// Copyright 2018 The Gemmlowp Authors. All Rights Reserved.
|
//
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
// you may not use this file except in compliance with the License.
|
// You may obtain a copy of the License at
|
//
|
// http://www.apache.org/licenses/LICENSE-2.0
|
//
|
// Unless required by applicable law or agreed to in writing, software
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
// See the License for the specific language governing permissions and
|
// limitations under the License.
|
|
// output_msa.h: optimized MSA specializations of the templates in output.h.
|
|
#ifndef GEMMLOWP_INTERNAL_OUTPUT_MSA_H_
|
#define GEMMLOWP_INTERNAL_OUTPUT_MSA_H_
|
|
#include "output.h"
|
|
#include <msa.h>
|
|
namespace gemmlowp {
|
|
template <>
|
struct OutputStageEvalBufferImpl<OutputStageSaturatingCastToUint8,
|
RegBufferInt32<4>> {
|
typedef RegBufferInt32<4> InputType;
|
typedef RegBufferUint8<4> OutputType;
|
|
typedef OutputStageSaturatingCastToUint8 OutputStage;
|
|
OutputStageEvalBufferImpl(const OutputStage&) {}
|
|
OutputType Eval(InputType input) const {
|
OutputType output;
|
// Signed saturate each 32-bit element to 9 bits
|
// (this takes full care of non-negative elements).
|
v4i32 tmp = __builtin_msa_sat_s_w(input.reg[0], 8);
|
// Pack every 32-bit element into 16 bits.
|
tmp = reinterpret_cast<v4i32>(__builtin_msa_pckev_h(
|
reinterpret_cast<v8i16>(tmp), reinterpret_cast<v8i16>(tmp)));
|
// Detect negative elements with arithmetic shift right (we
|
// get a 16-bit mask of all zeroes or all ones for every element).
|
v8i16 signs = __builtin_msa_srai_h(reinterpret_cast<v8i16>(tmp), 15);
|
// Zero out negative elements.
|
signs = reinterpret_cast<v8i16>(__builtin_msa_bseli_b(
|
reinterpret_cast<v16u8>(signs), reinterpret_cast<v16u8>(tmp), 0));
|
// Pack every element into 8 bits.
|
tmp = reinterpret_cast<v4i32>(__builtin_msa_pckev_b(
|
reinterpret_cast<v16i8>(signs), reinterpret_cast<v16i8>(signs)));
|
// Return 4 uint8_t elements as uint32_t.
|
output.reg[0] = __builtin_msa_copy_s_w(tmp, 0);
|
return output;
|
}
|
};
|
|
template <>
|
struct OutputStageEvalBufferImpl<OutputStageSaturatingCastToUint8,
|
RegBufferInt32<8>> {
|
typedef RegBufferInt32<8> InputType;
|
typedef RegBufferUint8<8> OutputType;
|
|
typedef OutputStageSaturatingCastToUint8 OutputStage;
|
|
OutputStageEvalBufferImpl(const OutputStage&) {}
|
|
OutputType Eval(InputType input) const {
|
OutputType output;
|
// Signed saturate each 32-bit element to 9 bits
|
// (this takes full care of non-negative elements).
|
v4i32 tmp_lo = __builtin_msa_sat_s_w(input.reg[0], 8);
|
v4i32 tmp_hi = __builtin_msa_sat_s_w(input.reg[1], 8);
|
// Pack every 32-bit element into 16 bits,
|
// combining all 8 elements into one vector.
|
tmp_lo = reinterpret_cast<v4i32>(__builtin_msa_pckev_h(
|
reinterpret_cast<v8i16>(tmp_hi), reinterpret_cast<v8i16>(tmp_lo)));
|
// Detect negative elements with arithmetic shift right (we
|
// get a 16-bit mask of all zeroes or all ones for every element).
|
v8i16 signs = __builtin_msa_srai_h(reinterpret_cast<v8i16>(tmp_lo), 15);
|
// Zero out negative elements.
|
signs = reinterpret_cast<v8i16>(__builtin_msa_bseli_b(
|
reinterpret_cast<v16u8>(signs), reinterpret_cast<v16u8>(tmp_lo), 0));
|
// Pack every element into 8 bits.
