// Copyright 2012 the V8 project authors. All rights reserved.
|
// Use of this source code is governed by a BSD-style license that can be
|
// found in the LICENSE file.
|
|
#include "src/assembler-inl.h"
|
#include "src/deoptimizer.h"
|
#include "src/objects-inl.h"
|
#include "src/register-configuration.h"
|
#include "src/safepoint-table.h"
|
|
namespace v8 {
|
namespace internal {
|
|
const int Deoptimizer::table_entry_size_ = 8;
|
|
#define __ masm()->
|
|
// This code tries to be close to ia32 code so that any changes can be
|
// easily ported.
|
void Deoptimizer::TableEntryGenerator::Generate() {
|
GeneratePrologue();
|
|
// Save all general purpose registers before messing with them.
|
const int kNumberOfRegisters = Register::kNumRegisters;
|
|
// Everything but pc, lr and ip which will be saved but not restored.
|
RegList restored_regs = kJSCallerSaved | kCalleeSaved | ip.bit();
|
|
const int kDoubleRegsSize = kDoubleSize * DwVfpRegister::kNumRegisters;
|
const int kFloatRegsSize = kFloatSize * SwVfpRegister::kNumRegisters;
|
|
// Save all allocatable VFP registers before messing with them.
|
{
|
// We use a run-time check for VFP32DREGS.
|
CpuFeatureScope scope(masm(), VFP32DREGS,
|
CpuFeatureScope::kDontCheckSupported);
|
UseScratchRegisterScope temps(masm());
|
Register scratch = temps.Acquire();
|
|
// Check CPU flags for number of registers, setting the Z condition flag.
|
__ CheckFor32DRegs(scratch);
|
|
// Push registers d0-d15, and possibly d16-d31, on the stack.
|
// If d16-d31 are not pushed, decrease the stack pointer instead.
|
__ vstm(db_w, sp, d16, d31, ne);
|
__ sub(sp, sp, Operand(16 * kDoubleSize), LeaveCC, eq);
|
__ vstm(db_w, sp, d0, d15);
|
|
// Push registers s0-s31 on the stack.
|
__ vstm(db_w, sp, s0, s31);
|
}
|
|
// Push all 16 registers (needed to populate FrameDescription::registers_).
|
// TODO(1588) Note that using pc with stm is deprecated, so we should perhaps
|
// handle this a bit differently.
|
__ stm(db_w, sp, restored_regs | sp.bit() | lr.bit() | pc.bit());
|
|
{
|
UseScratchRegisterScope temps(masm());
|
Register scratch = temps.Acquire();
|
__ mov(scratch, Operand(ExternalReference::Create(
|
IsolateAddressId::kCEntryFPAddress, isolate())));
|
__ str(fp, MemOperand(scratch));
|
}
|
|
const int kSavedRegistersAreaSize =
|
(kNumberOfRegisters * kPointerSize) + kDoubleRegsSize + kFloatRegsSize;
|
|
// Get the bailout id from the stack.
|
__ ldr(r2, MemOperand(sp, kSavedRegistersAreaSize));
|
|
// Get the address of the location in the code object (r3) (return
|
// address for lazy deoptimization) and compute the fp-to-sp delta in
|
// register r4.
|
__ mov(r3, lr);
|
// Correct one word for bailout id.
|
__ add(r4, sp, Operand(kSavedRegistersAreaSize + (1 * kPointerSize)));
|
__ sub(r4, fp, r4);
|
|
// Allocate a new deoptimizer object.
|
// Pass four arguments in r0 to r3 and fifth argument on stack.
|
__ PrepareCallCFunction(6);
|
__ mov(r0, Operand(0));
|
Label context_check;
|
__ ldr(r1, MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset));
|
__ JumpIfSmi(r1, &context_check);
|
__ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
|
__ bind(&context_check);
|
__ mov(r1, Operand(static_cast<int>(deopt_kind())));
|
// r2: bailout id already loaded.
|
// r3: code address or 0 already loaded.
|
__ str(r4, MemOperand(sp, 0 * kPointerSize)); // Fp-to-sp delta.
|
__ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
|
__ str(r5, MemOperand(sp, 1 * kPointerSize)); // Isolate.
|
// Call Deoptimizer::New().
|
{
|
AllowExternalCallThatCantCauseGC scope(masm());
|
__ CallCFunction(ExternalReference::new_deoptimizer_function(), 6);
|
}
|
|
// Preserve "deoptimizer" object in register r0 and get the input
|
// frame descriptor pointer to r1 (deoptimizer->input_);
|
__ ldr(r1, MemOperand(r0, Deoptimizer::input_offset()));
|
|
// Copy core registers into FrameDescription::registers_[kNumRegisters].
