/*
|
* Copyright (C) 2011 The Android Open Source Project
|
*
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
|
#include "image_writer.h"
|
|
#include <lz4.h>
|
#include <lz4hc.h>
|
#include <sys/stat.h>
|
#include <zlib.h>
|
|
#include <memory>
|
#include <numeric>
|
#include <unordered_set>
|
#include <vector>
|
|
#include "art_field-inl.h"
|
#include "art_method-inl.h"
|
#include "base/callee_save_type.h"
|
#include "base/enums.h"
|
#include "base/globals.h"
|
#include "base/logging.h" // For VLOG.
|
#include "base/stl_util.h"
|
#include "base/unix_file/fd_file.h"
|
#include "class_linker-inl.h"
|
#include "class_root.h"
|
#include "compiled_method.h"
|
#include "dex/dex_file-inl.h"
|
#include "dex/dex_file_types.h"
|
#include "driver/compiler_options.h"
|
#include "elf/elf_utils.h"
|
#include "elf_file.h"
|
#include "gc/accounting/card_table-inl.h"
|
#include "gc/accounting/heap_bitmap.h"
|
#include "gc/accounting/space_bitmap-inl.h"
|
#include "gc/collector/concurrent_copying.h"
|
#include "gc/heap-visit-objects-inl.h"
|
#include "gc/heap.h"
|
#include "gc/space/large_object_space.h"
|
#include "gc/space/region_space.h"
|
#include "gc/space/space-inl.h"
|
#include "gc/verification.h"
|
#include "handle_scope-inl.h"
|
#include "image.h"
|
#include "imt_conflict_table.h"
|
#include "intern_table-inl.h"
|
#include "jni/jni_internal.h"
|
#include "linear_alloc.h"
|
#include "lock_word.h"
|
#include "mirror/array-inl.h"
|
#include "mirror/class-inl.h"
|
#include "mirror/class_ext-inl.h"
|
#include "mirror/class_loader.h"
|
#include "mirror/dex_cache-inl.h"
|
#include "mirror/dex_cache.h"
|
#include "mirror/executable.h"
|
#include "mirror/method.h"
|
#include "mirror/object-inl.h"
|
#include "mirror/object-refvisitor-inl.h"
|
#include "mirror/object_array-alloc-inl.h"
|
#include "mirror/object_array-inl.h"
|
#include "mirror/string-inl.h"
|
#include "oat.h"
|
#include "oat_file.h"
|
#include "oat_file_manager.h"
|
#include "optimizing/intrinsic_objects.h"
|
#include "runtime.h"
|
#include "scoped_thread_state_change-inl.h"
|
#include "subtype_check.h"
|
#include "utils/dex_cache_arrays_layout-inl.h"
|
#include "well_known_classes.h"
|
|
using ::art::mirror::Class;
|
using ::art::mirror::DexCache;
|
using ::art::mirror::Object;
|
using ::art::mirror::ObjectArray;
|
using ::art::mirror::String;
|
|
namespace art {
|
namespace linker {
|
|
static ArrayRef<const uint8_t> MaybeCompressData(ArrayRef<const uint8_t> source,
|
ImageHeader::StorageMode image_storage_mode,
|
/*out*/ std::vector<uint8_t>* storage) {
|
const uint64_t compress_start_time = NanoTime();
|
|
switch (image_storage_mode) {
|
case ImageHeader::kStorageModeLZ4: {
|
storage->resize(LZ4_compressBound(source.size()));
|
size_t data_size = LZ4_compress_default(
|
reinterpret_cast<char*>(const_cast<uint8_t*>(source.data())),
|
reinterpret_cast<char*>(storage->data()),
|
source.size(),
|
storage->size());
|
storage->resize(data_size);
|
break;
|
}
|
case ImageHeader::kStorageModeLZ4HC: {
|
// Bound is same as non HC.
