 0)
|
size = Neon8;
|
int vd = instr->VFPNRegValue(kSimd128Precision);
|
int rt = instr->RtValue();
|
uint32_t rt_value = get_register(rt);
|
uint32_t q_data[4];
|
switch (size) {
|
case Neon8: {
|
rt_value &= 0xFF;
|
uint8_t* dst = reinterpret_cast<uint8_t*>(q_data);
|
for (int i = 0; i < 16; i++) {
|
dst[i] = rt_value;
|
}
|
break;
|
}
|
case Neon16: {
|
// Perform pairwise op.
|
rt_value &= 0xFFFFu;
|
uint32_t rt_rt = (rt_value << 16) | (rt_value & 0xFFFFu);
|
for (int i = 0; i < 4; i++) {
|
q_data[i] = rt_rt;
|
}
|
break;
|
}
|
case Neon32: {
|
for (int i = 0; i < 4; i++) {
|
q_data[i] = rt_value;
|
}
|
break;
|
}
|
default:
|
UNREACHABLE();
|
break;
|
}
|
set_neon_register(vd, q_data);
|
}
|
} else if ((instr->VLValue() == 0x1) && (instr->VCValue() == 0x1)) {
|
// vmov (scalar to ARM core register)
|
int vn = instr->VFPNRegValue(kDoublePrecision);
|
int rt = instr->RtValue();
|
int opc1_opc2 = (instr->Bits(22, 21) << 2) | instr->Bits(6, 5);
|
uint64_t data;
|
get_d_register(vn, &data);
|
if ((opc1_opc2 & 0xB) == 0) {
|
// NeonS32 / NeonU32
|
int32_t int_data[2];
|
memcpy(int_data, &data, sizeof(int_data));
|
set_register(rt, int_data[instr->Bit(21)]);
|
} else {
|
uint64_t data;
|
get_d_register(vn, &data);
|
bool u = instr->Bit(23) != 0;
|
if ((opc1_opc2 & 0x8) != 0) {
|
// NeonS8 / NeonU8
|
int i = opc1_opc2 & 0x7;
|
int shift = i * kBitsPerByte;
|
uint32_t scalar = (data >> shift) & 0xFFu;
|
if (!u && (scalar & 0x80) != 0) scalar |= 0xFFFFFF00;
|
set_register(rt, scalar);
|
} else if ((opc1_opc2 & 0x1) != 0) {
|
// NeonS16 / NeonU16
|
int i = (opc1_opc2 >> 1) & 0x3;
|
int shift = i * kBitsPerByte * kShortSize;
|
uint32_t scalar = (data >> shift) & 0xFFFFu;
|
if (!u && (scalar & 0x8000) != 0) scalar |= 0xFFFF0000;
|
set_register(rt, scalar);
|
} else {
|
UNREACHABLE(); // Not used by V8.
|
}
|
}
|
} else if ((instr->VLValue() == 0x1) &&
|
(instr->VCValue() == 0x0) &&
|
(instr->VAValue() == 0x7) &&
|
(instr->Bits(19, 16) == 0x1)) {
|
// vmrs
|
uint32_t rt = instr->RtValue();
|
if (rt == 0xF) {
|
Copy_FPSCR_to_APSR();
|
} else {
|
// Emulate FPSCR from the Simulator flags.
|
uint32_t fpscr = (n_flag_FPSCR_ << 31) |
|
(z_flag_FPSCR_ << 30) |
|
(c_flag_FPSCR_ << 29) |
|
(v_flag_FPSCR_ << 28) |
|
(FPSCR_default_NaN_mode_ << 25) |
|
(inexact_vfp_flag_ << 4) |
|
(underflow_vfp_flag_ << 3) |
|
(overflow_vfp_flag_ << 2) |
|
(div_zero_vfp_flag_ << 1) |
|
(inv_op_vfp_flag_ << 0) |
|
(FPSCR_rounding_mode_);
|
set_register(rt, fpscr);
|
}
|
} else if ((instr->VLValue() == 0x0) &&
|
(instr->VCValue() == 0x0) &&
|
(instr->VAValue() == 0x7) &&
|
(instr->Bits(19, 16) == 0x1)) {
|
// vmsr
|
uint32_t rt = instr->RtValue();
|
if (rt == pc) {
|
UNREACHABLE();
|
} else {
|
uint32_t rt_value = get_register(rt);
|
n_flag_FPSCR_ = (rt_value >> 31) & 1;
|
z_flag_FPSCR_ = (rt_value >> 30) & 1;
|
c_flag_FPSCR_ = (rt_value >> 29) & 1;
|
v_flag_FPSCR_ = (rt_value >> 28) & 1;
|
FPSCR_default_NaN_mode_ = (rt_value >> 25) & 1;
|
inexact_vfp_flag_ = (rt_value >> 4) & 1;
|
underflow_vfp_flag_ = (rt_value >> 3) & 1;
|
overflow_vfp_flag_ = (rt_value >> 2) & 1;
|
div_zero_vfp_flag_ = (rt_value >> 1) & 1;
|
inv_op_vfp_flag_ = (rt_value >> 0) & 1;
|
FPSCR_rounding_mode_ =
|
static_cast<VFPRoundingMode>((rt_value) & kVFPRoundingModeMask);
|
}
|
} else {
|
UNIMPLEMENTED(); // Not used by V8.
|
}
|
}
|
}
|
|
void Simulator::DecodeTypeCP15(Instruction* instr) {
|
DCHECK((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0));
|
DCHECK_EQ(instr->CoprocessorValue(), 15);
|
|
if (instr->Bit(4) == 1) {
|
// mcr
|
int crn = instr->Bits(19, 16);
|
int crm = instr->Bits(3, 0);
|
int opc1 = instr->Bits(23, 21);
|
int opc2 = instr->Bits(7, 5);
|
if ((opc1 == 0) && (crn == 7)) {
|
// ARMv6 memory barrier operations.
|
// Details available in ARM DDI 0406C.b, B3-1750.
|
if (((crm == 10) && (opc2 == 5)) || // CP15DMB
|
((crm == 10) && (opc2 == 4)) || // CP15DSB
|
((crm == 5) && (opc2 == 4))) { // CP15ISB
|
// These are ignored by the simulator for now.
|
} else {
|
UNIMPLEMENTED();
|
}
|
}
|
} else {
|
UNIMPLEMENTED();
|
}
|
}
|
|
void Simulator::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(
|
Instruction* instr) {
|
DCHECK((instr->Bit(4) == 1) && (instr->VCValue() == 0x0) &&
|
(instr->VAValue() == 0x0));
|
|
int t = instr->RtValue();
|
int n = instr->VFPNRegValue(kSinglePrecision);
|
bool to_arm_register = (instr->VLValue() == 0x1);
|
|
if (to_arm_register) {
|
int32_t int_value = get_sinteger_from_s_register(n);
|
set_register(t, int_value);
|
} else {
|
int32_t rs_val = get_register(t);
|
set_s_register_from_sinteger(n, rs_val);
|
}
|
}
|
|
|
void Simulator::DecodeVCMP(Instruction* instr) {
|
DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
|
DCHECK(((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
|
(instr->Opc3Value() & 0x1));
|
// Comparison.
|
|
VFPRegPrecision precision = kSinglePrecision;
|
if (instr->SzValue() == 0x1) {
|
precision = kDoublePrecision;
|
}
|
|
int d = instr->VFPDRegValue(precision);
|
int m = 0;
|
if (instr->Opc2Value() == 0x4) {
|
m = instr->VFPMRegValue(precision);
|
}
|
|
if (precision == kDoublePrecision) {
|
double dd_value = get_double_from_d_register(d).get_scalar();
|
double dm_value = 0.0;
|
if (instr->Opc2Value() == 0x4) {
|
dm_value = get_double_from_d_register(m).get_scalar();
|
}
|
|
// Raise exceptions for quiet NaNs if necessary.
|
if (instr->Bit(7) == 1) {
|
if (std::isnan(dd_value)) {
|
inv_op_vfp_flag_ = true;
|
}
|
}
|
|
Compute_FPSCR_Flags(dd_value, dm_value);
|
} else {
|
float sd_value = get_float_from_s_register(d).get_scalar();
|
float sm_value = 0.0;
|
if (instr->Opc2Value() == 0x4) {
|
sm_value = get_float_from_s_register(m).get_scalar();
|
}
|
|
// Raise exceptions for quiet NaNs if necessary.
|
if (instr->Bit(7) == 1) {
|
if (std::isnan(sd_value)) {
|
inv_op_vfp_flag_ = true;
|
}
|
}
|
|
Compute_FPSCR_Flags(sd_value, sm_value);
|
}
|
}
|
|
|
void Simulator::DecodeVCVTBetweenDoubleAndSingle(Instruction* instr) {
|
DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
|
DCHECK((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3));
|
|
VFPRegPrecision dst_precision = kDoublePrecision;
|
VFPRegPrecision src_precision = kSinglePrecision;
|
if (instr->SzValue() == 1) {
|
dst_precision = kSinglePrecision;
|
src_precision = kDoublePrecision;
|
}
|
|
int dst = instr->VFPDRegValue(dst_precision);
|
int src = instr->VFPMRegValue(src_precision);
|
|
if (dst_precision == kSinglePrecision) {
|
double val = get_double_from_d_register(src).get_scalar();
|
set_s_register_from_float(dst, static_cast<float>(val));
|
} else {
|
float val = get_float_from_s_register(src).get_scalar();
|
set_d_register_from_double(dst, static_cast<double>(val));
|
}
|
}
|
|
bool get_inv_op_vfp_flag(VFPRoundingMode mode,
|
double val,
|
bool unsigned_) {
|
DCHECK((mode == RN) || (mode == RM) || (mode == RZ));
|
double max_uint = static_cast<double>(0xFFFFFFFFu);
|
double max_int = static_cast<double>(kMaxInt);
|
double min_int = static_cast<double>(kMinInt);
|
|
// Check for NaN.
|
if (val != val) {
|
return true;
|
}
|
|
// Check for overflow. This code works because 32bit integers can be
|
// exactly represented by ieee-754 64bit floating-point values.
|
switch (mode) {
|
case RN:
|
return unsigned_ ? (val >= (max_uint + 0.5)) ||
|
(val < -0.5)
|
: (val >= (max_int + 0.5)) ||
|
(val < (min_int - 0.5));
|
|
case RM:
|
return unsigned_ ? (val >= (max_uint + 1.0)) ||
|
(val < 0)
|
: (val >= (max_int + 1.0)) ||
|
(val < min_int);
|
|
case RZ:
|
return unsigned_ ? (val >= (max_uint + 1.0)) ||
|
(val <= -1)
|
: (val >= (max_int + 1.0)) ||
|
(val <= (min_int - 1.0));
|
default:
|
UNREACHABLE();
|
}
|
}
|
|
|
// We call this function only if we had a vfp invalid exception.
|
// It returns the correct saturated value.
|
int VFPConversionSaturate(double val, bool unsigned_res) {
|
if (val != val) {
|
return 0;
|
} else {
|
if (unsigned_res) {
|
return (val < 0) ? 0 : 0xFFFFFFFFu;
|
} else {
|
return (val < 0) ? kMinInt : kMaxInt;
|
}
|
}
|
}
|
|
int32_t Simulator::ConvertDoubleToInt(double val, bool unsigned_integer,
|
VFPRoundingMode mode) {
|
// TODO(jkummerow): These casts are undefined behavior if the integral
|
// part of {val} does not fit into the destination type.
|
int32_t result =
|
unsigned_integer ? static_cast<uint32_t>(val) : static_cast<int32_t>(val);
|
|
inv_op_vfp_flag_ = get_inv_op_vfp_flag(mode, val, unsigned_integer);
|
|
double abs_diff = unsigned_integer
|
? std::fabs(val - static_cast<uint32_t>(result))
|
: std::fabs(val - result);
|
|
inexact_vfp_flag_ = (abs_diff != 0);
|
|
if (inv_op_vfp_flag_) {
|
result = VFPConversionSaturate(val, unsigned_integer);
|
} else {
|
switch (mode) {
|
case RN: {
|
int val_sign = (val > 0) ? 1 : -1;
|
if (abs_diff > 0.5) {
|
result += val_sign;
|
} else if (abs_diff == 0.5) {
|
// Round to even if exactly halfway.
|
result = ((result % 2) == 0) ? result : result + val_sign;
|
}
|
break;
|
}
|
|
case RM:
|
result = result > val ? result - 1 : result;
|
break;
|
|
case RZ:
|
// Nothing to do.