|
tmp_lo = reinterpret_cast<v4i32>(__builtin_msa_pckev_b(
|
reinterpret_cast<v16i8>(signs), reinterpret_cast<v16i8>(signs)));
|
// Return 8 uint8_t elements as 2 uint32_t's.
|
output.reg[0] = __builtin_msa_copy_s_w(tmp_lo, 0);
|
output.reg[1] = __builtin_msa_copy_s_w(tmp_lo, 1);
|
return output;
|
}
|
};
|
|
#define GEMMLOWP_MIPS_SAT_U8_16(out, in0, in1, in2, in3) \
|
{ \
|
v4i32 tmp0 = __builtin_msa_sat_s_w(in0, 8); \
|
v4i32 tmp1 = __builtin_msa_sat_s_w(in1, 8); \
|
v4i32 tmp2 = __builtin_msa_sat_s_w(in2, 8); \
|
v4i32 tmp3 = __builtin_msa_sat_s_w(in3, 8); \
|
tmp0 = reinterpret_cast<v4i32>(__builtin_msa_pckev_h( \
|
reinterpret_cast<v8i16>(tmp1), reinterpret_cast<v8i16>(tmp0))); \
|
tmp2 = reinterpret_cast<v4i32>(__builtin_msa_pckev_h( \
|
reinterpret_cast<v8i16>(tmp3), reinterpret_cast<v8i16>(tmp2))); \
|
v8i16 signs0 = __builtin_msa_srai_h(reinterpret_cast<v8i16>(tmp0), 15); \
|
v8i16 signs1 = __builtin_msa_srai_h(reinterpret_cast<v8i16>(tmp2), 15); \
|
signs0 = reinterpret_cast<v8i16>(__builtin_msa_bseli_b( \
|
reinterpret_cast<v16u8>(signs0), reinterpret_cast<v16u8>(tmp0), 0)); \
|
signs1 = reinterpret_cast<v8i16>(__builtin_msa_bseli_b( \
|
reinterpret_cast<v16u8>(signs1), reinterpret_cast<v16u8>(tmp2), 0)); \
|
signs0 = reinterpret_cast<v8i16>(__builtin_msa_pckev_b( \
|
reinterpret_cast<v16i8>(signs1), reinterpret_cast<v16i8>(signs0))); \
|
out = reinterpret_cast<v16i8>(signs0); \
|
}
|
|
template <>
|
struct OutputStageEvalBufferImpl<OutputStageSaturatingCastToUint8,
|
RegBufferInt32<16>> {
|
typedef RegBufferInt32<16> InputType;
|
typedef RegBufferUint8<16> OutputType;
|
|
typedef OutputStageSaturatingCastToUint8 OutputStage;
|
|
OutputStageEvalBufferImpl(const OutputStage&) {}
|
|
OutputType Eval(InputType input) const {
|
OutputType output;
|
GEMMLOWP_MIPS_SAT_U8_16(output.reg[0], input.reg[0], input.reg[1],
|
input.reg[2], input.reg[3]);
|
return output;
|
}
|
};
|
|
template <>
|
struct OutputStageEvalBufferImpl<OutputStageSaturatingCastToUint8,
|
RegBufferInt32<32>> {
|
typedef RegBufferInt32<32> InputType;
|
typedef RegBufferUint8<32> OutputType;
|
|
typedef OutputStageSaturatingCastToUint8 OutputStage;
|
|
OutputStageEvalBufferImpl(const OutputStage&) {}
|
|
OutputType Eval(InputType input) const {
|
OutputType output;
|
GEMMLOWP_MIPS_SAT_U8_16(output.reg[0], input.reg[0], input.reg[1],
|
input.reg[2], input.reg[3]);
|
GEMMLOWP_MIPS_SAT_U8_16(output.reg[1], input.reg[4], input.reg[5],
|
input.reg[6], input.reg[7]);
|
return output;
|
}
|
};
|
|
#undef GEMMLOWP_MIPS_SAT_U8_16
|
|
template <>
|
struct OutputStageEvalBufferImpl<OutputStageSaturatingCastToInt16,
|
RegBufferInt32<4>> {
|
typedef RegBufferInt32<4> InputType;
|
typedef RegBufferInt16<4> OutputType;
|
|
typedef OutputStageSaturatingCastToInt16 OutputStage;
|
|
OutputStageEvalBufferImpl(const OutputStage&) {}
|
|
OutputType Eval(InputType input) const {
|
OutputType output;
|
// Signed saturate each 32-bit element to 16 bits.