|
DCHECK_EQ(Register::kNumRegisters, kNumberOfRegisters);
|
for (int i = 0; i < kNumberOfRegisters; i++) {
|
int offset = (i * kPointerSize) + FrameDescription::registers_offset();
|
__ ldr(r2, MemOperand(sp, i * kPointerSize));
|
__ str(r2, MemOperand(r1, offset));
|
}
|
|
// Copy VFP registers to
|
// double_registers_[DoubleRegister::kNumAllocatableRegisters]
|
int double_regs_offset = FrameDescription::double_registers_offset();
|
const RegisterConfiguration* config = RegisterConfiguration::Default();
|
for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
|
int code = config->GetAllocatableDoubleCode(i);
|
int dst_offset = code * kDoubleSize + double_regs_offset;
|
int src_offset =
|
code * kDoubleSize + kNumberOfRegisters * kPointerSize + kFloatRegsSize;
|
__ vldr(d0, sp, src_offset);
|
__ vstr(d0, r1, dst_offset);
|
}
|
|
// Copy VFP registers to
|
// float_registers_[FloatRegister::kNumAllocatableRegisters]
|
int float_regs_offset = FrameDescription::float_registers_offset();
|
for (int i = 0; i < config->num_allocatable_float_registers(); ++i) {
|
int code = config->GetAllocatableFloatCode(i);
|
int dst_offset = code * kFloatSize + float_regs_offset;
|
int src_offset = code * kFloatSize + kNumberOfRegisters * kPointerSize;
|
__ ldr(r2, MemOperand(sp, src_offset));
|
__ str(r2, MemOperand(r1, dst_offset));
|
}
|
|
// Remove the bailout id and the saved registers from the stack.
|
__ add(sp, sp, Operand(kSavedRegistersAreaSize + (1 * kPointerSize)));
|
|
// Compute a pointer to the unwinding limit in register r2; that is
|
// the first stack slot not part of the input frame.
|
__ ldr(r2, MemOperand(r1, FrameDescription::frame_size_offset()));
|
__ add(r2, r2, sp);
|
|
// Unwind the stack down to - but not including - the unwinding
|
// limit and copy the contents of the activation frame to the input
|
// frame description.
|
__ add(r3, r1, Operand(FrameDescription::frame_content_offset()));
|
Label pop_loop;
|
Label pop_loop_header;
|
__ b(&pop_loop_header);
|
__ bind(&pop_loop);
|
__ pop(r4);
|
__ str(r4, MemOperand(r3, 0));
|
__ add(r3, r3, Operand(sizeof(uint32_t)));
|
__ bind(&pop_loop_header);
|
__ cmp(r2, sp);
|
__ b(ne, &pop_loop);
|
|
// Compute the output frame in the deoptimizer.
|
__ push(r0); // Preserve deoptimizer object across call.
|
// r0: deoptimizer object; r1: scratch.
|
__ PrepareCallCFunction(1);
|
// Call Deoptimizer::ComputeOutputFrames().
|
{
|
AllowExternalCallThatCantCauseGC scope(masm());
|
__ CallCFunction(ExternalReference::compute_output_frames_function(), 1);
|
}
|
__ pop(r0); // Restore deoptimizer object (class Deoptimizer).
|
|
__ ldr(sp, MemOperand(r0, Deoptimizer::caller_frame_top_offset()));
|
|
// Replace the current (input) frame with the output frames.
|
Label outer_push_loop, inner_push_loop,
|
outer_loop_header, inner_loop_header;
|
// Outer loop state: r4 = current "FrameDescription** output_",
|
// r1 = one past the last FrameDescription**.
|
__ ldr(r1, MemOperand(r0, Deoptimizer::output_count_offset()));
|
__ ldr(r4, MemOperand(r0, Deoptimizer::output_offset())); // r4 is output_.
|
__ add(r1, r4, Operand(r1, LSL, 2));
|
__ jmp(&outer_loop_header);
|
__ bind(&outer_push_loop);
|
// Inner loop state: r2 = current FrameDescription*, r3 = loop index.