|
storage->resize(LZ4_compressBound(source.size()));
|
size_t data_size = LZ4_compress_HC(
|
reinterpret_cast<const char*>(const_cast<uint8_t*>(source.data())),
|
reinterpret_cast<char*>(storage->data()),
|
source.size(),
|
storage->size(),
|
LZ4HC_CLEVEL_MAX);
|
storage->resize(data_size);
|
break;
|
}
|
case ImageHeader::kStorageModeUncompressed: {
|
return source;
|
}
|
default: {
|
LOG(FATAL) << "Unsupported";
|
UNREACHABLE();
|
}
|
}
|
|
DCHECK(image_storage_mode == ImageHeader::kStorageModeLZ4 ||
|
image_storage_mode == ImageHeader::kStorageModeLZ4HC);
|
VLOG(compiler) << "Compressed from " << source.size() << " to " << storage->size() << " in "
|
<< PrettyDuration(NanoTime() - compress_start_time);
|
if (kIsDebugBuild) {
|
std::vector<uint8_t> decompressed(source.size());
|
const size_t decompressed_size = LZ4_decompress_safe(
|
reinterpret_cast<char*>(storage->data()),
|
reinterpret_cast<char*>(decompressed.data()),
|
storage->size(),
|
decompressed.size());
|
CHECK_EQ(decompressed_size, decompressed.size());
|
CHECK_EQ(memcmp(source.data(), decompressed.data(), source.size()), 0) << image_storage_mode;
|
}
|
return ArrayRef<const uint8_t>(*storage);
|
}
|
|
// Separate objects into multiple bins to optimize dirty memory use.
|
static constexpr bool kBinObjects = true;
|
|
ObjPtr<mirror::ClassLoader> ImageWriter::GetAppClassLoader() const
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
return compiler_options_.IsAppImage()
|
? ObjPtr<mirror::ClassLoader>::DownCast(Thread::Current()->DecodeJObject(app_class_loader_))
|
: nullptr;
|
}
|
|
bool ImageWriter::IsImageObject(ObjPtr<mirror::Object> obj) const {
|
// For boot image, we keep all objects remaining after the GC in PrepareImageAddressSpace().
|
if (compiler_options_.IsBootImage()) {
|
return true;
|
}
|
// Objects already in the boot image do not belong to the image being written.
|
if (IsInBootImage(obj.Ptr())) {
|
return false;
|
}
|
// DexCaches for the boot class path components that are not a part of the boot image
|
// cannot be garbage collected in PrepareImageAddressSpace() but we do not want to
|
// include them in the app image. So make sure we include only the app DexCaches.
|
if (obj->IsDexCache() &&
|
!ContainsElement(compiler_options_.GetDexFilesForOatFile(),
|
obj->AsDexCache()->GetDexFile())) {
|
return false;
|
}
|
return true;
|
}
|
|
// Return true if an object is already in an image space.
|
bool ImageWriter::IsInBootImage(const void* obj) const {
|
gc::Heap* const heap = Runtime::Current()->GetHeap();
|
if (compiler_options_.IsBootImage()) {
|
DCHECK(heap->GetBootImageSpaces().empty());
|
return false;
|
}
|
for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
|
const uint8_t* image_begin = boot_image_space->Begin();
|
// Real image end including ArtMethods and ArtField sections.