|
break;
|
|
default:
|
UNREACHABLE();
|
}
|
}
|
return result;
|
}
|
|
void Simulator::DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr) {
|
DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7) &&
|
(instr->Bits(27, 23) == 0x1D));
|
DCHECK(((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) ||
|
(((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1)));
|
|
// Conversion between floating-point and integer.
|
bool to_integer = (instr->Bit(18) == 1);
|
|
VFPRegPrecision src_precision = (instr->SzValue() == 1) ? kDoublePrecision
|
: kSinglePrecision;
|
|
if (to_integer) {
|
// We are playing with code close to the C++ standard's limits below,
|
// hence the very simple code and heavy checks.
|
//
|
// Note:
|
// C++ defines default type casting from floating point to integer as
|
// (close to) rounding toward zero ("fractional part discarded").
|
|
int dst = instr->VFPDRegValue(kSinglePrecision);
|
int src = instr->VFPMRegValue(src_precision);
|
|
// Bit 7 in vcvt instructions indicates if we should use the FPSCR rounding
|
// mode or the default Round to Zero mode.
|
VFPRoundingMode mode = (instr->Bit(7) != 1) ? FPSCR_rounding_mode_
|
: RZ;
|
DCHECK((mode == RM) || (mode == RZ) || (mode == RN));
|
|
bool unsigned_integer = (instr->Bit(16) == 0);
|
bool double_precision = (src_precision == kDoublePrecision);
|
|
double val = double_precision ? get_double_from_d_register(src).get_scalar()
|
: get_float_from_s_register(src).get_scalar();
|
|
int32_t temp = ConvertDoubleToInt(val, unsigned_integer, mode);
|
|
// Update the destination register.
|
set_s_register_from_sinteger(dst, temp);
|
|
} else {
|
bool unsigned_integer = (instr->Bit(7) == 0);
|
|
int dst = instr->VFPDRegValue(src_precision);
|
int src = instr->VFPMRegValue(kSinglePrecision);
|
|
int val = get_sinteger_from_s_register(src);
|
|
if (src_precision == kDoublePrecision) {
|
if (unsigned_integer) {
|
set_d_register_from_double(
|
dst, static_cast<double>(static_cast<uint32_t>(val)));
|
} else {
|
set_d_register_from_double(dst, static_cast<double>(val));
|
}
|
} else {
|
if (unsigned_integer) {
|
set_s_register_from_float(
|
dst, static_cast<float>(static_cast<uint32_t>(val)));
|
} else {
|
set_s_register_from_float(dst, static_cast<float>(val));
|
}
|
}
|
}
|
}
|
|
|
// void Simulator::DecodeType6CoprocessorIns(Instruction* instr)
|
// Decode Type 6 coprocessor instructions.
|
// Dm = vmov(Rt, Rt2)
|
// <Rt, Rt2> = vmov(Dm)
|
// Ddst = MEM(Rbase + 4*offset).
|
// MEM(Rbase + 4*offset) = Dsrc.
|
void Simulator::DecodeType6CoprocessorIns(Instruction* instr) {
|
DCHECK_EQ(instr->TypeValue(), 6);
|
|
if (instr->CoprocessorValue() == 0xA) {
|
switch (instr->OpcodeValue()) {
|
case 0x8:
|
case 0xA:
|
case 0xC:
|
case 0xE: { // Load and store single precision float to memory.
|
int rn = instr->RnValue();
|
int vd = instr->VFPDRegValue(kSinglePrecision);
|
int offset = instr->Immed8Value();
|
if (!instr->HasU()) {
|
offset = -offset;
|
}
|
|
int32_t address = get_register(rn) + 4 * offset;
|
// Load and store address for singles must be at least four-byte
|
// aligned.
|
DCHECK_EQ(address % 4, 0);
|
if (instr->HasL()) {
|
// Load single from memory: vldr.
|
set_s_register_from_sinteger(vd, ReadW(address));
|
} else {
|
// Store single to memory: vstr.
|
WriteW(address, get_sinteger_from_s_register(vd));
|
}
|
break;
|
}
|
case 0x4:
|
case 0x5:
|
case 0x6:
|
case 0x7:
|
case 0x9:
|
case 0xB:
|
// Load/store multiple single from memory: vldm/vstm.
|
HandleVList(instr);
|
break;
|
default:
|
UNIMPLEMENTED(); // Not used by V8.
|
}
|
} else if (instr->CoprocessorValue() == 0xB) {
|
switch (instr->OpcodeValue()) {
|
case 0x2:
|
// Load and store double to two GP registers
|
if (instr->Bits(7, 6) != 0 || instr->Bit(4) != 1) {
|
UNIMPLEMENTED(); // Not used by V8.
|
} else {
|
int rt = instr->RtValue();
|
int rn = instr->RnValue();
|
int vm = instr->VFPMRegValue(kDoublePrecision);
|
if (instr->HasL()) {
|
uint32_t data[2];
|
get_d_register(vm, data);
|
set_register(rt, data[0]);
|
set_register(rn, data[1]);
|
} else {
|
int32_t data[] = { get_register(rt), get_register(rn) };
|
set_d_register(vm, reinterpret_cast<uint32_t*>(data));
|
}
|
}
|
break;
|
case 0x8:
|
case 0xA:
|
case 0xC:
|
case 0xE: { // Load and store double to memory.
|
int rn = instr->RnValue();
|
int vd = instr->VFPDRegValue(kDoublePrecision);
|
int offset = instr->Immed8Value();
|
if (!instr->HasU()) {
|
offset = -offset;
|
}
|
int32_t address = get_register(rn) + 4 * offset;
|
// Load and store address for doubles must be at least four-byte
|
// aligned.
|
DCHECK_EQ(address % 4, 0);
|
if (instr->HasL()) {
|
// Load double from memory: vldr.
|
int32_t data[] = {ReadW(address), ReadW(address + 4)};
|
set_d_register(vd, reinterpret_cast<uint32_t*>(data));
|
} else {
|
// Store double to memory: vstr.
|
uint32_t data[2];
|
get_d_register(vd, data);
|
WriteW(address, data[0]);
|
WriteW(address + 4, data[1]);
|
}
|
break;
|
}
|
case 0x4:
|
case 0x5:
|
case 0x6:
|
case 0x7:
|
case 0x9:
|
case 0xB:
|
// Load/store multiple double from memory: vldm/vstm.
|
HandleVList(instr);
|
break;
|
default:
|
UNIMPLEMENTED(); // Not used by V8.
|
}
|
} else {
|
UNIMPLEMENTED(); // Not used by V8.
|
}
|
}
|
|
// Templated operations for NEON instructions.
|
template <typename T, typename U>
|
U Widen(T value) {
|
static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller");
|
static_assert(sizeof(U) > sizeof(T), "T must smaller than U");
|
return static_cast<U>(value);
|
}
|
|
template <typename T, typename U>
|
U Narrow(T value) {
|
static_assert(sizeof(int8_t) < sizeof(T), "T must be int16_t or larger");
|
static_assert(sizeof(U) < sizeof(T), "T must larger than U");
|
static_assert(std::is_unsigned<T>() == std::is_unsigned<U>(),
|
"Signed-ness of T and U must match");
|
// Make sure value can be expressed in the smaller type; otherwise, the
|
// casted result is implementation defined.
|
DCHECK_LE(std::numeric_limits<T>::min(), value);
|
DCHECK_GE(std::numeric_limits<T>::max(), value);
|
return static_cast<U>(value);
|
}
|
|
template <typename T>
|
T Clamp(int64_t value) {
|
static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller");
|
int64_t min = static_cast<int64_t>(std::numeric_limits<T>::min());
|
int64_t max = static_cast<int64_t>(std::numeric_limits<T>::max());
|
int64_t clamped = std::max(min, std::min(max, value));
|
return static_cast<T>(clamped);
|
}
|
|
template <typename T, typename U>
|
void Widen(Simulator* simulator, int Vd, int Vm) {
|
static const int kLanes = 8 / sizeof(T);
|
T src[kLanes];
|
U dst[kLanes];
|
simulator->get_neon_register<T, kDoubleSize>(Vm, src);
|
for (int i = 0; i < kLanes; i++) {
|
dst[i] = Widen<T, U>(src[i]);
|
}
|
simulator->set_neon_register(Vd, dst);
|
}
|
|
template <typename T, int SIZE>
|
void Abs(Simulator* simulator, int Vd, int Vm) {
|
static const int kElems = SIZE / sizeof(T);
|
T src[kElems];
|
simulator->get_neon_register<T, SIZE>(Vm, src);
|
for (int i = 0; i < kElems; i++) {
|
src[i] = std::abs(src[i]);
|
}
|
simulator->set_neon_register<T, SIZE>(Vd, src);
|
}
|
|
template <typename T, int SIZE>
|
void Neg(Simulator* simulator, int Vd, int Vm) {
|
static const int kElems = SIZE / sizeof(T);
|
T src[kElems];
|
simulator->get_neon_register<T, SIZE>(Vm, src);
|
for (int i = 0; i < kElems; i++) {
|
src[i] = -src[i];
|
}
|
simulator->set_neon_register<T, SIZE>(Vd, src);
|
}
|
|
template <typename T, typename U>
|
void SaturatingNarrow(Simulator* simulator, int Vd, int Vm) {
|
static const int kLanes = 16 / sizeof(T);
|
T src[kLanes];
|
U dst[kLanes];
|
simulator->get_neon_register(Vm, src);
|
for (int i = 0; i < kLanes; i++) {
|
dst[i] = Narrow<T, U>(Clamp<U>(src[i]));
|
}
|
simulator->set_neon_register<U, kDoubleSize>(Vd, dst);
|
}
|
|
template <typename T>
|
void AddSaturate(Simulator* simulator, int Vd, int Vm, int Vn) {
|
static const int kLanes = 16 / sizeof(T);
|
T src1[kLanes], src2[kLanes];
|
simulator->get_neon_register(Vn, src1);
|
simulator->get_neon_register(Vm, src2);
|
for (int i = 0; i < kLanes; i++) {
|
src1[i] = Clamp<T>(Widen<T, int64_t>(src1[i]) + Widen<T, int64_t>(src2[i]));
|
}
|
simulator->set_neon_register(Vd, src1);
|
}
|
|
template <typename T>
|
void SubSaturate(Simulator* simulator, int Vd, int Vm, int Vn) {
|
static const int kLanes = 16 / sizeof(T);
|
T src1[kLanes], src2[kLanes];
|
simulator->get_neon_register(Vn, src1);
|
simulator->get_neon_register(Vm, src2);
|
for (int i = 0; i < kLanes; i++) {
|
src1[i] = Clamp<T>(Widen<T, int64_t>(src1[i]) - Widen<T, int64_t>(src2[i]));
|
}
|
simulator->set_neon_register(Vd, src1);
|
}
|
|
template <typename T, int SIZE>
|
void Zip(Simulator* simulator, int Vd, int Vm) {
|
static const int kElems = SIZE / sizeof(T);
|
static const int kPairs = kElems / 2;
|
T src1[kElems], src2[kElems], dst1[kElems], dst2[kElems];
|
simulator->get_neon_register<T, SIZE>(Vd, src1);
|
simulator->get_neon_register<T, SIZE>(Vm, src2);
|
for (int i = 0; i < kPairs; i++) {
|
dst1[i * 2] = src1[i];
|
dst1[i * 2 + 1] = src2[i];
|
dst2[i * 2] = src1[i + kPairs];
|
dst2[i * 2 + 1] = src2[i + kPairs];
|
}
|
simulator->set_neon_register<T, SIZE>(Vd, dst1);
|
simulator->set_neon_register<T, SIZE>(Vm, dst2);
|
}
|
|
template <typename T, int SIZE>
|
void Unzip(Simulator* simulator, int Vd, int Vm) {
|