|
v8i16 tmp = reinterpret_cast<v8i16>(__builtin_msa_sat_s_w(
|
input.reg[0], 15));
|
output.reg[0] = __builtin_msa_copy_s_h(tmp, 0);
|
output.reg[1] = __builtin_msa_copy_s_h(tmp, 2);
|
output.reg[2] = __builtin_msa_copy_s_h(tmp, 4);
|
output.reg[3] = __builtin_msa_copy_s_h(tmp, 6);
|
return output;
|
}
|
};
|
|
#define GEMMLOWP_MIPS_SAT_I16_8(out, in0, in1) \
|
{ \
|
v4i32 tmp0 = __builtin_msa_sat_s_w(in0, 15); \
|
v4i32 tmp1 = __builtin_msa_sat_s_w(in1, 15); \
|
out = __builtin_msa_pckev_h( \
|
reinterpret_cast<v8i16>(tmp1), reinterpret_cast<v8i16>(tmp0)); \
|
}
|
|
template <>
|
struct OutputStageEvalBufferImpl<OutputStageSaturatingCastToInt16,
|
RegBufferInt32<8>> {
|
typedef RegBufferInt32<8> InputType;
|
typedef RegBufferInt16<8> OutputType;
|
|
typedef OutputStageSaturatingCastToInt16 OutputStage;
|
|
OutputStageEvalBufferImpl(const OutputStage&) {}
|
|
OutputType Eval(InputType input) const {
|
OutputType output;
|
GEMMLOWP_MIPS_SAT_I16_8(output.reg[0], input.reg[0], input.reg[1]);
|
return output;
|
}
|
};
|
|
template <>
|
struct OutputStageEvalBufferImpl<OutputStageSaturatingCastToInt16,
|
RegBufferInt32<16>> {
|
typedef RegBufferInt32<16> InputType;
|
typedef RegBufferInt16<16> OutputType;
|
|
typedef OutputStageSaturatingCastToInt16 OutputStage;
|
|
OutputStageEvalBufferImpl(const OutputStage&) {}
|
|
OutputType Eval(InputType input) const {
|
OutputType output;
|
GEMMLOWP_MIPS_SAT_I16_8(output.reg[0], input.reg[0], input.reg[1]);
|
GEMMLOWP_MIPS_SAT_I16_8(output.reg[1], input.reg[2], input.reg[3]);
|
return output;
|
}
|
};
|
|
template <>
|
struct OutputStageEvalBufferImpl<OutputStageSaturatingCastToInt16,
|
RegBufferInt32<32>> {
|
typedef RegBufferInt32<32> InputType;
|
typedef RegBufferInt16<32> OutputType;
|
|
typedef OutputStageSaturatingCastToInt16 OutputStage;
|
|
OutputStageEvalBufferImpl(const OutputStage&) {}
|
|
OutputType Eval(InputType input) const {
|
OutputType output;
|
GEMMLOWP_MIPS_SAT_I16_8(output.reg[0], input.reg[0], input.reg[1]);
|
GEMMLOWP_MIPS_SAT_I16_8(output.reg[1], input.reg[2], input.reg[3]);
|
GEMMLOWP_MIPS_SAT_I16_8(output.reg[2], input.reg[4], input.reg[5]);
|
GEMMLOWP_MIPS_SAT_I16_8(output.reg[3], input.reg[6], input.reg[7]);
|
return output;
|
}
|
};
|
|
#undef GEMMLOWP_MIPS_SAT_I16_8
|
|
template <typename DstType>
|
struct StoreFinalOutputImpl<RegBlockInt32<4, 1>, DstType> {
|
static void Run(const RegBlockInt32<4, 1>& src, DstType* dst, int row,
|
int col) {
|
if (DstType::kOrder == MapOrder::ColMajor) {
|
StoreInt32x4(dst->data(row, col), src.buf.reg[0]);
|
} else {
|
*dst->data(row + 0, col) = GetLane<0>(src.buf.reg[0]);
|