|
const uint8_t* image_end = image_begin + boot_image_space->GetImageHeader().GetImageSize();
|
if (image_begin <= obj && obj < image_end) {
|
return true;
|
}
|
}
|
return false;
|
}
|
|
bool ImageWriter::IsInBootOatFile(const void* ptr) const {
|
gc::Heap* const heap = Runtime::Current()->GetHeap();
|
if (compiler_options_.IsBootImage()) {
|
DCHECK(heap->GetBootImageSpaces().empty());
|
return false;
|
}
|
for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
|
const ImageHeader& image_header = boot_image_space->GetImageHeader();
|
if (image_header.GetOatFileBegin() <= ptr && ptr < image_header.GetOatFileEnd()) {
|
return true;
|
}
|
}
|
return false;
|
}
|
|
static void ClearDexFileCookies() REQUIRES_SHARED(Locks::mutator_lock_) {
|
auto visitor = [](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
|
DCHECK(obj != nullptr);
|
Class* klass = obj->GetClass();
|
if (klass == WellKnownClasses::ToClass(WellKnownClasses::dalvik_system_DexFile)) {
|
ArtField* field = jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_cookie);
|
// Null out the cookie to enable determinism. b/34090128
|
field->SetObject</*kTransactionActive*/false>(obj, nullptr);
|
}
|
};
|
Runtime::Current()->GetHeap()->VisitObjects(visitor);
|
}
|
|
bool ImageWriter::PrepareImageAddressSpace(TimingLogger* timings) {
|
target_ptr_size_ = InstructionSetPointerSize(compiler_options_.GetInstructionSet());
|
|
Thread* const self = Thread::Current();
|
|
gc::Heap* const heap = Runtime::Current()->GetHeap();
|
{
|
ScopedObjectAccess soa(self);
|
{
|
TimingLogger::ScopedTiming t("PruneNonImageClasses", timings);
|
PruneNonImageClasses(); // Remove junk
|
}
|
|
if (compiler_options_.IsAppImage()) {
|
TimingLogger::ScopedTiming t("ClearDexFileCookies", timings);
|
// Clear dex file cookies for app images to enable app image determinism. This is required
|
// since the cookie field contains long pointers to DexFiles which are not deterministic.
|
// b/34090128
|
ClearDexFileCookies();
|
}
|
}
|
|
{
|
TimingLogger::ScopedTiming t("CollectGarbage", timings);
|
heap->CollectGarbage(/* clear_soft_references */ false); // Remove garbage.
|
}
|
|
if (kIsDebugBuild) {
|
ScopedObjectAccess soa(self);
|
CheckNonImageClassesRemoved();
|
}
|
|
{
|
// Preload deterministic contents to the dex cache arrays we're going to write.
|
ScopedObjectAccess soa(self);
|
ObjPtr<mirror::ClassLoader> class_loader = GetAppClassLoader();
|
std::vector<ObjPtr<mirror::DexCache>> dex_caches = FindDexCaches(self);
|
for (ObjPtr<mirror::DexCache> dex_cache : dex_caches) {
|
if (!IsImageObject(dex_cache)) {
|
continue; // Boot image DexCache is not written to the app image.
|
}
|
PreloadDexCache(dex_cache, class_loader);
|
}
|
}
|
|
// Used to store information that will later be used to calculate image
|
// offsets to string references in the AppImage.
|
std::vector<HeapReferencePointerInfo> string_ref_info;
|
if (ClassLinker::kAppImageMayContainStrings && compiler_options_.IsAppImage()) {
|
// Count the number of string fields so we can allocate the appropriate
|
// amount of space in the image section.
|
TimingLogger::ScopedTiming t("AppImage:CollectStringReferenceInfo", timings);
|
ScopedObjectAccess soa(self);
|
|
if (kIsDebugBuild) {
|
VerifyNativeGCRootInvariants();
|
CHECK_EQ(image_infos_.size(), 1u);
|
}
|
|
string_ref_info = CollectStringReferenceInfo();
|
image_infos_.back().num_string_references_ = string_ref_info.size();
|
}
|
|
{
|
TimingLogger::ScopedTiming t("CalculateNewObjectOffsets", timings);
|
ScopedObjectAccess soa(self);
|
CalculateNewObjectOffsets();
|
}
|
|
// Obtain class count for debugging purposes
|
if (VLOG_IS_ON(compiler) && compiler_options_.IsAppImage()) {
|
ScopedObjectAccess soa(self);
|
|
size_t app_image_class_count = 0;
|
|
for (ImageInfo& info : image_infos_) {
|
info.class_table_->Visit([&](ObjPtr<mirror::Class> klass)
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
if (!IsInBootImage(klass.Ptr())) {
|
++app_image_class_count;
|
}
|
|
// Indicate that we would like to continue visiting classes.