static const int kElems = SIZE / sizeof(T);
|
static const int kPairs = kElems / 2;
|
T src1[kElems], src2[kElems], dst1[kElems], dst2[kElems];
|
simulator->get_neon_register<T, SIZE>(Vd, src1);
|
simulator->get_neon_register<T, SIZE>(Vm, src2);
|
for (int i = 0; i < kPairs; i++) {
|
dst1[i] = src1[i * 2];
|
dst1[i + kPairs] = src2[i * 2];
|
dst2[i] = src1[i * 2 + 1];
|
dst2[i + kPairs] = src2[i * 2 + 1];
|
}
|
simulator->set_neon_register<T, SIZE>(Vd, dst1);
|
simulator->set_neon_register<T, SIZE>(Vm, dst2);
|
}
|
|
template <typename T, int SIZE>
|
void Transpose(Simulator* simulator, int Vd, int Vm) {
|
static const int kElems = SIZE / sizeof(T);
|
static const int kPairs = kElems / 2;
|
T src1[kElems], src2[kElems];
|
simulator->get_neon_register<T, SIZE>(Vd, src1);
|
simulator->get_neon_register<T, SIZE>(Vm, src2);
|
for (int i = 0; i < kPairs; i++) {
|
std::swap(src1[2 * i + 1], src2[2 * i]);
|
}
|
simulator->set_neon_register<T, SIZE>(Vd, src1);
|
simulator->set_neon_register<T, SIZE>(Vm, src2);
|
}
|
|
template <typename T, int SIZE>
|
void Test(Simulator* simulator, int Vd, int Vm, int Vn) {
|
static const int kElems = SIZE / sizeof(T);
|
T src1[kElems], src2[kElems];
|
simulator->get_neon_register<T, SIZE>(Vn, src1);
|
simulator->get_neon_register<T, SIZE>(Vm, src2);
|
for (int i = 0; i < kElems; i++) {
|
src1[i] = (src1[i] & src2[i]) != 0 ? -1 : 0;
|
}
|
simulator->set_neon_register<T, SIZE>(Vd, src1);
|
}
|
|
template <typename T, int SIZE>
|
void Add(Simulator* simulator, int Vd, int Vm, int Vn) {
|
static const int kElems = SIZE / sizeof(T);
|
T src1[kElems], src2[kElems];
|
simulator->get_neon_register<T, SIZE>(Vn, src1);
|
simulator->get_neon_register<T, SIZE>(Vm, src2);
|
for (int i = 0; i < kElems; i++) {
|
src1[i] += src2[i];
|
}
|
simulator->set_neon_register<T, SIZE>(Vd, src1);
|
}
|
|
template <typename T, int SIZE>
|
void Sub(Simulator* simulator, int Vd, int Vm, int Vn) {
|
static const int kElems = SIZE / sizeof(T);
|
T src1[kElems], src2[kElems];
|
simulator->get_neon_register<T, SIZE>(Vn, src1);
|
simulator->get_neon_register<T, SIZE>(Vm, src2);
|
for (int i = 0; i < kElems; i++) {
|
src1[i] -= src2[i];
|
}
|
simulator->set_neon_register<T, SIZE>(Vd, src1);
|
}
|
|
template <typename T, int SIZE>
|
void Mul(Simulator* simulator, int Vd, int Vm, int Vn) {
|
static const int kElems = SIZE / sizeof(T);
|
T src1[kElems], src2[kElems];
|
simulator->get_neon_register<T, SIZE>(Vn, src1);
|
simulator->get_neon_register<T, SIZE>(Vm, src2);
|
for (int i = 0; i < kElems; i++) {
|
src1[i] *= src2[i];
|
}
|
simulator->set_neon_register<T, SIZE>(Vd, src1);
|
}
|
|
template <typename T, int SIZE>
|
void ShiftLeft(Simulator* simulator, int Vd, int Vm, int shift) {
|
static const int kElems = SIZE / sizeof(T);
|
T src[kElems];
|
simulator->get_neon_register<T, SIZE>(Vm, src);
|
for (int i = 0; i < kElems; i++) {
|
src[i] <<= shift;
|
}
|
simulator->set_neon_register<T, SIZE>(Vd, src);
|
}
|
|
template <typename T, int SIZE>
|
void ShiftRight(Simulator* simulator, int Vd, int Vm, int shift) {
|
static const int kElems = SIZE / sizeof(T);
|
T src[kElems];
|
simulator->get_neon_register<T, SIZE>(Vm, src);
|
for (int i = 0; i < kElems; i++) {
|
src[i] >>= shift;
|
}
|
simulator->set_neon_register<T, SIZE>(Vd, src);
|
}
|
|
template <typename T, int SIZE>
|
void ArithmeticShiftRight(Simulator* simulator, int Vd, int Vm, int shift) {
|
static const int kElems = SIZE / sizeof(T);
|
T src[kElems];
|
simulator->get_neon_register<T, SIZE>(Vm, src);
|
for (int i = 0; i < kElems; i++) {
|
src[i] = ArithmeticShiftRight(src[i], shift);
|
}
|
simulator->set_neon_register<T, SIZE>(Vd, src);
|
}
|
|
template <typename T, int SIZE>
|
void ShiftLeftAndInsert(Simulator* simulator, int Vd, int Vm, int shift) {
|
static const int kElems = SIZE / sizeof(T);
|
T src[kElems];
|
T dst[kElems];
|
simulator->get_neon_register<T, SIZE>(Vm, src);
|
simulator->get_neon_register<T, SIZE>(Vd, dst);
|
uint64_t mask = (1llu << shift) - 1llu;
|
for (int i = 0; i < kElems; i++) {
|
dst[i] = (src[i] << shift) | (dst[i] & mask);
|
}
|
simulator->set_neon_register<T, SIZE>(Vd, dst);
|
}
|
|
template <typename T, int SIZE>
|
void ShiftRightAndInsert(Simulator* simulator, int Vd, int Vm, int shift) {
|
static const int kElems = SIZE / sizeof(T);
|
T src[kElems];
|
T dst[kElems];
|
simulator->get_neon_register<T, SIZE>(Vm, src);
|
simulator->get_neon_register<T, SIZE>(Vd, dst);
|
uint64_t mask = ~((1llu << (kBitsPerByte * SIZE - shift)) - 1llu);
|
for (int i = 0; i < kElems; i++) {
|
dst[i] = (src[i] >> shift) | (dst[i] & mask);
|
}
|
simulator->set_neon_register<T, SIZE>(Vd, dst);
|
}
|
|
template <typename T, int SIZE>
|
void CompareEqual(Simulator* simulator, int Vd, int Vm, int Vn) {
|
static const int kElems = SIZE / sizeof(T);
|
T src1[kElems], src2[kElems];
|
simulator->get_neon_register<T, SIZE>(Vn, src1);
|
simulator->get_neon_register<T, SIZE>(Vm, src2);
|
for (int i = 0; i < kElems; i++) {
|
src1[i] = src1[i] == src2[i] ? -1 : 0;
|
}
|
simulator->set_neon_register<T, SIZE>(Vd, src1);
|
}
|
|
template <typename T, int SIZE>
|
void CompareGreater(Simulator* simulator, int Vd, int Vm, int Vn, bool ge) {
|
static const int kElems = SIZE / sizeof(T);
|
T src1[kElems], src2[kElems];
|
simulator->get_neon_register<T, SIZE>(Vn, src1);
|
simulator->get_neon_register<T, SIZE>(Vm, src2);
|
for (int i = 0; i < kElems; i++) {
|
if (ge)
|
src1[i] = src1[i] >= src2[i] ? -1 : 0;
|
else
|
src1[i] = src1[i] > src2[i] ? -1 : 0;
|
}
|
simulator->set_neon_register<T, SIZE>(Vd, src1);
|
}
|
|
template <typename T>
|
T MinMax(T a, T b, bool is_min) {
|
return is_min ? std::min(a, b) : std::max(a, b);
|
}
|
|
template <typename T, int SIZE>
|
void MinMax(Simulator* simulator, int Vd, int Vm, int Vn, bool min) {
|
static const int kElems = SIZE / sizeof(T);
|
T src1[kElems], src2[kElems];
|
simulator->get_neon_register<T, SIZE>(Vn, src1);
|
simulator->get_neon_register<T, SIZE>(Vm, src2);
|
for (int i = 0; i < kElems; i++) {
|
src1[i] = MinMax(src1[i], src2[i], min);
|
}
|
simulator->set_neon_register<T, SIZE>(Vd, src1);
|
}
|
|
template <typename T>
|
void PairwiseMinMax(Simulator* simulator, int Vd, int Vm, int Vn, bool min) {
|
static const int kElems = kDoubleSize / sizeof(T);
|
static const int kPairs = kElems / 2;
|
T dst[kElems], src1[kElems], src2[kElems];
|
simulator->get_neon_register<T, kDoubleSize>(Vn, src1);
|
simulator->get_neon_register<T, kDoubleSize>(Vm, src2);
|
for (int i = 0; i < kPairs; i++) {
|
dst[i] = MinMax(src1[i * 2], src1[i * 2 + 1], min);
|
dst[i + kPairs] = MinMax(src2[i * 2], src2[i * 2 + 1], min);
|
}
|
simulator->set_neon_register<T, kDoubleSize>(Vd, dst);
|
}
|
|
template <typename T>
|
void PairwiseAdd(Simulator* simulator, int Vd, int Vm, int Vn) {
|
static const int kElems = kDoubleSize / sizeof(T);
|
static const int kPairs = kElems / 2;
|
T dst[kElems], src1[kElems], src2[kElems];
|
simulator->get_neon_register<T, kDoubleSize>(Vn, src1);
|
simulator->get_neon_register<T, kDoubleSize>(Vm, src2);
|
for (int i = 0; i < kPairs; i++) {
|
dst[i] = src1[i * 2] + src1[i * 2 + 1];
|
dst[i + kPairs] = src2[i * 2] + src2[i * 2 + 1];
|
}
|
simulator->set_neon_register<T, kDoubleSize>(Vd, dst);
|
}
|
|
void Simulator::DecodeSpecialCondition(Instruction* instr) {
|
switch (instr->SpecialValue()) {
|
case 4: {
|
int Vd, Vm, Vn;
|
if (instr->Bit(6) == 0) {
|
Vd = instr->VFPDRegValue(kDoublePrecision);
|
Vm = instr->VFPMRegValue(kDoublePrecision);
|
Vn = instr->VFPNRegValue(kDoublePrecision);
|
} else {
|
Vd = instr->VFPDRegValue(kSimd128Precision);
|
Vm = instr->VFPMRegValue(kSimd128Precision);
|
Vn = instr->VFPNRegValue(kSimd128Precision);
|
}
|
switch (instr->Bits(11, 8)) {
|
case 0x0: {
|
if (instr->Bit(4) == 1) {
|
// vqadd.s<size> Qd, Qm, Qn.
|
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
|
switch (size) {
|
case Neon8:
|
AddSaturate<int8_t>(this, Vd, Vm, Vn);
|
break;
|
case Neon16:
|
AddSaturate<int16_t>(this, Vd, Vm, Vn);
|
break;
|
case Neon32:
|
AddSaturate<int32_t>(this, Vd, Vm, Vn);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
} else {
|
UNIMPLEMENTED();
|
}
|
break;
|
}
|
case 0x1: {
|
if (instr->Bits(21, 20) == 2 && instr->Bit(6) == 1 &&
|
instr->Bit(4) == 1) {
|
// vmov Qd, Qm.
|
// vorr, Qd, Qm, Qn.
|
uint32_t src1[4];
|
get_neon_register(Vm, src1);
|
if (Vm != Vn) {
|
uint32_t src2[4];
|
get_neon_register(Vn, src2);
|
for (int i = 0; i < 4; i++) {
|
src1[i] = src1[i] | src2[i];
|
}
|
}
|
set_neon_register(Vd, src1);
|
} else if (instr->Bits(21, 20) == 0 && instr->Bit(6) == 1 &&
|
instr->Bit(4) == 1) {
|
// vand Qd, Qm, Qn.
|
uint32_t src1[4], src2[4];
|
get_neon_register(Vn, src1);
|
get_neon_register(Vm, src2);
|
for (int i = 0; i < 4; i++) {
|
src1[i] = src1[i] & src2[i];
|
}
|
set_neon_register(Vd, src1);
|
} else {
|
UNIMPLEMENTED();
|
}
|
break;
|
}
|
case 0x2: {
|
if (instr->Bit(4) == 1) {
|
// vqsub.s<size> Qd, Qm, Qn.
|
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
|
switch (size) {
|
case Neon8:
|
SubSaturate<int8_t>(this, Vd, Vm, Vn);
|
break;
|
case Neon16:
|
SubSaturate<int16_t>(this, Vd, Vm, Vn);
|
break;
|
case Neon32:
|
SubSaturate<int32_t>(this, Vd, Vm, Vn);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
} else {
|
UNIMPLEMENTED();
|
}
|
break;
|
}
|
case 0x3: {
|
// vcge/vcgt.s<size> Qd, Qm, Qn.