*dst->data(row + 1, col) = GetLane<1>(src.buf.reg[0]);
|
*dst->data(row + 2, col) = GetLane<2>(src.buf.reg[0]);
|
*dst->data(row + 3, col) = GetLane<3>(src.buf.reg[0]);
|
}
|
}
|
};
|
|
template <typename DstType>
|
struct StoreFinalOutputImpl<RegBlockInt32<8, 1>, DstType> {
|
static void Run(const RegBlockInt32<8, 1>& src, DstType* dst, int row,
|
int col) {
|
if (DstType::kOrder == MapOrder::ColMajor) {
|
StoreInt32x4(dst->data(row, col), src.buf.reg[0]);
|
StoreInt32x4(dst->data(row + 4, col), src.buf.reg[1]);
|
} else {
|
*dst->data(row + 0, col) = GetLane<0>(src.buf.reg[0]);
|
*dst->data(row + 1, col) = GetLane<1>(src.buf.reg[0]);
|
*dst->data(row + 2, col) = GetLane<2>(src.buf.reg[0]);
|
*dst->data(row + 3, col) = GetLane<3>(src.buf.reg[0]);
|
*dst->data(row + 4, col) = GetLane<0>(src.buf.reg[1]);
|
*dst->data(row + 5, col) = GetLane<1>(src.buf.reg[1]);
|
*dst->data(row + 6, col) = GetLane<2>(src.buf.reg[1]);
|
*dst->data(row + 7, col) = GetLane<3>(src.buf.reg[1]);
|
}
|
}
|
};
|
|
template <typename DstType>
|
struct StoreFinalOutputImpl<RegBlockInt16<4, 1>, DstType> {
|
static void Run(const RegBlockInt16<4, 1>& src, DstType* dst, int row,
|
int col) {
|
*dst->data(row + 0, col) = src.buf.reg[0];
|
*dst->data(row + 1, col) = src.buf.reg[1];
|
*dst->data(row + 2, col) = src.buf.reg[2];
|
*dst->data(row + 3, col) = src.buf.reg[3];
|
}
|
};
|
|
template <typename DstType>
|
struct StoreFinalOutputImpl<RegBlockInt16<8, 1>, DstType> {
|
static void Run(const RegBlockInt16<8, 1>& src, DstType* dst, int row,
|
int col) {
|
if (DstType::kOrder == MapOrder::ColMajor) {
|
StoreInt16x8(dst->data(row, col), src.buf.reg[0]);
|
} else {
|
*dst->data(row + 0, col) = __builtin_msa_copy_s_h(src.buf.reg[0], 0);
|
*dst->data(row + 1, col) = __builtin_msa_copy_s_h(src.buf.reg[0], 1);
|
*dst->data(row + 2, col) = __builtin_msa_copy_s_h(src.buf.reg[0], 2);
|
*dst->data(row + 3, col) = __builtin_msa_copy_s_h(src.buf.reg[0], 3);
|
*dst->data(row + 4, col) = __builtin_msa_copy_s_h(src.buf.reg[0], 4);
|
*dst->data(row + 5, col) = __builtin_msa_copy_s_h(src.buf.reg[0], 5);
|
*dst->data(row + 6, col) = __builtin_msa_copy_s_h(src.buf.reg[0], 6);
|
*dst->data(row + 7, col) = __builtin_msa_copy_s_h(src.buf.reg[0], 7);
|
}
|
}
|
};
|
|
inline RegBlockInt32<4, 4> Transpose(const RegBlockInt32<4, 4>& src) {
|
RegBlockInt32<4, 4> result;
|
v4i32 tmp0, tmp1;
|
tmp0 = __builtin_msa_ilvr_w(src.buf.reg[1], src.buf.reg[0]);
|
tmp1 = __builtin_msa_ilvr_w(src.buf.reg[3], src.buf.reg[2]);
|
result.buf.reg[0] = reinterpret_cast<v4i32>(__builtin_msa_ilvr_d(
|
reinterpret_cast<v2i64>(tmp1), reinterpret_cast<v2i64>(tmp0)));