|
return true;
|
});
|
}
|
|
VLOG(compiler) << "Dex2Oat:AppImage:classCount = " << app_image_class_count;
|
}
|
|
if (ClassLinker::kAppImageMayContainStrings && compiler_options_.IsAppImage()) {
|
// Use the string reference information obtained earlier to calculate image
|
// offsets. These will later be written to the image by Write/CopyMetadata.
|
TimingLogger::ScopedTiming t("AppImage:CalculateImageOffsets", timings);
|
ScopedObjectAccess soa(self);
|
|
size_t managed_string_refs = 0;
|
size_t native_string_refs = 0;
|
|
/*
|
* Iterate over the string reference info and calculate image offsets.
|
* The first element of the pair is either the object the reference belongs
|
* to or the beginning of the native reference array it is located in. In
|
* the first case the second element is the offset of the field relative to
|
* the object's base address. In the second case, it is the index of the
|
* StringDexCacheType object in the array.
|
*/
|
for (const HeapReferencePointerInfo& ref_info : string_ref_info) {
|
uint32_t base_offset;
|
|
if (HasDexCacheStringNativeRefTag(ref_info.first)) {
|
++native_string_refs;
|
auto* obj_ptr = reinterpret_cast<mirror::Object*>(ClearDexCacheNativeRefTags(
|
ref_info.first));
|
base_offset = SetDexCacheStringNativeRefTag(GetImageOffset(obj_ptr));
|
} else if (HasDexCachePreResolvedStringNativeRefTag(ref_info.first)) {
|
++native_string_refs;
|
auto* obj_ptr = reinterpret_cast<mirror::Object*>(ClearDexCacheNativeRefTags(
|
ref_info.first));
|
base_offset = SetDexCachePreResolvedStringNativeRefTag(GetImageOffset(obj_ptr));
|
} else {
|
++managed_string_refs;
|
base_offset = GetImageOffset(reinterpret_cast<mirror::Object*>(ref_info.first));
|
}
|
|
string_reference_offsets_.emplace_back(base_offset, ref_info.second);
|
}
|
|
CHECK_EQ(image_infos_.back().num_string_references_,
|
string_reference_offsets_.size());
|
|
VLOG(compiler) << "Dex2Oat:AppImage:stringReferences = " << string_reference_offsets_.size();
|
VLOG(compiler) << "Dex2Oat:AppImage:managedStringReferences = " << managed_string_refs;
|
VLOG(compiler) << "Dex2Oat:AppImage:nativeStringReferences = " << native_string_refs;
|
}
|
|
// This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and
|
// bin size sums being calculated.
|
TimingLogger::ScopedTiming t("AllocMemory", timings);
|
return AllocMemory();
|
}
|
|
class ImageWriter::CollectStringReferenceVisitor {
|
public:
|
explicit CollectStringReferenceVisitor(const ImageWriter& image_writer)
|
: image_writer_(image_writer),
|
curr_obj_(nullptr),
|
string_ref_info_(0),
|
dex_cache_string_ref_counter_(0) {}
|
|
// Used to prevent repeated null checks in the code that calls the visitor.
|
ALWAYS_INLINE
|
void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
if (!root->IsNull()) {
|
VisitRoot(root);
|
}
|
}
|
|
/*
|
* Counts the number of native references to strings reachable through
|
* DexCache objects for verification later.
|
*/
|
ALWAYS_INLINE
|
void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
ObjPtr<mirror::Object> referred_obj = root->AsMirrorPtr();
|
|
if (curr_obj_->IsDexCache() &&
|
image_writer_.IsValidAppImageStringReference(referred_obj)) {
|
++dex_cache_string_ref_counter_;
|
}
|
}
|
|
// Collects info for managed fields that reference managed Strings.