|
bool ge = instr->Bit(4) == 1;
|
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
|
switch (size) {
|
case Neon8:
|
CompareGreater<int8_t, kSimd128Size>(this, Vd, Vm, Vn, ge);
|
break;
|
case Neon16:
|
CompareGreater<int16_t, kSimd128Size>(this, Vd, Vm, Vn, ge);
|
break;
|
case Neon32:
|
CompareGreater<int32_t, kSimd128Size>(this, Vd, Vm, Vn, ge);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
break;
|
}
|
case 0x6: {
|
// vmin/vmax.s<size> Qd, Qm, Qn.
|
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
|
bool min = instr->Bit(4) != 0;
|
switch (size) {
|
case Neon8:
|
MinMax<int8_t, kSimd128Size>(this, Vd, Vm, Vn, min);
|
break;
|
case Neon16:
|
MinMax<int16_t, kSimd128Size>(this, Vd, Vm, Vn, min);
|
break;
|
case Neon32:
|
MinMax<int32_t, kSimd128Size>(this, Vd, Vm, Vn, min);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
break;
|
}
|
case 0x8: {
|
// vadd/vtst
|
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
|
if (instr->Bit(4) == 0) {
|
// vadd.i<size> Qd, Qm, Qn.
|
switch (size) {
|
case Neon8:
|
Add<uint8_t, kSimd128Size>(this, Vd, Vm, Vn);
|
break;
|
case Neon16:
|
Add<uint16_t, kSimd128Size>(this, Vd, Vm, Vn);
|
break;
|
case Neon32:
|
Add<uint32_t, kSimd128Size>(this, Vd, Vm, Vn);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
} else {
|
// vtst.i<size> Qd, Qm, Qn.
|
switch (size) {
|
case Neon8:
|
Test<uint8_t, kSimd128Size>(this, Vd, Vm, Vn);
|
break;
|
case Neon16:
|
Test<uint16_t, kSimd128Size>(this, Vd, Vm, Vn);
|
break;
|
case Neon32:
|
Test<uint32_t, kSimd128Size>(this, Vd, Vm, Vn);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
}
|
break;
|
}
|
case 0x9: {
|
if (instr->Bit(6) == 1 && instr->Bit(4) == 1) {
|
// vmul.i<size> Qd, Qm, Qn.
|
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
|
switch (size) {
|
case Neon8:
|
Mul<uint8_t, kSimd128Size>(this, Vd, Vm, Vn);
|
break;
|
case Neon16:
|
Mul<uint16_t, kSimd128Size>(this, Vd, Vm, Vn);
|
break;
|
case Neon32:
|
Mul<uint32_t, kSimd128Size>(this, Vd, Vm, Vn);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
} else {
|
UNIMPLEMENTED();
|
}
|
break;
|
}
|
case 0xA: {
|
// vpmin/vpmax.s<size> Dd, Dm, Dn.
|
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
|
bool min = instr->Bit(4) != 0;
|
switch (size) {
|
case Neon8:
|
PairwiseMinMax<int8_t>(this, Vd, Vm, Vn, min);
|
break;
|
case Neon16:
|
PairwiseMinMax<int16_t>(this, Vd, Vm, Vn, min);
|
break;
|
case Neon32:
|
PairwiseMinMax<int32_t>(this, Vd, Vm, Vn, min);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
break;
|
}
|
case 0xB: {
|
// vpadd.i<size> Dd, Dm, Dn.
|
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
|
switch (size) {
|
case Neon8:
|
PairwiseAdd<int8_t>(this, Vd, Vm, Vn);
|
break;
|
case Neon16:
|
PairwiseAdd<int16_t>(this, Vd, Vm, Vn);
|
break;
|
case Neon32:
|
PairwiseAdd<int32_t>(this, Vd, Vm, Vn);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
break;
|
}
|
case 0xD: {
|
if (instr->Bit(4) == 0) {
|
float src1[4], src2[4];
|
get_neon_register(Vn, src1);
|
get_neon_register(Vm, src2);
|
for (int i = 0; i < 4; i++) {
|
if (instr->Bit(21) == 0) {
|
// vadd.f32 Qd, Qm, Qn.
|
src1[i] = src1[i] + src2[i];
|
} else {
|
// vsub.f32 Qd, Qm, Qn.
|
src1[i] = src1[i] - src2[i];
|
}
|
}
|
set_neon_register(Vd, src1);
|
} else {
|
UNIMPLEMENTED();
|
}
|
break;
|
}
|
case 0xE: {
|
if (instr->Bits(21, 20) == 0 && instr->Bit(4) == 0) {
|
// vceq.f32.
|
float src1[4], src2[4];
|
get_neon_register(Vn, src1);
|
get_neon_register(Vm, src2);
|
uint32_t dst[4];
|
for (int i = 0; i < 4; i++) {
|
dst[i] = (src1[i] == src2[i]) ? 0xFFFFFFFF : 0;
|
}
|
set_neon_register(Vd, dst);
|
} else {
|
UNIMPLEMENTED();
|
}
|
break;
|
}
|
case 0xF: {
|
if (instr->Bit(20) == 0 && instr->Bit(6) == 1) {
|
float src1[4], src2[4];
|
get_neon_register(Vn, src1);
|
get_neon_register(Vm, src2);
|
if (instr->Bit(4) == 1) {
|
if (instr->Bit(21) == 0) {
|
// vrecps.f32 Qd, Qm, Qn.
|
for (int i = 0; i < 4; i++) {
|
src1[i] = 2.0f - src1[i] * src2[i];
|
}
|
} else {
|
// vrsqrts.f32 Qd, Qm, Qn.
|
for (int i = 0; i < 4; i++) {
|
src1[i] = (3.0f - src1[i] * src2[i]) * 0.5f;
|
}
|
}
|
} else {
|
// vmin/vmax.f32 Qd, Qm, Qn.
|
bool min = instr->Bit(21) == 1;
|
for (int i = 0; i < 4; i++) {
|
src1[i] = MinMax(src1[i], src2[i], min);
|
}
|
}
|
set_neon_register(Vd, src1);
|
} else {
|
UNIMPLEMENTED();
|
}
|
break;
|
}
|
default:
|
UNIMPLEMENTED();
|
break;
|
}
|
break;
|
}
|
case 5:
|
if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) &&
|
(instr->Bit(4) == 1)) {
|
// vmovl signed
|
if ((instr->VdValue() & 1) != 0) UNIMPLEMENTED();
|
int Vd = instr->VFPDRegValue(kSimd128Precision);
|
int Vm = instr->VFPMRegValue(kDoublePrecision);
|
int imm3 = instr->Bits(21, 19);
|
switch (imm3) {
|
case 1:
|
Widen<int8_t, int16_t>(this, Vd, Vm);
|
break;
|
case 2:
|
Widen<int16_t, int32_t>(this, Vd, Vm);
|
break;
|
case 4:
|
Widen<int32_t, int64_t>(this, Vd, Vm);
|
break;
|
default:
|
UNIMPLEMENTED();
|
break;
|
}
|
} else if (instr->Bits(21, 20) == 3 && instr->Bit(4) == 0) {
|
// vext.
|
int imm4 = instr->Bits(11, 8);
|
int Vd = instr->VFPDRegValue(kSimd128Precision);
|
int Vm = instr->VFPMRegValue(kSimd128Precision);
|
int Vn = instr->VFPNRegValue(kSimd128Precision);
|
uint8_t src1[16], src2[16], dst[16];
|
get_neon_register(Vn, src1);
|
get_neon_register(Vm, src2);
|
int boundary = kSimd128Size - imm4;
|
int i = 0;
|
for (; i < boundary; i++) {
|
dst[i] = src1[i + imm4];
|
}
|
for (; i < 16; i++) {
|
dst[i] = src2[i - boundary];
|
}
|
set_neon_register(Vd, dst);
|
} else if (instr->Bits(11, 7) == 0xA && instr->Bit(4) == 1) {
|
// vshl.i<size> Qd, Qm, shift
|
int size = base::bits::RoundDownToPowerOfTwo32(instr->Bits(21, 16));
|
int shift = instr->Bits(21, 16) - size;
|
int Vd = instr->VFPDRegValue(kSimd128Precision);
|
int Vm = instr->VFPMRegValue(kSimd128Precision);
|
NeonSize ns = static_cast<NeonSize>(size / 16);
|
switch (ns) {
|
case Neon8:
|
ShiftLeft<uint8_t, kSimd128Size>(this, Vd, Vm, shift);
|
break;
|
case Neon16:
|
ShiftLeft<uint16_t, kSimd128Size>(this, Vd, Vm, shift);
|
break;
|
case Neon32:
|
ShiftLeft<uint32_t, kSimd128Size>(this, Vd, Vm, shift);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
} else if (instr->Bits(11, 7) == 0 && instr->Bit(4) == 1) {
|
// vshr.s<size> Qd, Qm, shift
|
int size = base::bits::RoundDownToPowerOfTwo32(instr->Bits(21, 16));
|
int shift = 2 * size - instr->Bits(21, 16);
|
int Vd = instr->VFPDRegValue(kSimd128Precision);
|
int Vm = instr->VFPMRegValue(kSimd128Precision);
|
NeonSize ns = static_cast<NeonSize>(size / 16);
|
switch (ns) {
|
case Neon8:
|
ArithmeticShiftRight<int8_t, kSimd128Size>(this, Vd, Vm, shift);
|
break;
|
case Neon16:
|
ArithmeticShiftRight<int16_t, kSimd128Size>(this, Vd, Vm, shift);
|
break;
|
case Neon32:
|
ArithmeticShiftRight<int32_t, kSimd128Size>(this, Vd, Vm, shift);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
} else {
|
UNIMPLEMENTED();
|
}
|
break;
|
case 6: {
|
int Vd, Vm, Vn;
|
if (instr->Bit(6) == 0) {
|
Vd = instr->VFPDRegValue(kDoublePrecision);
|
Vm = instr->VFPMRegValue(kDoublePrecision);
|
Vn = instr->VFPNRegValue(kDoublePrecision);
|
} else {
|
Vd = instr->VFPDRegValue(kSimd128Precision);
|
Vm = instr->VFPMRegValue(kSimd128Precision);
|
Vn = instr->VFPNRegValue(kSimd128Precision);
|
}
|
switch (instr->Bits(11, 8)) {
|
case 0x0: {
|
if (instr->Bit(4) == 1) {
|
// vqadd.u<size> Qd, Qm, Qn.
|
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
|
switch (size) {
|
case Neon8:
|
AddSaturate<uint8_t>(this, Vd, Vm, Vn);
|
break;
|
case Neon16:
|
AddSaturate<uint16_t>(this, Vd, Vm, Vn);
|
break;
|
case Neon32:
|
AddSaturate<uint32_t>(this, Vd, Vm, Vn);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
} else {
|
UNIMPLEMENTED();
|
}
|
break;
|
}
|
case 0x1: {
|
if (instr->Bits(21, 20) == 1 && instr->Bit(4) == 1) {
|
// vbsl.size Qd, Qm, Qn.
|
uint32_t dst[4], src1[4], src2[4];
|
get_neon_register(Vd, dst);
|
get_neon_register(Vn, src1);
|
get_neon_register(Vm, src2);
|
for (int i = 0; i < 4; i++) {
|
dst[i] = (dst[i] & src1[i]) | (~dst[i] & src2[i]);
|
}
|
set_neon_register(Vd, dst);
|
} else if (instr->Bits(21, 20) == 0 && instr->Bit(4) == 1) {
|
if (instr->Bit(6) == 0) {
|
// veor Dd, Dn, Dm
|
uint64_t src1, src2;
|
get_d_register(Vn, &src1);
|
get_d_register(Vm, &src2);
|
src1 ^= src2;
|
set_d_register(Vd, &src1);
|
|
} else {
|
// veor Qd, Qn, Qm
|
uint32_t src1[4], src2[4];
|
get_neon_register(Vn, src1);
|
get_neon_register(Vm, src2);
|
for (int i = 0; i < 4; i++) src1[i] ^= src2[i];
|
set_neon_register(Vd, src1);
|
}
|
} else {
|
UNIMPLEMENTED();
|
}
|
break;
|
}
|
case 0x2: {
|
if (instr->Bit(4) == 1) {
|
// vqsub.u<size> Qd, Qm, Qn.
|
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
|
switch (size) {
|
case Neon8:
|
SubSaturate<uint8_t>(this, Vd, Vm, Vn);
|
break;
|
case Neon16:
|
SubSaturate<uint16_t>(this, Vd, Vm, Vn);
|
break;
|
case Neon32:
|
SubSaturate<uint32_t>(this, Vd, Vm, Vn);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
} else {
|
UNIMPLEMENTED();
|
}
|
break;
|
}
|
case 0x3: {
|
// vcge/vcgt.u<size> Qd, Qm, Qn.