|
result.buf.reg[1] = reinterpret_cast<v4i32>(__builtin_msa_ilvl_d(
|
reinterpret_cast<v2i64>(tmp1), reinterpret_cast<v2i64>(tmp0)));
|
tmp0 = __builtin_msa_ilvl_w(src.buf.reg[1], src.buf.reg[0]);
|
tmp1 = __builtin_msa_ilvl_w(src.buf.reg[3], src.buf.reg[2]);
|
result.buf.reg[2] = reinterpret_cast<v4i32>(__builtin_msa_ilvr_d(
|
reinterpret_cast<v2i64>(tmp1), reinterpret_cast<v2i64>(tmp0)));
|
result.buf.reg[3] = reinterpret_cast<v4i32>(__builtin_msa_ilvl_d(
|
reinterpret_cast<v2i64>(tmp1), reinterpret_cast<v2i64>(tmp0)));
|
return result;
|
}
|
|
template <typename DstType>
|
struct StoreFinalOutputImpl<RegBlockInt32<4, 4>, DstType> {
|
static void Run(const RegBlockInt32<4, 4>& src, DstType* dst, int row,
|
int col) {
|
if (DstType::kOrder == MapOrder::ColMajor) {
|
for (int i = 0; i < 4; i++) {
|
StoreInt32x4(dst->data(row, col + i), src.buf.reg[i]);
|
}
|
} else {
|
const auto transpose = Transpose(src);
|
for (int i = 0; i < 4; i++) {
|
StoreInt32x4(dst->data(row + i, col), transpose.buf.reg[i]);
|
}
|
}
|
}
|
};
|
|
template <typename DstType>
|
struct StoreFinalOutputImpl<RegBlockInt16<4, 4>, DstType> {
|
static void Run(const RegBlockInt16<4, 4>& src, DstType* dst, int row,
|
int col) {
|
std::int16_t buf[16];
|
StoreInt16x8(buf + 0, src.buf.reg[0]);
|
StoreInt16x8(buf + 8, src.buf.reg[1]);
|
for (int i = 0; i < 4; i++) {
|
for (int j = 0; j < 4; j++) {
|
*dst->data(row + i, col + j) = buf[i + 4 * j];
|
}
|
}
|
}
|
};
|
|
template <typename DstType>
|
struct StoreFinalOutputImpl<RegBlockInt32<8, 4>, DstType> {
|
static void Run(const RegBlockInt32<8, 4>& src, DstType* dst, int row,
|
int col) {
|
if (DstType::kOrder == MapOrder::ColMajor) {
|
for (int i = 0; i < 4; i++) {
|
StoreInt32x4(dst->data(row, col + i), src.buf.reg[2 * i]);
|
StoreInt32x4(dst->data(row + 4, col + i), src.buf.reg[2 * i + 1]);
|
}
|
} else {
|
RegBlockInt32<4, 4> top;
|
top.buf.reg[0] = src.buf.reg[0];
|
top.buf.reg[1] = src.buf.reg[2];
|
top.buf.reg[2] = src.buf.reg[4];
|
top.buf.reg[3] = src.buf.reg[6];
|
const auto transpose_top = Transpose(top);
|
for (int i = 0; i < 4; i++) {
|
StoreInt32x4(dst->data(row + i, col), transpose_top.buf.reg[i]);
|
}
|
RegBlockInt32<4, 4> bottom;
|
bottom.buf.reg[0] = src.buf.reg[1];
|
bottom.buf.reg[1] = src.buf.reg[3];
|
bottom.buf.reg[2] = src.buf.reg[5];
|
bottom.buf.reg[3] = src.buf.reg[7];
|
const auto transpose_bottom = Transpose(bottom);
|
for (int i = 0; i < 4; i++) {
|
StoreInt32x4(dst->data(row + 4 + i, col), transpose_bottom.buf.reg[i]);
|
}
|
}
|
}
|
};
|
|
template <typename DstType>
|
struct StoreFinalOutputImpl<RegBlockInt16<8, 4>, DstType> {
|