|
ALWAYS_INLINE
|
void operator() (ObjPtr<mirror::Object> obj,
|
MemberOffset member_offset,
|
bool is_static ATTRIBUTE_UNUSED) const
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
ObjPtr<mirror::Object> referred_obj =
|
obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
|
member_offset);
|
|
if (image_writer_.IsValidAppImageStringReference(referred_obj)) {
|
string_ref_info_.emplace_back(reinterpret_cast<uintptr_t>(obj.Ptr()),
|
member_offset.Uint32Value());
|
}
|
}
|
|
ALWAYS_INLINE
|
void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
|
ObjPtr<mirror::Reference> ref) const
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
|
}
|
|
void AddStringRefInfo(uint32_t first, uint32_t second) {
|
string_ref_info_.emplace_back(first, second);
|
}
|
|
std::vector<HeapReferencePointerInfo>&& MoveRefInfo() {
|
return std::move(string_ref_info_);
|
}
|
|
// Used by the wrapper function to obtain a native reference count.
|
size_t GetDexCacheStringRefCount() const {
|
return dex_cache_string_ref_counter_;
|
}
|
|
void SetObject(ObjPtr<mirror::Object> obj) {
|
curr_obj_ = obj;
|
dex_cache_string_ref_counter_ = 0;
|
}
|
|
private:
|
const ImageWriter& image_writer_;
|
ObjPtr<mirror::Object> curr_obj_;
|
mutable std::vector<HeapReferencePointerInfo> string_ref_info_;
|
mutable size_t dex_cache_string_ref_counter_;
|
};
|
|
std::vector<ImageWriter::HeapReferencePointerInfo> ImageWriter::CollectStringReferenceInfo() const
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
gc::Heap* const heap = Runtime::Current()->GetHeap();
|
CollectStringReferenceVisitor visitor(*this);
|
|
/*
|
* References to managed strings can occur either in the managed heap or in
|
* native memory regions. Information about managed references is collected
|
* by the CollectStringReferenceVisitor and directly added to the internal
|
* info vector.
|
*
|
* Native references to managed strings can only occur through DexCache
|
* objects. This is verified by VerifyNativeGCRootInvariants(). Due to the
|
* fact that these native references are encapsulated in std::atomic objects
|
* the VisitReferences() function can't pass the visiting object the address
|
* of the reference. Instead, the VisitReferences() function loads the
|
* reference into a temporary variable and passes that address to the
|
* visitor. As a consequence of this we can't uniquely identify the location
|
* of the string reference in the visitor.
|
*
|
* Due to these limitations, the visitor will only count the number of
|
* managed strings reachable through the native references of a DexCache
|
* object. If there are any such strings, this function will then iterate
|
* over the native references, test the string for membership in the
|
* AppImage, and add the tagged DexCache pointer and string array offset to
|
* the info vector if necessary.
|
*/
|
heap->VisitObjects([this, &visitor](ObjPtr<mirror::Object> object)
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
if (IsImageObject(object)) {
|
visitor.SetObject(object);
|
|
if (object->IsDexCache()) {
|
object->VisitReferences</* kVisitNativeRoots= */ true,
|
kVerifyNone,
|
kWithoutReadBarrier>(visitor, visitor);
|
|
if (visitor.GetDexCacheStringRefCount() > 0) {
|
size_t string_info_collected = 0;
|
|
ObjPtr<mirror::DexCache> dex_cache = object->AsDexCache();
|
// Both of the dex cache string arrays are visited, so add up the total in the check.
|
DCHECK_LE(visitor.GetDexCacheStringRefCount(),
|
dex_cache->NumPreResolvedStrings() + dex_cache->NumStrings());
|
|
for (uint32_t index = 0; index < dex_cache->NumStrings(); ++index) {
|
// GetResolvedString() can't be used here due to the circular
|
// nature of the cache and the collision detection this requires.