|
bool ge = instr->Bit(4) == 1;
|
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
|
switch (size) {
|
case Neon8:
|
CompareGreater<uint8_t, kSimd128Size>(this, Vd, Vm, Vn, ge);
|
break;
|
case Neon16:
|
CompareGreater<uint16_t, kSimd128Size>(this, Vd, Vm, Vn, ge);
|
break;
|
case Neon32:
|
CompareGreater<uint32_t, kSimd128Size>(this, Vd, Vm, Vn, ge);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
break;
|
}
|
case 0x6: {
|
// vmin/vmax.u<size> Qd, Qm, Qn.
|
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
|
bool min = instr->Bit(4) != 0;
|
switch (size) {
|
case Neon8:
|
MinMax<uint8_t, kSimd128Size>(this, Vd, Vm, Vn, min);
|
break;
|
case Neon16:
|
MinMax<uint16_t, kSimd128Size>(this, Vd, Vm, Vn, min);
|
break;
|
case Neon32:
|
MinMax<uint32_t, kSimd128Size>(this, Vd, Vm, Vn, min);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
break;
|
}
|
case 0x8: {
|
if (instr->Bit(4) == 0) {
|
// vsub.size Qd, Qm, Qn.
|
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
|
switch (size) {
|
case Neon8:
|
Sub<uint8_t, kSimd128Size>(this, Vd, Vm, Vn);
|
break;
|
case Neon16:
|
Sub<uint16_t, kSimd128Size>(this, Vd, Vm, Vn);
|
break;
|
case Neon32:
|
Sub<uint32_t, kSimd128Size>(this, Vd, Vm, Vn);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
} else {
|
// vceq.size Qd, Qm, Qn.
|
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
|
switch (size) {
|
case Neon8:
|
CompareEqual<uint8_t, kSimd128Size>(this, Vd, Vm, Vn);
|
break;
|
case Neon16:
|
CompareEqual<uint16_t, kSimd128Size>(this, Vd, Vm, Vn);
|
break;
|
case Neon32:
|
CompareEqual<uint32_t, kSimd128Size>(this, Vd, Vm, Vn);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
}
|
break;
|
}
|
case 0xA: {
|
// vpmin/vpmax.u<size> Dd, Dm, Dn.
|
NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
|
bool min = instr->Bit(4) != 0;
|
switch (size) {
|
case Neon8:
|
PairwiseMinMax<uint8_t>(this, Vd, Vm, Vn, min);
|
break;
|
case Neon16:
|
PairwiseMinMax<uint16_t>(this, Vd, Vm, Vn, min);
|
break;
|
case Neon32:
|
PairwiseMinMax<uint32_t>(this, Vd, Vm, Vn, min);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
break;
|
}
|
case 0xD: {
|
if (instr->Bits(21, 20) == 0 && instr->Bit(6) == 1 &&
|
instr->Bit(4) == 1) {
|
// vmul.f32 Qd, Qn, Qm
|
float src1[4], src2[4];
|
get_neon_register(Vn, src1);
|
get_neon_register(Vm, src2);
|
for (int i = 0; i < 4; i++) {
|
src1[i] = src1[i] * src2[i];
|
}
|
set_neon_register(Vd, src1);
|
} else if (instr->Bits(21, 20) == 0 && instr->Bit(6) == 0 &&
|
instr->Bit(4) == 0) {
|
// vpadd.f32 Dd, Dn, Dm
|
PairwiseAdd<float>(this, Vd, Vm, Vn);
|
} else {
|
UNIMPLEMENTED();
|
}
|
break;
|
}
|
case 0xE: {
|
if (instr->Bit(20) == 0 && instr->Bit(4) == 0) {
|
// vcge/vcgt.f32 Qd, Qm, Qn
|
bool ge = instr->Bit(21) == 0;
|
float src1[4], src2[4];
|
get_neon_register(Vn, src1);
|
get_neon_register(Vm, src2);
|
uint32_t dst[4];
|
for (int i = 0; i < 4; i++) {
|
if (ge) {
|
dst[i] = src1[i] >= src2[i] ? 0xFFFFFFFFu : 0;
|
} else {
|
dst[i] = src1[i] > src2[i] ? 0xFFFFFFFFu : 0;
|
}
|
}
|
set_neon_register(Vd, dst);
|
} else {
|
UNIMPLEMENTED();
|
}
|
break;
|
}
|
default:
|
UNREACHABLE();
|
break;
|
}
|
break;
|
}
|
case 7:
|
if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) &&
|
(instr->Bit(4) == 1)) {
|
// vmovl unsigned
|
if ((instr->VdValue() & 1) != 0) UNIMPLEMENTED();
|
int Vd = instr->VFPDRegValue(kSimd128Precision);
|
int Vm = instr->VFPMRegValue(kDoublePrecision);
|
int imm3 = instr->Bits(21, 19);
|
switch (imm3) {
|
case 1:
|
Widen<uint8_t, uint16_t>(this, Vd, Vm);
|
break;
|
case 2:
|
Widen<uint16_t, uint32_t>(this, Vd, Vm);
|
break;
|
case 4:
|
Widen<uint32_t, uint64_t>(this, Vd, Vm);
|
break;
|
default:
|
UNIMPLEMENTED();
|
break;
|
}
|
} else if (instr->Opc1Value() == 7 && instr->Bit(4) == 0) {
|
if (instr->Bits(19, 16) == 0xB && instr->Bits(11, 9) == 0x3 &&
|
instr->Bit(6) == 1) {
|
// vcvt.<Td>.<Tm> Qd, Qm.
|
int Vd = instr->VFPDRegValue(kSimd128Precision);
|
int Vm = instr->VFPMRegValue(kSimd128Precision);
|
uint32_t q_data[4];
|
get_neon_register(Vm, q_data);
|
int op = instr->Bits(8, 7);
|
for (int i = 0; i < 4; i++) {
|
switch (op) {
|
case 0:
|
// f32 <- s32, round towards nearest.
|
q_data[i] = bit_cast<uint32_t>(std::round(
|
static_cast<float>(bit_cast<int32_t>(q_data[i]))));
|
break;
|
case 1:
|
// f32 <- u32, round towards nearest.
|
q_data[i] = bit_cast<uint32_t>(
|
std::round(static_cast<float>(q_data[i])));
|
break;
|
case 2:
|
// s32 <- f32, round to zero.
|
q_data[i] = static_cast<uint32_t>(
|
ConvertDoubleToInt(bit_cast<float>(q_data[i]), false, RZ));
|
break;
|
case 3:
|
// u32 <- f32, round to zero.
|
q_data[i] = static_cast<uint32_t>(
|
ConvertDoubleToInt(bit_cast<float>(q_data[i]), true, RZ));
|
break;
|
}
|
}
|
set_neon_register(Vd, q_data);
|
} else if (instr->Bits(17, 16) == 0x2 && instr->Bits(11, 7) == 0) {
|
if (instr->Bit(6) == 0) {
|
// vswp Dd, Dm.
|
uint64_t dval, mval;
|
int vd = instr->VFPDRegValue(kDoublePrecision);
|
int vm = instr->VFPMRegValue(kDoublePrecision);
|
get_d_register(vd, &dval);
|
get_d_register(vm, &mval);
|
set_d_register(vm, &dval);
|
set_d_register(vd, &mval);
|
} else {
|
// vswp Qd, Qm.
|
uint32_t dval[4], mval[4];
|
int vd = instr->VFPDRegValue(kSimd128Precision);
|
int vm = instr->VFPMRegValue(kSimd128Precision);
|
get_neon_register(vd, dval);
|
get_neon_register(vm, mval);
|
set_neon_register(vm, dval);
|
set_neon_register(vd, mval);
|
}
|
} else if (instr->Bits(11, 7) == 0x18) {
|
// vdup.<size> Dd, Dm[index].
|
// vdup.<size> Qd, Dm[index].
|
int vm = instr->VFPMRegValue(kDoublePrecision);
|
int imm4 = instr->Bits(19, 16);
|
int size = 0, index = 0, mask = 0;
|
if ((imm4 & 0x1) != 0) {
|
size = 8;
|
index = imm4 >> 1;
|
mask = 0xFFu;
|
} else if ((imm4 & 0x2) != 0) {
|
size = 16;
|
index = imm4 >> 2;
|
mask = 0xFFFFu;
|
} else {
|
size = 32;
|
index = imm4 >> 3;
|
mask = 0xFFFFFFFFu;
|
}
|
uint64_t d_data;
|
get_d_register(vm, &d_data);
|
uint32_t scalar = (d_data >> (size * index)) & mask;
|
uint32_t duped = scalar;
|
for (int i = 1; i < 32 / size; i++) {
|
scalar <<= size;
|
duped |= scalar;
|
}
|
uint32_t result[4] = {duped, duped, duped, duped};
|
if (instr->Bit(6) == 0) {
|
int vd = instr->VFPDRegValue(kDoublePrecision);
|
set_d_register(vd, result);
|
} else {
|
int vd = instr->VFPDRegValue(kSimd128Precision);
|
set_neon_register(vd, result);
|
}
|
} else if (instr->Bits(19, 16) == 0 && instr->Bits(11, 6) == 0x17) {
|
// vmvn Qd, Qm.
|
int vd = instr->VFPDRegValue(kSimd128Precision);
|
int vm = instr->VFPMRegValue(kSimd128Precision);
|
uint32_t q_data[4];
|
get_neon_register(vm, q_data);
|
for (int i = 0; i < 4; i++) q_data[i] = ~q_data[i];
|
set_neon_register(vd, q_data);
|
} else if (instr->Bits(11, 10) == 0x2) {
|
// vtb[l,x] Dd, <list>, Dm.
|
int vd = instr->VFPDRegValue(kDoublePrecision);
|
int vn = instr->VFPNRegValue(kDoublePrecision);
|
int vm = instr->VFPMRegValue(kDoublePrecision);
|
int table_len = (instr->Bits(9, 8) + 1) * kDoubleSize;
|
bool vtbx = instr->Bit(6) != 0; // vtbl / vtbx
|
uint64_t destination = 0, indices = 0, result = 0;
|
get_d_register(vd, &destination);
|
get_d_register(vm, &indices);
|
for (int i = 0; i < kDoubleSize; i++) {
|
int shift = i * kBitsPerByte;
|
int index = (indices >> shift) & 0xFF;
|
if (index < table_len) {
|
uint64_t table;
|
get_d_register(vn + index / kDoubleSize, &table);
|
result |=
|
((table >> ((index % kDoubleSize) * kBitsPerByte)) & 0xFF)
|
<< shift;
|
} else if (vtbx) {
|
result |= destination & (0xFFull << shift);
|
}
|
}
|
set_d_register(vd, &result);
|
} else if (instr->Bits(17, 16) == 0x2 && instr->Bits(11, 8) == 0x1) {
|
NeonSize size = static_cast<NeonSize>(instr->Bits(19, 18));
|
if (instr->Bit(6) == 0) {
|
int Vd = instr->VFPDRegValue(kDoublePrecision);
|
int Vm = instr->VFPMRegValue(kDoublePrecision);
|
if (instr->Bit(7) == 1) {
|
// vzip.<size> Dd, Dm.
|
switch (size) {
|
case Neon8:
|
Zip<uint8_t, kDoubleSize>(this, Vd, Vm);
|
break;
|
case Neon16:
|
Zip<uint16_t, kDoubleSize>(this, Vd, Vm);
|
break;
|
case Neon32:
|
UNIMPLEMENTED();
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
} else {
|
// vuzp.<size> Dd, Dm.
|
switch (size) {
|
case Neon8:
|
Unzip<uint8_t, kDoubleSize>(this, Vd, Vm);
|
break;
|
case Neon16:
|
Unzip<uint16_t, kDoubleSize>(this, Vd, Vm);
|
break;
|
case Neon32:
|
UNIMPLEMENTED();
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
}
|
} else {
|
int Vd = instr->VFPDRegValue(kSimd128Precision);
|
int Vm = instr->VFPMRegValue(kSimd128Precision);
|
if (instr->Bit(7) == 1) {
|
// vzip.<size> Qd, Qm.