static void Run(const RegBlockInt16<8, 4>& src, DstType* dst, int row,
|
int col) {
|
if (DstType::kOrder == MapOrder::ColMajor) {
|
for (int i = 0; i < 4; i++) {
|
StoreInt16x8(dst->data(row, col + i), src.buf.reg[i]);
|
}
|
} else {
|
std::int16_t buf[32];
|
StoreInt16x8(buf + 0, src.buf.reg[0]);
|
StoreInt16x8(buf + 8, src.buf.reg[1]);
|
StoreInt16x8(buf + 16, src.buf.reg[2]);
|
StoreInt16x8(buf + 24, src.buf.reg[3]);
|
for (int i = 0; i < 8; i++) {
|
for (int j = 0; j < 4; j++) {
|
*dst->data(row + i, col + j) = buf[i + 8 * j];
|
}
|
}
|
}
|
}
|
};
|
|
template <typename DstType>
|
struct StoreFinalOutputImpl<RegBlockInt32<8, 8>, DstType> {
|
static void Run(const RegBlockInt32<8, 8>& src, DstType* dst, int row,
|
int col) {
|
if (DstType::kOrder == MapOrder::ColMajor) {
|
for (int i = 0; i < 8; i++) {
|
StoreInt32x4(dst->data(row, col + i), src.buf.reg[2 * i]);
|
StoreInt32x4(dst->data(row + 4, col + i), src.buf.reg[2 * i + 1]);
|
}
|
} else {
|
RegBlockInt32<4, 4> top_left;
|
top_left.buf.reg[0] = src.buf.reg[0];
|
top_left.buf.reg[1] = src.buf.reg[2];
|
top_left.buf.reg[2] = src.buf.reg[4];
|
top_left.buf.reg[3] = src.buf.reg[6];
|
const auto transpose_top_left = Transpose(top_left);
|
for (int i = 0; i < 4; i++) {
|
StoreInt32x4(dst->data(row + i, col), transpose_top_left.buf.reg[i]);
|
}
|
RegBlockInt32<4, 4> bottom_left;
|
bottom_left.buf.reg[0] = src.buf.reg[1];
|
bottom_left.buf.reg[1] = src.buf.reg[3];
|
bottom_left.buf.reg[2] = src.buf.reg[5];
|
bottom_left.buf.reg[3] = src.buf.reg[7];
|
const auto transpose_bottom_left = Transpose(bottom_left);
|
for (int i = 0; i < 4; i++) {
|
StoreInt32x4(dst->data(row + 4 + i, col),
|
transpose_bottom_left.buf.reg[i]);
|
}
|
RegBlockInt32<4, 4> top_right;
|
top_right.buf.reg[0] = src.buf.reg[8];
|
top_right.buf.reg[1] = src.buf.reg[10];
|
top_right.buf.reg[2] = src.buf.reg[12];
|
top_right.buf.reg[3] = src.buf.reg[14];
|
const auto transpose_top_right = Transpose(top_right);
|
for (int i = 0; i < 4; i++) {
|
StoreInt32x4(dst->data(row + i, col + 4),
|
transpose_top_right.buf.reg[i]);
|
}
|
RegBlockInt32<4, 4> bottom_right;
|
bottom_right.buf.reg[0] = src.buf.reg[9];
|
bottom_right.buf.reg[1] = src.buf.reg[11];
|
bottom_right.buf.reg[2] = src.buf.reg[13];
|
bottom_right.buf.reg[3] = src.buf.reg[15];
|
const auto transpose_bottom_right = Transpose(bottom_right);
|
for (int i = 0; i < 4; i++) {
|
StoreInt32x4(dst->data(row + 4 + i, col + 4),
|
transpose_bottom_right.buf.reg[i]);
|
}
|
}
|
}
|
};
|
|
template <typename DstType>
|
struct StoreFinalOutputImpl<RegBlockInt16<8, 8>, DstType> {
|
static void Run(const RegBlockInt16<8, 8>& src, DstType* dst, int row,
