/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
you may not use this file except in compliance with the License.
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
distributed under the License is distributed on an "AS IS" BASIS,
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
See the License for the specific language governing permissions and
|
limitations under the License.
|
==============================================================================*/
|
|
// Class declaration for Stream type that enqueues tasks onto a host/CPU-based
|
// execution context (as opposed to a GPU device), HostExecutor.
|
#ifndef TENSORFLOW_STREAM_EXECUTOR_HOST_HOST_STREAM_H_
|
#define TENSORFLOW_STREAM_EXECUTOR_HOST_HOST_STREAM_H_
|
|
#include <functional>
|
#include <memory>
|
|
#include "tensorflow/stream_executor/lib/threadpool.h"
|
#include "tensorflow/stream_executor/stream_executor_internal.h"
|
|
namespace stream_executor {
|
namespace host {
|
|
class HostStream : public internal::StreamInterface {
|
public:
|
HostStream();
|
~HostStream() override;
|
|
bool EnqueueTask(std::function<void()> task);
|
|
void *GpuStreamHack() override { return nullptr; }
|
void **GpuStreamMemberHack() override { return nullptr; }
|
|
void BlockUntilDone();
|
|
private:
|
// Use only one thread and own task queue to preserve FIFO ordering
|
// for the operations enqueued by any given stream.
|
static const int kExecutorThreads = 1;
|
std::unique_ptr<port::ThreadPool> host_executor_;
|
|
mutex mu_;
|
int pending_tasks_ GUARDED_BY(mu_) = 0;
|
condition_variable completion_condition_;
|
};
|
|
} // namespace host
|
} // namespace stream_executor
|
|
#endif // TENSORFLOW_STREAM_EXECUTOR_HOST_HOST_STREAM_H_
|