|
ObjPtr<mirror::String> referred_string =
|
dex_cache->GetStrings()[index].load().object.Read();
|
|
if (IsValidAppImageStringReference(referred_string)) {
|
++string_info_collected;
|
visitor.AddStringRefInfo(
|
SetDexCacheStringNativeRefTag(reinterpret_cast<uintptr_t>(object.Ptr())), index);
|
}
|
}
|
|
// Visit all of the preinitialized strings.
|
GcRoot<mirror::String>* preresolved_strings = dex_cache->GetPreResolvedStrings();
|
for (size_t index = 0; index < dex_cache->NumPreResolvedStrings(); ++index) {
|
ObjPtr<mirror::String> referred_string = preresolved_strings[index].Read();
|
if (IsValidAppImageStringReference(referred_string)) {
|
++string_info_collected;
|
visitor.AddStringRefInfo(SetDexCachePreResolvedStringNativeRefTag(
|
reinterpret_cast<uintptr_t>(object.Ptr())),
|
index);
|
}
|
}
|
|
DCHECK_EQ(string_info_collected, visitor.GetDexCacheStringRefCount());
|
}
|
} else {
|
object->VisitReferences</* kVisitNativeRoots= */ false,
|
kVerifyNone,
|
kWithoutReadBarrier>(visitor, visitor);
|
}
|
}
|
});
|
|
return visitor.MoveRefInfo();
|
}
|
|
class ImageWriter::NativeGCRootInvariantVisitor {
|
public:
|
explicit NativeGCRootInvariantVisitor(const ImageWriter& image_writer) :
|
curr_obj_(nullptr), class_violation_(false), class_loader_violation_(false),
|
image_writer_(image_writer) {}
|
|
ALWAYS_INLINE
|
void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
if (!root->IsNull()) {
|
VisitRoot(root);
|
}
|
}
|
|
ALWAYS_INLINE
|
void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
ObjPtr<mirror::Object> referred_obj = root->AsMirrorPtr();
|
|
if (curr_obj_->IsClass()) {
|
class_violation_ = class_violation_ ||
|
image_writer_.IsValidAppImageStringReference(referred_obj);
|
|
} else if (curr_obj_->IsClassLoader()) {
|
class_loader_violation_ = class_loader_violation_ ||
|
image_writer_.IsValidAppImageStringReference(referred_obj);
|
|
} else if (!curr_obj_->IsDexCache()) {
|
LOG(FATAL) << "Dex2Oat:AppImage | " <<
|
"Native reference to String found in unexpected object type.";
|
}
|
}
|
|
ALWAYS_INLINE
|
void operator() (ObjPtr<mirror::Object> obj ATTRIBUTE_UNUSED,
|
MemberOffset member_offset ATTRIBUTE_UNUSED,
|
bool is_static ATTRIBUTE_UNUSED) const
|
REQUIRES_SHARED(Locks::mutator_lock_) {}
|
|
ALWAYS_INLINE
|
void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
|
ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const
|
REQUIRES_SHARED(Locks::mutator_lock_) {}
|
|
// Returns true iff the only reachable native string references are through DexCache objects.