|
switch (size) {
|
case Neon8:
|
Zip<uint8_t, kSimd128Size>(this, Vd, Vm);
|
break;
|
case Neon16:
|
Zip<uint16_t, kSimd128Size>(this, Vd, Vm);
|
break;
|
case Neon32:
|
Zip<uint32_t, kSimd128Size>(this, Vd, Vm);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
} else {
|
// vuzp.<size> Qd, Qm.
|
switch (size) {
|
case Neon8:
|
Unzip<uint8_t, kSimd128Size>(this, Vd, Vm);
|
break;
|
case Neon16:
|
Unzip<uint16_t, kSimd128Size>(this, Vd, Vm);
|
break;
|
case Neon32:
|
Unzip<uint32_t, kSimd128Size>(this, Vd, Vm);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
}
|
}
|
} else if (instr->Bits(17, 16) == 0 && instr->Bits(11, 9) == 0) {
|
// vrev<op>.size Qd, Qm
|
int Vd = instr->VFPDRegValue(kSimd128Precision);
|
int Vm = instr->VFPMRegValue(kSimd128Precision);
|
NeonSize size = static_cast<NeonSize>(instr->Bits(19, 18));
|
NeonSize op = static_cast<NeonSize>(static_cast<int>(Neon64) -
|
instr->Bits(8, 7));
|
switch (op) {
|
case Neon16: {
|
DCHECK_EQ(Neon8, size);
|
uint8_t src[16];
|
get_neon_register(Vm, src);
|
for (int i = 0; i < 16; i += 2) {
|
std::swap(src[i], src[i + 1]);
|
}
|
set_neon_register(Vd, src);
|
break;
|
}
|
case Neon32: {
|
switch (size) {
|
case Neon16: {
|
uint16_t src[8];
|
get_neon_register(Vm, src);
|
for (int i = 0; i < 8; i += 2) {
|
std::swap(src[i], src[i + 1]);
|
}
|
set_neon_register(Vd, src);
|
break;
|
}
|
case Neon8: {
|
uint8_t src[16];
|
get_neon_register(Vm, src);
|
for (int i = 0; i < 4; i++) {
|
std::swap(src[i * 4], src[i * 4 + 3]);
|
std::swap(src[i * 4 + 1], src[i * 4 + 2]);
|
}
|
set_neon_register(Vd, src);
|
break;
|
}
|
default:
|
UNREACHABLE();
|
break;
|
}
|
break;
|
}
|
case Neon64: {
|
switch (size) {
|
case Neon32: {
|
uint32_t src[4];
|
get_neon_register(Vm, src);
|
std::swap(src[0], src[1]);
|
std::swap(src[2], src[3]);
|
set_neon_register(Vd, src);
|
break;
|
}
|
case Neon16: {
|
uint16_t src[8];
|
get_neon_register(Vm, src);
|
for (int i = 0; i < 2; i++) {
|
std::swap(src[i * 4], src[i * 4 + 3]);
|
std::swap(src[i * 4 + 1], src[i * 4 + 2]);
|
}
|
set_neon_register(Vd, src);
|
break;
|
}
|
case Neon8: {
|
uint8_t src[16];
|
get_neon_register(Vm, src);
|
for (int i = 0; i < 4; i++) {
|
std::swap(src[i], src[7 - i]);
|
std::swap(src[i + 8], src[15 - i]);
|
}
|
set_neon_register(Vd, src);
|
break;
|
}
|
default:
|
UNREACHABLE();
|
break;
|
}
|
break;
|
}
|
default:
|
UNREACHABLE();
|
break;
|
}
|
} else if (instr->Bits(17, 16) == 0x2 && instr->Bits(11, 7) == 0x1) {
|
NeonSize size = static_cast<NeonSize>(instr->Bits(19, 18));
|
if (instr->Bit(6) == 0) {
|
int Vd = instr->VFPDRegValue(kDoublePrecision);
|
int Vm = instr->VFPMRegValue(kDoublePrecision);
|
// vtrn.<size> Dd, Dm.
|
switch (size) {
|
case Neon8:
|
Transpose<uint8_t, kDoubleSize>(this, Vd, Vm);
|
break;
|
case Neon16:
|
Transpose<uint16_t, kDoubleSize>(this, Vd, Vm);
|
break;
|
case Neon32:
|
Transpose<uint32_t, kDoubleSize>(this, Vd, Vm);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
} else {
|
int Vd = instr->VFPDRegValue(kSimd128Precision);
|
int Vm = instr->VFPMRegValue(kSimd128Precision);
|
// vtrn.<size> Qd, Qm.
|
switch (size) {
|
case Neon8:
|
Transpose<uint8_t, kSimd128Size>(this, Vd, Vm);
|
break;
|
case Neon16:
|
Transpose<uint16_t, kSimd128Size>(this, Vd, Vm);
|
break;
|
case Neon32:
|
Transpose<uint32_t, kSimd128Size>(this, Vd, Vm);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
}
|
} else if (instr->Bits(17, 16) == 0x1 && instr->Bit(11) == 0) {
|
int Vd = instr->VFPDRegValue(kSimd128Precision);
|
int Vm = instr->VFPMRegValue(kSimd128Precision);
|
NeonSize size = static_cast<NeonSize>(instr->Bits(19, 18));
|
if (instr->Bits(9, 6) == 0xD) {
|
// vabs<type>.<size> Qd, Qm
|
if (instr->Bit(10) != 0) {
|
// floating point (clear sign bits)
|
uint32_t src[4];
|
get_neon_register(Vm, src);
|
for (int i = 0; i < 4; i++) {
|
src[i] &= ~0x80000000;
|
}
|
set_neon_register(Vd, src);
|
} else {
|
// signed integer
|
switch (size) {
|
case Neon8:
|
Abs<int8_t, kSimd128Size>(this, Vd, Vm);
|
break;
|
case Neon16:
|
Abs<int16_t, kSimd128Size>(this, Vd, Vm);
|
break;
|
case Neon32:
|
Abs<int32_t, kSimd128Size>(this, Vd, Vm);
|
break;
|
default:
|
UNIMPLEMENTED();
|
break;
|
}
|
}
|
} else if (instr->Bits(9, 6) == 0xF) {
|
// vneg<type>.<size> Qd, Qm (signed integer)
|
if (instr->Bit(10) != 0) {
|
// floating point (toggle sign bits)
|
uint32_t src[4];
|
get_neon_register(Vm, src);
|
for (int i = 0; i < 4; i++) {
|
src[i] ^= 0x80000000;
|
}
|
set_neon_register(Vd, src);
|
} else {
|
// signed integer
|
switch (size) {
|
case Neon8:
|
Neg<int8_t, kSimd128Size>(this, Vd, Vm);
|
break;
|
case Neon16:
|
Neg<int16_t, kSimd128Size>(this, Vd, Vm);
|
break;
|
case Neon32:
|
Neg<int32_t, kSimd128Size>(this, Vd, Vm);
|
break;
|
default:
|
UNIMPLEMENTED();
|
break;
|
}
|
}
|
} else {
|
UNIMPLEMENTED();
|
}
|
} else if (instr->Bits(19, 18) == 0x2 && instr->Bits(11, 8) == 0x5) {
|
// vrecpe/vrsqrte.f32 Qd, Qm.
|
int Vd = instr->VFPDRegValue(kSimd128Precision);
|
int Vm = instr->VFPMRegValue(kSimd128Precision);
|
uint32_t src[4];
|
get_neon_register(Vm, src);
|
if (instr->Bit(7) == 0) {
|
for (int i = 0; i < 4; i++) {
|
float denom = bit_cast<float>(src[i]);
|
div_zero_vfp_flag_ = (denom == 0);
|
float result = 1.0f / denom;
|
result = canonicalizeNaN(result);
|
src[i] = bit_cast<uint32_t>(result);
|
}
|
} else {
|
lazily_initialize_fast_sqrt(isolate_);
|
for (int i = 0; i < 4; i++) {
|
float radicand = bit_cast<float>(src[i]);
|
float result = 1.0f / fast_sqrt(radicand, isolate_);
|
result = canonicalizeNaN(result);
|
src[i] = bit_cast<uint32_t>(result);
|
}
|
}
|
set_neon_register(Vd, src);
|
} else if (instr->Bits(17, 16) == 0x2 && instr->Bits(11, 8) == 0x2 &&
|
instr->Bits(7, 6) != 0) {
|
// vqmovn.<type><size> Dd, Qm.
|
int Vd = instr->VFPDRegValue(kDoublePrecision);
|
int Vm = instr->VFPMRegValue(kSimd128Precision);
|
NeonSize size = static_cast<NeonSize>(instr->Bits(19, 18));
|
bool is_unsigned = instr->Bit(6) != 0;
|
switch (size) {
|
case Neon8: {
|
if (is_unsigned) {
|
SaturatingNarrow<uint16_t, uint8_t>(this, Vd, Vm);
|
} else {
|
SaturatingNarrow<int16_t, int8_t>(this, Vd, Vm);
|
}
|
break;
|
}
|
case Neon16: {
|
if (is_unsigned) {
|
SaturatingNarrow<uint32_t, uint16_t>(this, Vd, Vm);
|
} else {
|
SaturatingNarrow<int32_t, int16_t>(this, Vd, Vm);
|
}
|
break;
|
}
|
case Neon32: {
|
if (is_unsigned) {
|
SaturatingNarrow<uint64_t, uint32_t>(this, Vd, Vm);
|
} else {
|
SaturatingNarrow<int64_t, int32_t>(this, Vd, Vm);
|
}
|
break;
|
}
|
default:
|
UNIMPLEMENTED();
|
break;
|
}
|
} else {
|
UNIMPLEMENTED();
|
}
|
} else if (instr->Bits(11, 7) == 0 && instr->Bit(4) == 1) {
|
// vshr.u<size> Qd, Qm, shift
|
int size = base::bits::RoundDownToPowerOfTwo32(instr->Bits(21, 16));
|
int shift = 2 * size - instr->Bits(21, 16);
|
int Vd = instr->VFPDRegValue(kSimd128Precision);
|
int Vm = instr->VFPMRegValue(kSimd128Precision);
|
NeonSize ns = static_cast<NeonSize>(size / 16);
|
switch (ns) {
|
case Neon8:
|
ShiftRight<uint8_t, kSimd128Size>(this, Vd, Vm, shift);
|
break;
|
case Neon16:
|
ShiftRight<uint16_t, kSimd128Size>(this, Vd, Vm, shift);
|
break;
|
case Neon32:
|
ShiftRight<uint32_t, kSimd128Size>(this, Vd, Vm, shift);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
} else if (instr->Bits(11, 8) == 0x5 && instr->Bit(6) == 0 &&
|
instr->Bit(4) == 1) {
|
// vsli.<size> Dd, Dm, shift
|
int imm7 = instr->Bits(21, 16);
|
if (instr->Bit(7) != 0) imm7 += 64;
|
int size = base::bits::RoundDownToPowerOfTwo32(imm7);
|
int shift = imm7 - size;
|
int Vd = instr->VFPDRegValue(kDoublePrecision);
|
int Vm = instr->VFPMRegValue(kDoublePrecision);
|
switch (size) {
|
case 8:
|
ShiftLeftAndInsert<uint8_t, kDoubleSize>(this, Vd, Vm, shift);
|
break;
|
case 16:
|
ShiftLeftAndInsert<uint16_t, kDoubleSize>(this, Vd, Vm, shift);
|
break;
|
case 32:
|
ShiftLeftAndInsert<uint32_t, kDoubleSize>(this, Vd, Vm, shift);
|
break;
|
case 64:
|
ShiftLeftAndInsert<uint64_t, kDoubleSize>(this, Vd, Vm, shift);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
} else if (instr->Bits(11, 8) == 0x4 && instr->Bit(6) == 0 &&
|
instr->Bit(4) == 1) {
|
// vsri.<size> Dd, Dm, shift
|
int imm7 = instr->Bits(21, 16);
|
if (instr->Bit(7) != 0) imm7 += 64;
|
int size = base::bits::RoundDownToPowerOfTwo32(imm7);
|
int shift = 2 * size - imm7;
|
int Vd = instr->VFPDRegValue(kDoublePrecision);
|
int Vm = instr->VFPMRegValue(kDoublePrecision);
|
switch (size) {
|
case 8:
|
ShiftRightAndInsert<uint8_t, kDoubleSize>(this, Vd, Vm, shift);
|
break;
|
case 16:
|
ShiftRightAndInsert<uint16_t, kDoubleSize>(this, Vd, Vm, shift);
|
break;
|
case 32:
|
ShiftRightAndInsert<uint32_t, kDoubleSize>(this, Vd, Vm, shift);
|
break;
|
case 64:
|
ShiftRightAndInsert<uint64_t, kDoubleSize>(this, Vd, Vm, shift);
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
} else {
|
UNIMPLEMENTED();
|
}
|
break;
|
case 8:
|
if (instr->Bits(21, 20) == 0) {
|
// vst1
|
int Vd = (instr->Bit(22) << 4) | instr->VdValue();
|
int Rn = instr->VnValue();
|
int type = instr->Bits(11, 8);
|
int Rm = instr->VmValue();
|
int32_t address = get_register(Rn);
|
int regs = 0;
|
switch (type) {
|
case nlt_1:
|
regs = 1;
|
break;
|
case nlt_2:
|
regs = 2;
|
break;
|
case nlt_3:
|
regs = 3;
|
break;
|
case nlt_4:
|
regs = 4;
|
break;
|
default:
|
UNIMPLEMENTED();
|
break;
|
}
|
int r = 0;
|
while (r < regs) {
|
uint32_t data[2];
|
get_d_register(Vd + r, data);
|
WriteW(address, data[0]);
|
WriteW(address + 4, data[1]);
|
address += 8;
|
r++;
|
}
|
if (Rm != 15) {
|
if (Rm == 13) {
|
set_register(Rn, address);
|
} else {
|
set_register(Rn, get_register(Rn) + get_register(Rm));
|
}
|
}
|
} else if (instr->Bits(21, 20) == 2) {
|
// vld1
|
int Vd = (instr->Bit(22) << 4) | instr->VdValue();
|
int Rn = instr->VnValue();
|
int type = instr->Bits(11, 8);
|
int Rm = instr->VmValue();
|
int32_t address = get_register(Rn);
|
int regs = 0;
|
switch (type) {
|
case nlt_1:
|
regs = 1;
|
break;
|
case nlt_2:
|
regs = 2;
|
break;
|
case nlt_3:
|
regs = 3;
|
break;
|
case nlt_4:
|
regs = 4;
|
break;
|
default:
|
UNIMPLEMENTED();
|
break;
|
}
|
int r = 0;
|
while (r < regs) {
|
uint32_t data[2];
|
data[0] = ReadW(address);
|
data[1] = ReadW(address + 4);
|
set_d_register(Vd + r, data);
|
address += 8;
|
r++;
|
}
|
if (Rm != 15) {
|
if (Rm == 13) {
|
set_register(Rn, address);
|
} else {
|
set_register(Rn, get_register(Rn) + get_register(Rm));
|
}
|
}
|
} else {
|
UNIMPLEMENTED();
|
}
|
break;
|
case 0xA:
|
case 0xB:
|
if ((instr->Bits(22, 20) == 5) && (instr->Bits(15, 12) == 0xF)) {
|
// pld: ignore instruction.