|
__ ldr(r2, MemOperand(r4, 0)); // output_[ix]
|
__ ldr(r3, MemOperand(r2, FrameDescription::frame_size_offset()));
|
__ jmp(&inner_loop_header);
|
__ bind(&inner_push_loop);
|
__ sub(r3, r3, Operand(sizeof(uint32_t)));
|
__ add(r6, r2, Operand(r3));
|
__ ldr(r6, MemOperand(r6, FrameDescription::frame_content_offset()));
|
__ push(r6);
|
__ bind(&inner_loop_header);
|
__ cmp(r3, Operand::Zero());
|
__ b(ne, &inner_push_loop); // test for gt?
|
__ add(r4, r4, Operand(kPointerSize));
|
__ bind(&outer_loop_header);
|
__ cmp(r4, r1);
|
__ b(lt, &outer_push_loop);
|
|
__ ldr(r1, MemOperand(r0, Deoptimizer::input_offset()));
|
for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
|
int code = config->GetAllocatableDoubleCode(i);
|
DwVfpRegister reg = DwVfpRegister::from_code(code);
|
int src_offset = code * kDoubleSize + double_regs_offset;
|
__ vldr(reg, r1, src_offset);
|
}
|
|
// Push pc and continuation from the last output frame.
|
__ ldr(r6, MemOperand(r2, FrameDescription::pc_offset()));
|
__ push(r6);
|
__ ldr(r6, MemOperand(r2, FrameDescription::continuation_offset()));
|
__ push(r6);
|
|
// Push the registers from the last output frame.
|
for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
|
int offset = (i * kPointerSize) + FrameDescription::registers_offset();
|
__ ldr(r6, MemOperand(r2, offset));
|
__ push(r6);
|
}
|
|
// Restore the registers from the stack.
|
__ ldm(ia_w, sp, restored_regs); // all but pc registers.
|
|
__ InitializeRootRegister();
|
|
// Remove sp, lr and pc.
|
__ Drop(3);
|
{
|
UseScratchRegisterScope temps(masm());
|
Register scratch = temps.Acquire();
|
__ pop(scratch); // get continuation, leave pc on stack
|
__ pop(lr);
|
__ Jump(scratch);
|
}
|
__ stop("Unreachable.");
|
}
|
|
|
void Deoptimizer::TableEntryGenerator::GeneratePrologue() {
|
// Create a sequence of deoptimization entries.
|
// Note that registers are still live when jumping to an entry.
|
|
// We need to be able to generate immediates up to kMaxNumberOfEntries. On
|
// ARMv7, we can use movw (with a maximum immediate of 0xFFFF). On ARMv6, we
|
// need two instructions.
|
STATIC_ASSERT((kMaxNumberOfEntries - 1) <= 0xFFFF);
|
UseScratchRegisterScope temps(masm());
|
Register scratch = temps.Acquire();
|
if (CpuFeatures::IsSupported(ARMv7)) {
|
CpuFeatureScope scope(masm(), ARMv7);
|
Label done;
|
for (int i = 0; i < count(); i++) {
|
int start = masm()->pc_offset();
|
USE(start);
|
__ movw(scratch, i);
|
__ b(&done);
|
DCHECK_EQ(table_entry_size_, masm()->pc_offset() - start);
|
}
|
__ bind(&done);
|
} else {
|
// We want to keep table_entry_size_ == 8 (since this is the common case),
|
// but we need two instructions to load most immediates over 0xFF. To handle
|
// this, we set the low byte in the main table, and then set the high byte
|
// in a separate table if necessary.
|
Label high_fixes[256];
|
int high_fix_max = (count() - 1) >> 8;
|
DCHECK_GT(arraysize(high_fixes), static_cast<size_t>(high_fix_max));
|
for (int i = 0; i < count(); i++) {
|
int start = masm()->pc_offset();
|
USE(start);
|
__ mov(scratch, Operand(i & 0xFF)); // Set the low byte.
|
__ b(&high_fixes[i >> 8]); // Jump to the secondary table.
|
DCHECK_EQ(table_entry_size_, masm()->pc_offset() - start);
|
}
|
// Generate the secondary table, to set the high byte.
|
for (int high = 1; high <= high_fix_max; high++) {
|
__ bind(&high_fixes[high]);
|
__ orr(scratch, scratch, Operand(high << 8));
|
// If this isn't the last entry, emit a branch to the end of the table.
|
// The last entry can just fall through.
|
if (high < high_fix_max) __ b(&high_fixes[0]);
|
}
|
// Bind high_fixes[0] last, for indices like 0x00**. This case requires no
|
// fix-up, so for (common) small tables we can jump here, then just fall
|
// through with no additional branch.
|
__ bind(&high_fixes[0]);
|
}
|
__ push(scratch);
|
}
|
|
bool Deoptimizer::PadTopOfStackRegister() { return false; }
|
|
void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) {
|
SetFrameSlot(offset, value);
|
}
|
|
|
void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) {
|
SetFrameSlot(offset, value);
|
}
|
|
|
void FrameDescription::SetCallerConstantPool(unsigned offset, intptr_t value) {
|
// No embedded constant pool support.
|
UNREACHABLE();
|
}
|
|
|
#undef __
|
|
} // namespace internal
|
} // namespace v8
|