|
int col) {
|
if (DstType::kOrder == MapOrder::ColMajor) {
|
for (int i = 0; i < 8; i++) {
|
StoreInt16x8(dst->data(row, col + i), src.buf.reg[i]);
|
}
|
} else {
|
// top-left 4x4
|
v4i32 t0 = reinterpret_cast<v4i32>(__builtin_msa_ilvr_h(src.buf.reg[1],
|
src.buf.reg[0]));
|
v4i32 t1 = reinterpret_cast<v4i32>(__builtin_msa_ilvr_h(src.buf.reg[3],
|
src.buf.reg[2]));
|
v2i64 u0 = reinterpret_cast<v2i64>(__builtin_msa_ilvr_w(t1, t0));
|
v2i64 u1 = reinterpret_cast<v2i64>(__builtin_msa_ilvl_w(t1, t0));
|
// top-right 4x4
|
v4i32 t2 = reinterpret_cast<v4i32>(__builtin_msa_ilvr_h(src.buf.reg[5],
|
src.buf.reg[4]));
|
v4i32 t3 = reinterpret_cast<v4i32>(__builtin_msa_ilvr_h(src.buf.reg[7],
|
src.buf.reg[6]));
|
v2i64 u2 = reinterpret_cast<v2i64>(__builtin_msa_ilvr_w(t3, t2));
|
v2i64 u3 = reinterpret_cast<v2i64>(__builtin_msa_ilvl_w(t3, t2));
|
// bottom-left 4x4
|
v4i32 t4 = reinterpret_cast<v4i32>(__builtin_msa_ilvl_h(src.buf.reg[1],
|
src.buf.reg[0]));
|
v4i32 t5 = reinterpret_cast<v4i32>(__builtin_msa_ilvl_h(src.buf.reg[3],
|
src.buf.reg[2]));
|
v2i64 u4 = reinterpret_cast<v2i64>(__builtin_msa_ilvr_w(t5, t4));
|
v2i64 u5 = reinterpret_cast<v2i64>(__builtin_msa_ilvl_w(t5, t4));
|
// bottom-right 4x4
|
v4i32 t6 = reinterpret_cast<v4i32>(__builtin_msa_ilvl_h(src.buf.reg[5],
|
src.buf.reg[4]));
|
v4i32 t7 = reinterpret_cast<v4i32>(__builtin_msa_ilvl_h(src.buf.reg[7],
|
src.buf.reg[6]));
|
v2i64 u6 = reinterpret_cast<v2i64>(__builtin_msa_ilvr_w(t7, t6));
|
v2i64 u7 = reinterpret_cast<v2i64>(__builtin_msa_ilvl_w(t7, t6));
|
|
StoreInt16x8(dst->data(row + 0, col), reinterpret_cast<v8i16>(
|
__builtin_msa_ilvr_d(u2, u0)));
|
StoreInt16x8(dst->data(row + 1, col), reinterpret_cast<v8i16>(
|
__builtin_msa_ilvl_d(u2, u0)));
|
StoreInt16x8(dst->data(row + 2, col), reinterpret_cast<v8i16>(
|
__builtin_msa_ilvr_d(u3, u1)));
|
StoreInt16x8(dst->data(row + 3, col), reinterpret_cast<v8i16>(
|
__builtin_msa_ilvl_d(u3, u1)));
|
StoreInt16x8(dst->data(row + 4, col), reinterpret_cast<v8i16>(
|
__builtin_msa_ilvr_d(u6, u4)));
|
StoreInt16x8(dst->data(row + 5, col), reinterpret_cast<v8i16>(
|
__builtin_msa_ilvl_d(u6, u4)));
|
StoreInt16x8(dst->data(row + 6, col), reinterpret_cast<v8i16>(
|
__builtin_msa_ilvr_d(u7, u5)));
|
StoreInt16x8(dst->data(row + 7, col), reinterpret_cast<v8i16>(
|
__builtin_msa_ilvl_d(u7, u5)));
|
}
|
}
|
};
|
|
template <typename DstType>
|
struct StoreFinalOutputImpl<RegBlockInt32<1, 4>, DstType> {
|
static void Run(const RegBlockInt32<1, 4>& src, DstType* dst, int row,
|
int col) {
|
if (DstType::kOrder == MapOrder::ColMajor) {
|