|
} else if (instr->SpecialValue() == 0xA && instr->Bits(22, 20) == 7) {
|
// dsb, dmb, isb: ignore instruction for now.
|
// TODO(binji): implement
|
// Also refer to the ARMv6 CP15 equivalents in DecodeTypeCP15.
|
} else {
|
UNIMPLEMENTED();
|
}
|
break;
|
case 0x1D:
|
if (instr->Opc1Value() == 0x7 && instr->Opc3Value() == 0x1 &&
|
instr->Bits(11, 9) == 0x5 && instr->Bits(19, 18) == 0x2) {
|
if (instr->SzValue() == 0x1) {
|
int vm = instr->VFPMRegValue(kDoublePrecision);
|
int vd = instr->VFPDRegValue(kDoublePrecision);
|
double dm_value = get_double_from_d_register(vm).get_scalar();
|
double dd_value = 0.0;
|
int rounding_mode = instr->Bits(17, 16);
|
switch (rounding_mode) {
|
case 0x0: // vrinta - round with ties to away from zero
|
dd_value = round(dm_value);
|
break;
|
case 0x1: { // vrintn - round with ties to even
|
dd_value = nearbyint(dm_value);
|
break;
|
}
|
case 0x2: // vrintp - ceil
|
dd_value = ceil(dm_value);
|
break;
|
case 0x3: // vrintm - floor
|
dd_value = floor(dm_value);
|
break;
|
default:
|
UNREACHABLE(); // Case analysis is exhaustive.
|
break;
|
}
|
dd_value = canonicalizeNaN(dd_value);
|
set_d_register_from_double(vd, dd_value);
|
} else {
|
int m = instr->VFPMRegValue(kSinglePrecision);
|
int d = instr->VFPDRegValue(kSinglePrecision);
|
float sm_value = get_float_from_s_register(m).get_scalar();
|
float sd_value = 0.0;
|
int rounding_mode = instr->Bits(17, 16);
|
switch (rounding_mode) {
|
case 0x0: // vrinta - round with ties to away from zero
|
sd_value = roundf(sm_value);
|
break;
|
case 0x1: { // vrintn - round with ties to even
|
sd_value = nearbyintf(sm_value);
|
break;
|
}
|
case 0x2: // vrintp - ceil
|
sd_value = ceilf(sm_value);
|
break;
|
case 0x3: // vrintm - floor
|
sd_value = floorf(sm_value);
|
break;
|
default:
|
UNREACHABLE(); // Case analysis is exhaustive.
|
break;
|
}
|
sd_value = canonicalizeNaN(sd_value);
|
set_s_register_from_float(d, sd_value);
|
}
|
} else if ((instr->Opc1Value() == 0x4) && (instr->Bits(11, 9) == 0x5) &&
|
(instr->Bit(4) == 0x0)) {
|
if (instr->SzValue() == 0x1) {
|
int m = instr->VFPMRegValue(kDoublePrecision);
|
int n = instr->VFPNRegValue(kDoublePrecision);
|
int d = instr->VFPDRegValue(kDoublePrecision);
|
double dn_value = get_double_from_d_register(n).get_scalar();
|
double dm_value = get_double_from_d_register(m).get_scalar();
|
double dd_value;
|
if (instr->Bit(6) == 0x1) { // vminnm
|
if ((dn_value < dm_value) || std::isnan(dm_value)) {
|
dd_value = dn_value;
|
} else if ((dm_value < dn_value) || std::isnan(dn_value)) {
|
dd_value = dm_value;
|
} else {
|
DCHECK_EQ(dn_value, dm_value);
|
// Make sure that we pick the most negative sign for +/-0.
|
dd_value = std::signbit(dn_value) ? dn_value : dm_value;
|
}
|
} else { // vmaxnm
|
if ((dn_value > dm_value) || std::isnan(dm_value)) {
|
dd_value = dn_value;
|
} else if ((dm_value > dn_value) || std::isnan(dn_value)) {
|
dd_value = dm_value;
|
} else {
|
DCHECK_EQ(dn_value, dm_value);
|
// Make sure that we pick the most positive sign for +/-0.
|
dd_value = std::signbit(dn_value) ? dm_value : dn_value;
|
}
|
}
|
dd_value = canonicalizeNaN(dd_value);
|
set_d_register_from_double(d, dd_value);
|
} else {
|
int m = instr->VFPMRegValue(kSinglePrecision);
|
int n = instr->VFPNRegValue(kSinglePrecision);
|
int d = instr->VFPDRegValue(kSinglePrecision);
|
float sn_value = get_float_from_s_register(n).get_scalar();
|
float sm_value = get_float_from_s_register(m).get_scalar();
|
float sd_value;
|
if (instr->Bit(6) == 0x1) { // vminnm
|
if ((sn_value < sm_value) || std::isnan(sm_value)) {
|
sd_value = sn_value;
|
} else if ((sm_value < sn_value) || std::isnan(sn_value)) {
|
sd_value = sm_value;
|
} else {
|
DCHECK_EQ(sn_value, sm_value);
|
// Make sure that we pick the most negative sign for +/-0.
|
sd_value = std::signbit(sn_value) ? sn_value : sm_value;
|
}
|
} else { // vmaxnm
|
if ((sn_value > sm_value) || std::isnan(sm_value)) {
|
sd_value = sn_value;
|
} else if ((sm_value > sn_value) || std::isnan(sn_value)) {
|
sd_value = sm_value;
|
} else {
|
DCHECK_EQ(sn_value, sm_value);
|
// Make sure that we pick the most positive sign for +/-0.
|
sd_value = std::signbit(sn_value) ? sm_value : sn_value;
|
}
|
}
|
sd_value = canonicalizeNaN(sd_value);
|
set_s_register_from_float(d, sd_value);
|
}
|
} else {
|
UNIMPLEMENTED();
|
}
|
break;
|
case 0x1C:
|
if ((instr->Bits(11, 9) == 0x5) && (instr->Bit(6) == 0) &&
|
(instr->Bit(4) == 0)) {
|
// VSEL* (floating-point)
|
bool condition_holds;
|
switch (instr->Bits(21, 20)) {
|
case 0x0: // VSELEQ
|
condition_holds = (z_flag_ == 1);
|
break;
|
case 0x1: // VSELVS
|
condition_holds = (v_flag_ == 1);
|
break;
|
case 0x2: // VSELGE
|
condition_holds = (n_flag_ == v_flag_);
|
break;
|
case 0x3: // VSELGT
|
condition_holds = ((z_flag_ == 0) && (n_flag_ == v_flag_));
|
break;
|
default:
|
UNREACHABLE(); // Case analysis is exhaustive.
|
break;
|
}
|
if (instr->SzValue() == 0x1) {
|
int n = instr->VFPNRegValue(kDoublePrecision);
|
int m = instr->VFPMRegValue(kDoublePrecision);
|
int d = instr->VFPDRegValue(kDoublePrecision);
|
Float64 result = get_double_from_d_register(condition_holds ? n : m);
|
set_d_register_from_double(d, result);
|
} else {
|
int n = instr->VFPNRegValue(kSinglePrecision);
|
int m = instr->VFPMRegValue(kSinglePrecision);
|
int d = instr->VFPDRegValue(kSinglePrecision);
|
Float32 result = get_float_from_s_register(condition_holds ? n : m);
|
set_s_register_from_float(d, result);
|
}
|
} else {
|
UNIMPLEMENTED();
|
}
|
break;
|
default:
|
UNIMPLEMENTED();
|
break;
|
}
|
}
|
|
|
// Executes the current instruction.
|
void Simulator::InstructionDecode(Instruction* instr) {
|
if (v8::internal::FLAG_check_icache) {
|
CheckICache(i_cache(), instr);
|
}
|
pc_modified_ = false;
|
if (::v8::internal::FLAG_trace_sim) {
|
disasm::NameConverter converter;
|
disasm::Disassembler dasm(converter);
|
// use a reasonably large buffer
|
v8::internal::EmbeddedVector<char, 256> buffer;
|
dasm.InstructionDecode(buffer,
|
reinterpret_cast<byte*>(instr));
|
PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(instr),
|
buffer.start());
|
}
|
if (instr->ConditionField() == kSpecialCondition) {
|
DecodeSpecialCondition(instr);
|
} else if (ConditionallyExecute(instr)) {
|
switch (instr->TypeValue()) {
|
case 0:
|
case 1: {
|
DecodeType01(instr);
|
break;
|
}
|
case 2: {
|
DecodeType2(instr);
|
break;
|
}
|
case 3: {
|
DecodeType3(instr);
|
break;
|
}
|
case 4: {
|
DecodeType4(instr);
|
break;
|
}
|
case 5: {
|
DecodeType5(instr);
|
break;
|
}
|
case 6: {
|
DecodeType6(instr);
|
break;
|
}
|
case 7: {
|
DecodeType7(instr);
|
break;
|
}
|
default: {
|
UNIMPLEMENTED();
|
break;
|
}
|
}
|
}
|
if (!pc_modified_) {
|
set_register(pc, reinterpret_cast<int32_t>(instr) + kInstrSize);
|
}
|
}
|
|
void Simulator::Execute() {
|
// Get the PC to simulate. Cannot use the accessor here as we need the
|
// raw PC value and not the one used as input to arithmetic instructions.
|
int program_counter = get_pc();
|
|
if (::v8::internal::FLAG_stop_sim_at == 0) {
|
// Fast version of the dispatch loop without checking whether the simulator
|
// should be stopping at a particular executed instruction.
|
while (program_counter != end_sim_pc) {
|
Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
|
icount_++;
|
InstructionDecode(instr);
|
program_counter = get_pc();
|
}
|
} else {
|
// FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
|
// we reach the particular instruction count.
