/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
you may not use this file except in compliance with the License.
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
distributed under the License is distributed on an "AS IS" BASIS,
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
See the License for the specific language governing permissions and
|
limitations under the License.
|
==============================================================================*/
|
|
// The CUDA implementation of the StreamExecutorInterface functionality.
|
// CUDA inclusions are ideally confined to this implementation file.
|
//
|
// The notions from the StreamExecutor basically correspond to the CUDA streams
|
// programming model provided by the libcuda.so driver APIs, so we don't have
|
// to do much more than wrap the calls to the libraries appropriately.
|
#ifndef TENSORFLOW_STREAM_EXECUTOR_GPU_GPU_KERNEL_H_
|
#define TENSORFLOW_STREAM_EXECUTOR_GPU_GPU_KERNEL_H_
|
|
#include "tensorflow/stream_executor/gpu/gpu_driver.h"
|
#include "tensorflow/stream_executor/kernel_cache_config.h"
|
#include "tensorflow/stream_executor/platform/logging.h"
|
#include "tensorflow/stream_executor/platform/port.h"
|
#include "tensorflow/stream_executor/stream_executor_internal.h"
|
|
namespace stream_executor {
|
namespace gpu {
|
|
// Wraps a GpuFunctionHandle to implement the platform-independent
|
// KernelInterface.
|
class GpuKernel : public internal::KernelInterface {
|
public:
|
GpuKernel()
|
: gpu_function_(nullptr),
|
arity_(0),
|
preferred_cache_config_(KernelCacheConfig::kNoPreference) {}
|
|
// Note that the function is unloaded when the module is unloaded, and the
|
// module that the function is contained in is owned by the GpuExecutor.
|
~GpuKernel() override {}
|
|
// As arity cannot be reflected upon using the CUDA API, the arity is
|
// explicitly set during the GpuExecutor::GetKernel initialization process.
|
void set_arity(unsigned arity) { arity_ = arity; }
|
unsigned Arity() const override { return arity_; }
|
|
// Returns the GpuFunctionHandle value for passing to the CUDA API.
|
GpuFunctionHandle AsGpuFunctionHandle() const {
|
DCHECK(gpu_function_ != nullptr);
|
return const_cast<GpuFunctionHandle>(gpu_function_);
|
}
|
|
// Returns the slot that the GpuFunctionHandle is stored within for this
|
// object, for the CUDA API which wants to load into a GpuFunctionHandle*.
|
GpuFunctionHandle* gpu_function_ptr() { return &gpu_function_; }
|
|
// CUDA supports setting the preferred cache configuration of a
|
// GpuFunctionHandle (more-or-less equivalent to a GpuKernel). We support this
|
// via the below functions; users can set a preference, and that is applied
|
// when the kernel is [lazy-]loaded (in GpuExecutor::Launch). The alternative
|
// would be to load the kernel & set the preference when the user calls the
|
// setter below; either approach is valid. Sets the current kernel cache
|
// configuration preference.
|
void SetPreferredCacheConfig(KernelCacheConfig config) override {
|
preferred_cache_config_ = config;
|
}
|
|
// Returns the current kernel cache configuration preference.
|
KernelCacheConfig GetPreferredCacheConfig() const override {
|
return preferred_cache_config_;
|
}
|
|
// Returns the current kernel cache configuration preference as a
|
// CUfunc_cache.
|
GpuFuncCachePreference GetGpuCacheConfig() const;
|
|
private:
|
GpuFunctionHandle gpu_function_; // Wrapped CUDA kernel handle.
|
unsigned arity_; // Number of formal parameters the kernel takes.
|
|
// Preferred (but not required) cache configuration for this kernel.
|
KernelCacheConfig preferred_cache_config_;
|
};
|
|
// Given a platform-independent kernel datatype, returns the (const) internal
|
// CUDA platform implementation pointer.
|
inline const GpuKernel* AsGpuKernel(const KernelBase* kernel) {
|
return static_cast<const GpuKernel*>(kernel->implementation());
|
}
|
|
// Given a platform-independent kernel datatype, returns the (non-const)
|
// internal CUDA platform implementation pointer.
|
inline GpuKernel* AsGpuKernel(KernelBase* kernel) {
|
return static_cast<GpuKernel*>(kernel->implementation());
|
}
|
|
} // namespace gpu
|
} // namespace stream_executor
|
|
#endif // TENSORFLOW_STREAM_EXECUTOR_GPU_GPU_KERNEL_H_
|