*dst->data(row, col + 0) = GetLane<0>(src.buf.reg[0]);
|
*dst->data(row, col + 1) = GetLane<1>(src.buf.reg[0]);
|
*dst->data(row, col + 2) = GetLane<2>(src.buf.reg[0]);
|
*dst->data(row, col + 3) = GetLane<3>(src.buf.reg[0]);
|
} else {
|
StoreInt32x4(dst->data(row, col), src.buf.reg[0]);
|
}
|
}
|
};
|
|
template <typename DstType>
|
struct StoreFinalOutputImpl<RegBlockUint8<4, 1>, DstType> {
|
static void Run(const RegBlockUint8<4, 1>& src, DstType* dst, int row,
|
int col) {
|
const std::uint32_t src_reg = src.buf.reg[0];
|
for (int i = 0; i < 4; i++) {
|
*dst->data(row + i, col) = (src_reg >> (8 * i));
|
}
|
}
|
};
|
|
template <typename DstType>
|
struct StoreFinalOutputImpl<RegBlockUint8<8, 1>, DstType> {
|
static void Run(const RegBlockUint8<8, 1>& src, DstType* dst, int row,
|
int col) {
|
for (int i = 0; i < 4; i++) {
|
*dst->data(row + i, col) = (src.buf.reg[0] >> (8 * i));
|
}
|
for (int i = 0; i < 4; i++) {
|
*dst->data(row + 4 + i, col) = (src.buf.reg[1] >> (8 * i));
|
}
|
}
|
};
|
|
template <typename DstType>
|
struct StoreFinalOutputImpl<RegBlockUint8<1, 4>, DstType> {
|
static void Run(const RegBlockUint8<1, 4>& src, DstType* dst, int row,
|
int col) {
|
for (int i = 0; i < 4; i++) {
|
*dst->data(row, col + i) = (src.buf.reg[0] >> (8 * i));
|
}
|
}
|
};
|
|
template <typename DstType>
|
struct StoreFinalOutputImpl<RegBlockUint8<4, 4>, DstType> {
|
static void Run(const RegBlockUint8<4, 4>& src, DstType* dst, int row,
|
int col) {
|
std::uint8_t buf[16];
|
StoreUint8x16(buf, src.buf.reg[0]);
|
for (int c = 0; c < 4; c++) {
|
for (int r = 0; r < 4; r++) {
|
*dst->data(row + r, col + c) = buf[r + 4 * c];
|
}
|
}
|
}
|
};
|
|
template <typename DstType>
|
struct StoreFinalOutputImpl<RegBlockUint8<8, 4>, DstType> {
|
static void Run(const RegBlockUint8<8, 4>& src, DstType* dst, int row,
|
int col) {
|
std::uint8_t buf[32];
|
StoreUint8x16(buf, src.buf.reg[0]);
|
StoreUint8x16(buf + 16, src.buf.reg[1]);
|
for (int c = 0; c < 4; c++) {
|
for (int r = 0; r < 8; r++) {
|
*dst->data(row + r, col + c) = buf[r + 8 * c];
|
}
|
}
|
}
|
};
|
|
template <typename DstType>
|
struct StoreFinalOutputImpl<RegBlockUint8<8, 8>, DstType> {
|
static void Run(const RegBlockUint8<8, 8>& src, DstType* dst, int row,
|
int col) {
|
std::uint8_t buf[64];
|
StoreUint8x16(buf, src.buf.reg[0]);
|
StoreUint8x16(buf + 16, src.buf.reg[1]);
|
StoreUint8x16(buf + 32, src.buf.reg[2]);
|
StoreUint8x16(buf + 48, src.buf.reg[3]);
|
for (int c = 0; c < 8; c++) {
|
for (int r = 0; r < 8; r++) {
|
*dst->data(row + r, col + c) = buf[r + 8 * c];
|
}
|
}
|
}
|
};
|
|
} // namespace gemmlowp
|
|
#endif // GEMMLOWP_INTERNAL_OUTPUT_MSA_H_
|