|
while (program_counter != end_sim_pc) {
|
Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
|
icount_++;
|
if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
|
ArmDebugger dbg(this);
|
dbg.Debug();
|
} else {
|
InstructionDecode(instr);
|
}
|
program_counter = get_pc();
|
}
|
}
|
}
|
|
void Simulator::CallInternal(Address entry) {
|
// Adjust JS-based stack limit to C-based stack limit.
|
isolate_->stack_guard()->AdjustStackLimitForSimulator();
|
|
// Prepare to execute the code at entry
|
set_register(pc, static_cast<int32_t>(entry));
|
// Put down marker for end of simulation. The simulator will stop simulation
|
// when the PC reaches this value. By saving the "end simulation" value into
|
// the LR the simulation stops when returning to this call point.
|
set_register(lr, end_sim_pc);
|
|
// Remember the values of callee-saved registers.
|
// The code below assumes that r9 is not used as sb (static base) in
|
// simulator code and therefore is regarded as a callee-saved register.
|
int32_t r4_val = get_register(r4);
|
int32_t r5_val = get_register(r5);
|
int32_t r6_val = get_register(r6);
|
int32_t r7_val = get_register(r7);
|
int32_t r8_val = get_register(r8);
|
int32_t r9_val = get_register(r9);
|
int32_t r10_val = get_register(r10);
|
int32_t r11_val = get_register(r11);
|
|
// Set up the callee-saved registers with a known value. To be able to check
|
// that they are preserved properly across JS execution.
|
int32_t callee_saved_value = icount_;
|
set_register(r4, callee_saved_value);
|
set_register(r5, callee_saved_value);
|
set_register(r6, callee_saved_value);
|
set_register(r7, callee_saved_value);
|
set_register(r8, callee_saved_value);
|
set_register(r9, callee_saved_value);
|
set_register(r10, callee_saved_value);
|
set_register(r11, callee_saved_value);
|
|
// Start the simulation
|
Execute();
|
|
// Check that the callee-saved registers have been preserved.
|
CHECK_EQ(callee_saved_value, get_register(r4));
|
CHECK_EQ(callee_saved_value, get_register(r5));
|
CHECK_EQ(callee_saved_value, get_register(r6));
|
CHECK_EQ(callee_saved_value, get_register(r7));
|
CHECK_EQ(callee_saved_value, get_register(r8));
|
CHECK_EQ(callee_saved_value, get_register(r9));
|
CHECK_EQ(callee_saved_value, get_register(r10));
|
CHECK_EQ(callee_saved_value, get_register(r11));
|
|
// Restore callee-saved registers with the original value.
|
set_register(r4, r4_val);
|
set_register(r5, r5_val);
|
set_register(r6, r6_val);
|
set_register(r7, r7_val);
|
set_register(r8, r8_val);
|
set_register(r9, r9_val);
|
set_register(r10, r10_val);
|
set_register(r11, r11_val);
|
}
|
|
intptr_t Simulator::CallImpl(Address entry, int argument_count,
|
const intptr_t* arguments) {
|
// Set up arguments
|
|
// First four arguments passed in registers.
|
int reg_arg_count = std::min(4, argument_count);
|
if (reg_arg_count > 0) set_register(r0, arguments[0]);
|
if (reg_arg_count > 1) set_register(r1, arguments[1]);
|
if (reg_arg_count > 2) set_register(r2, arguments[2]);
|
if (reg_arg_count > 3) set_register(r3, arguments[3]);
|
|
// Remaining arguments passed on stack.
|
int original_stack = get_register(sp);
|
// Compute position of stack on entry to generated code.
|
int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t));
|
if (base::OS::ActivationFrameAlignment() != 0) {
|
entry_stack &= -base::OS::ActivationFrameAlignment();
|
}
|
// Store remaining arguments on stack, from low to high memory.
|
memcpy(reinterpret_cast<intptr_t*>(entry_stack), arguments + reg_arg_count,
|
(argument_count - reg_arg_count) * sizeof(*arguments));
|
set_register(sp, entry_stack);
|
|
CallInternal(entry);
|
|
// Pop stack passed arguments.
|
CHECK_EQ(entry_stack, get_register(sp));
|
set_register(sp, original_stack);
|
|
return get_register(r0);
|
}
|
|
intptr_t Simulator::CallFPImpl(Address entry, double d0, double d1) {
|
if (use_eabi_hardfloat()) {
|
set_d_register_from_double(0, d0);
|
set_d_register_from_double(1, d1);
|
} else {
|
set_register_pair_from_double(0, &d0);
|
set_register_pair_from_double(2, &d1);
|
}
|
CallInternal(entry);
|
return get_register(r0);
|
}
|
|
|
uintptr_t Simulator::PushAddress(uintptr_t address) {
|
int new_sp = get_register(sp) - sizeof(uintptr_t);
|
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
|
*stack_slot = address;
|
set_register(sp, new_sp);
|
return new_sp;
|
}
|
|
|
uintptr_t Simulator::PopAddress() {
|
int current_sp = get_register(sp);
|
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
|
uintptr_t address = *stack_slot;
|
set_register(sp, current_sp + sizeof(uintptr_t));
|
return address;
|
}
|
|
Simulator::LocalMonitor::LocalMonitor()
|
: access_state_(MonitorAccess::Open),
|
tagged_addr_(0),
|
size_(TransactionSize::None) {}
|
|
void Simulator::LocalMonitor::Clear() {
|
access_state_ = MonitorAccess::Open;
|
tagged_addr_ = 0;
|
size_ = TransactionSize::None;
|
}
|
|
void Simulator::LocalMonitor::NotifyLoad(int32_t addr) {
|
if (access_state_ == MonitorAccess::Exclusive) {
|
// A load could cause a cache eviction which will affect the monitor. As a
|
// result, it's most strict to unconditionally clear the local monitor on
|
// load.
|
Clear();
|
}
|
}
|
|
void Simulator::LocalMonitor::NotifyLoadExcl(int32_t addr,
|
TransactionSize size) {
|
access_state_ = MonitorAccess::Exclusive;
|
tagged_addr_ = addr;
|
size_ = size;
|
}
|
|
void Simulator::LocalMonitor::NotifyStore(int32_t addr) {
|
if (access_state_ == MonitorAccess::Exclusive) {
|
// It is implementation-defined whether a non-exclusive store to an address
|
// covered by the local monitor during exclusive access transitions to open
|
// or exclusive access. See ARM DDI 0406C.b, A3.4.1.
|
//
|
// However, a store could cause a cache eviction which will affect the
|
// monitor. As a result, it's most strict to unconditionally clear the
|
// local monitor on store.
|
Clear();
|
}
|
}
|
|
bool Simulator::LocalMonitor::NotifyStoreExcl(int32_t addr,
|
TransactionSize size) {
|
if (access_state_ == MonitorAccess::Exclusive) {
|
// It is allowed for a processor to require that the address matches
|
// exactly (A3.4.5), so this comparison does not mask addr.
|
if (addr == tagged_addr_ && size_ == size) {
|
Clear();
|
return true;
|
} else {
|
// It is implementation-defined whether an exclusive store to a
|
// non-tagged address will update memory. Behavior is unpredictable if
|
// the transaction size of the exclusive store differs from that of the
|
// exclusive load. See ARM DDI 0406C.b, A3.4.5.
|
Clear();
|
return false;
|
}
|
} else {
|
DCHECK(access_state_ == MonitorAccess::Open);
|
return false;
|
}
|
}
|
|
Simulator::GlobalMonitor::Processor::Processor()
|
: access_state_(MonitorAccess::Open),
|
tagged_addr_(0),
|
next_(nullptr),
|
prev_(nullptr),
|
failure_counter_(0) {}
|
|
void Simulator::GlobalMonitor::Processor::Clear_Locked() {
|
access_state_ = MonitorAccess::Open;
|
tagged_addr_ = 0;
|
}
|
|
void Simulator::GlobalMonitor::Processor::NotifyLoadExcl_Locked(int32_t addr) {
|
access_state_ = MonitorAccess::Exclusive;
|
tagged_addr_ = addr;
|
}
|
|
void Simulator::GlobalMonitor::Processor::NotifyStore_Locked(
|
int32_t addr, bool is_requesting_processor) {
|
if (access_state_ == MonitorAccess::Exclusive) {
|
// It is implementation-defined whether a non-exclusive store by the
|
// requesting processor to an address covered by the global monitor
|
// during exclusive access transitions to open or exclusive access.
|
//
|
// For any other processor, the access state always transitions to open
|
// access.
|
//
|
// See ARM DDI 0406C.b, A3.4.2.
|
//
|
// However, similar to the local monitor, it is possible that a store
|
// caused a cache eviction, which can affect the montior, so
|
// conservatively, we always clear the monitor.
|
Clear_Locked();
|
}
|
}
|
|
bool Simulator::GlobalMonitor::Processor::NotifyStoreExcl_Locked(
|
int32_t addr, bool is_requesting_processor) {
|
if (access_state_ == MonitorAccess::Exclusive) {
|
if (is_requesting_processor) {
|
// It is allowed for a processor to require that the address matches
|
// exactly (A3.4.5), so this comparison does not mask addr.
|
if (addr == tagged_addr_) {
|
// The access state for the requesting processor after a successful
|
// exclusive store is implementation-defined, but according to the ARM
|
// DDI, this has no effect on the subsequent operation of the global
|
// monitor.
|
Clear_Locked();
|
// Introduce occasional strex failures. This is to simulate the
|
// behavior of hardware, which can randomly fail due to background
|
// cache evictions.
|
if (failure_counter_++ >= kMaxFailureCounter) {
|
failure_counter_ = 0;
|
return false;
|
} else {
|
return true;
|
}
|
}
|
} else if ((addr & kExclusiveTaggedAddrMask) ==
|
(tagged_addr_ & kExclusiveTaggedAddrMask)) {
|
// Check the masked addresses when responding to a successful lock by
|
// another processor so the implementation is more conservative (i.e. the
|
// granularity of locking is as large as possible.)
|
Clear_Locked();
|
return false;
|
}
|
}
|
return false;
|
}
|
|
Simulator::GlobalMonitor::GlobalMonitor() : head_(nullptr) {}
|
|
void Simulator::GlobalMonitor::NotifyLoadExcl_Locked(int32_t addr,
|
Processor* processor) {
|
processor->NotifyLoadExcl_Locked(addr);
|
PrependProcessor_Locked(processor);
|
}
|
|
void Simulator::GlobalMonitor::NotifyStore_Locked(int32_t addr,
|
Processor* processor) {
|
// Notify each processor of the store operation.
|
for (Processor* iter = head_; iter; iter = iter->next_) {
|
bool is_requesting_processor = iter == processor;
|
iter->NotifyStore_Locked(addr, is_requesting_processor);
|
}
|
}
|
|
bool Simulator::GlobalMonitor::NotifyStoreExcl_Locked(int32_t addr,
|
Processor* processor) {
|
DCHECK(IsProcessorInLinkedList_Locked(processor));
|
if (processor->NotifyStoreExcl_Locked(addr, true)) {
|
// Notify the other processors that this StoreExcl succeeded.
|
for (Processor* iter = head_; iter; iter = iter->next_) {
|
if (iter != processor) {
|
iter->NotifyStoreExcl_Locked(addr, false);
|
}
|
}
|
return true;
|
} else {
|
return false;
|
}
|
}
|
|
bool Simulator::GlobalMonitor::IsProcessorInLinkedList_Locked(
|
Processor* processor) const {
|
return head_ == processor || processor->next_ || processor->prev_;
|
}
|
|
void Simulator::GlobalMonitor::PrependProcessor_Locked(Processor* processor) {
|
if (IsProcessorInLinkedList_Locked(processor)) {
|
return;
|
}
|
|
if (head_) {
|
head_->prev_ = processor;
|
}
|
processor->prev_ = nullptr;
|
processor->next_ = head_;
|
head_ = processor;
|
}
|
|
void Simulator::GlobalMonitor::RemoveProcessor(Processor* processor) {
|
base::LockGuard<base::Mutex> lock_guard(&mutex);
|
if (!IsProcessorInLinkedList_Locked(processor)) {
|
return;
|
}
|
|
if (processor->prev_) {
|
processor->prev_->next_ = processor->next_;
|
} else {
|
head_ = processor->next_;
|
}
|
if (processor->next_) {
|
processor->next_->prev_ = processor->prev_;
|
}
|
processor->prev_ = nullptr;
|
processor->next_ = nullptr;
|
}
|
|
} // namespace internal
|
} // namespace v8
|
|
#endif // USE_SIMULATOR
|
|
#endif // V8_TARGET_ARCH_ARM
|