/*
|
* s_sincosf.c - single precision sine and cosine functions
|
*
|
* Copyright (c) 2009-2018, Arm Limited.
|
* SPDX-License-Identifier: MIT
|
*/
|
|
/*
|
* Source: my own head, and Remez-generated polynomial approximations.
|
*/
|
|
#include <fenv.h>
|
#include <math.h>
|
#include <errno.h>
|
#include "rredf.h"
|
#include "math_private.h"
|
|
#ifdef __cplusplus
|
extern "C" {
|
#endif /* __cplusplus */
|
|
#ifndef COSINE
|
#define FUNCNAME sinf
|
#define SOFTFP_FUNCNAME __softfp_sinf
|
#define DO_SIN (!(q & 1))
|
#define NEGATE_SIN ((q & 2))
|
#define NEGATE_COS ((q & 2))
|
#define TRIVIAL_RESULT(x) FLOAT_CHECKDENORM(x)
|
#define ERR_INF MATHERR_SINF_INF
|
#else
|
#define FUNCNAME cosf
|
#define SOFTFP_FUNCNAME __softfp_cosf
|
#define DO_SIN (q & 1)
|
#define NEGATE_SIN (!(q & 2))
|
#define NEGATE_COS ((q & 2))
|
#define TRIVIAL_RESULT(x) 1.0f
|
#define ERR_INF MATHERR_COSF_INF
|
#endif
|
|
float FUNCNAME(float x)
|
{
|
int q;
|
|
/*
|
* Range-reduce x to the range [-pi/4,pi/4].
|
*/
|
{
|
/*
|
* I enclose the call to __mathlib_rredf in braces so that
|
* the address-taken-ness of qq does not propagate
|
* throughout the rest of the function, for what that might
|
* be worth.
|
*/
|
int qq;
|
x = __mathlib_rredf(x, &qq);
|
q = qq;
|
}
|
if (__builtin_expect(q < 0, 0)) { /* this signals tiny, inf, or NaN */
|
unsigned k = fai(x) << 1;
|
if (k < 0xFF000000) /* tiny */
|
return TRIVIAL_RESULT(x);
|
else if (k == 0xFF000000) /* inf */
|
return ERR_INF(x);
|
else /* NaN */
|
return FLOAT_INFNAN(x);
|
}
|
|
/*
|
* Depending on the quadrant we were in, we may have to compute
|
* a sine-like function (f(0)=0) or a cosine-like one (f(0)=1),
|
* and we may have to negate it.
|
*/
|
if (DO_SIN) {
|
float x2 = x*x;
|
/*
|
* Coefficients generated by the command
|
|
./auxiliary/remez.jl --variable=x2 --suffix=f -- '0' 'atan(BigFloat(1))^2' 2 0 'x==0 ? -1/BigFloat(6) : (x->(sin(x)-x)/x^3)(sqrt(x))' 'sqrt(x^3)'
|
|
*/
|
x += x * (x2 * (
|
-1.666665066929417292436220415142244613956015227491999719404711781344783392564922e-01f+x2*(8.331978663157089651408875887703995477889496917296385733254577121461421466427772e-03f+x2*(-1.949563623766929906511886482584265500187314705496861877317774185883215997931494e-04f))
|
));
|
if (NEGATE_SIN)
|
x = -x;
|
return x;
|
} else {
|
float x2 = x*x;
|
/*
|
* Coefficients generated by the command
|
|
./auxiliary/remez.jl --variable=x2 --suffix=f -- '0' 'atan(BigFloat(1))^2' 2 0 'x==0 ? -1/BigFloat(6) : (x->(cos(x)-1)/x^2)(sqrt(x))' 'x'
|
|
*/
|
x = 1.0f + x2*(
|
-4.999989478137016757327030935768632852012781143541026304540837816323349768666875e-01f+x2*(4.165629457842617238353362092016541041535652603456375154392942188742496860024377e-02f+x2*(-1.35978231111049428748566568960423202948250988565693107969571193763372093404347e-03f))
|
);
|
if (NEGATE_COS)
|
x = -x;
|
return x;
|
}
|
}
|
|
|
#ifdef __cplusplus
|
} /* end of extern "C" */
|
#endif /* __cplusplus */
|
|
/* end of sincosf.c */
|