|
bool InvariantsHold() const {
|
return !(class_violation_ || class_loader_violation_);
|
}
|
|
ObjPtr<mirror::Object> curr_obj_;
|
mutable bool class_violation_;
|
mutable bool class_loader_violation_;
|
|
private:
|
const ImageWriter& image_writer_;
|
};
|
|
void ImageWriter::VerifyNativeGCRootInvariants() const REQUIRES_SHARED(Locks::mutator_lock_) {
|
gc::Heap* const heap = Runtime::Current()->GetHeap();
|
|
NativeGCRootInvariantVisitor visitor(*this);
|
|
heap->VisitObjects([this, &visitor](ObjPtr<mirror::Object> object)
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
visitor.curr_obj_ = object;
|
|
if (!IsInBootImage(object.Ptr())) {
|
object->VisitReferences</* kVisitNativeReferences= */ true,
|
kVerifyNone,
|
kWithoutReadBarrier>(visitor, visitor);
|
}
|
});
|
|
bool error = false;
|
std::ostringstream error_str;
|
|
/*
|
* Build the error string
|
*/
|
|
if (UNLIKELY(visitor.class_violation_)) {
|
error_str << "Class";
|
error = true;
|
}
|
|
if (UNLIKELY(visitor.class_loader_violation_)) {
|
if (error) {
|
error_str << ", ";
|
}
|
|
error_str << "ClassLoader";
|
}
|
|
CHECK(visitor.InvariantsHold()) <<
|
"Native GC root invariant failure. String ref invariants don't hold for the following " <<
|
"object types: " << error_str.str();
|
}
|
|
void ImageWriter::CopyMetadata() {
|
DCHECK(compiler_options_.IsAppImage());
|
CHECK_EQ(image_infos_.size(), 1u);
|
|
const ImageInfo& image_info = image_infos_.back();
|
std::vector<ImageSection> image_sections = image_info.CreateImageSections().second;
|
|
auto* sfo_section_base = reinterpret_cast<AppImageReferenceOffsetInfo*>(
|
image_info.image_.Begin() +
|
image_sections[ImageHeader::kSectionStringReferenceOffsets].Offset());
|
|
std::copy(string_reference_offsets_.begin(),
|
string_reference_offsets_.end(),
|
sfo_section_base);
|
}
|
|
bool ImageWriter::IsValidAppImageStringReference(ObjPtr<mirror::Object> referred_obj) const {
|
return referred_obj != nullptr &&
|
!IsInBootImage(referred_obj.Ptr()) &&
|
referred_obj->IsString();
|
}
|
|
// Helper class that erases the image file if it isn't properly flushed and closed.
|
class ImageWriter::ImageFileGuard {
|
public:
|
ImageFileGuard() noexcept = default;
|
ImageFileGuard(ImageFileGuard&& other) noexcept = default;
|
ImageFileGuard& operator=(ImageFileGuard&& other) noexcept = default;
|
|
~ImageFileGuard() {
|
if (image_file_ != nullptr) {
|
// Failure, erase the image file.
|
image_file_->Erase();
|
}
|
}
|
|
void reset(File* image_file) {
|
image_file_.reset(image_file);
|
}
|
|
bool operator==(std::nullptr_t) {
|
return image_file_ == nullptr;
|
}
|
|
bool operator!=(std::nullptr_t) {
|
return image_file_ != nullptr;
|
}
|
|
File* operator->() const {
|
return image_file_.get();
|
}
|
|
bool WriteHeaderAndClose(const std::string& image_filename, const ImageHeader* image_header) {
|
// The header is uncompressed since it contains whether the image is compressed or not.
|
if (!image_file_->PwriteFully(image_header, sizeof(ImageHeader), 0)) {
|
PLOG(ERROR) << "Failed to write image file header " << image_filename;
|
return false;
|
}
|
|
// FlushCloseOrErase() takes care of erasing, so the destructor does not need
|
// to do that whether the FlushCloseOrErase() succeeds or fails.
|
std::unique_ptr<File> image_file = std::move(image_file_);
|
if (image_file->FlushCloseOrErase() != 0) {
|
PLOG(ERROR) << "Failed to flush and close image file " << image_filename;
|
return false;
|
}
|
|
return true;
|
}
|
|
private:
|
std::unique_ptr<File> image_file_;
|
};
|
|
bool ImageWriter::Write(int image_fd,
|
const std::vector<std::string>& image_filenames,
|
const std::vector<std::string>& oat_filenames) {
|
// If image_fd or oat_fd are not kInvalidFd then we may have empty strings in image_filenames or
|
// oat_filenames.
|
CHECK(!image_filenames.empty());
|
if (image_fd != kInvalidFd) {
|
CHECK_EQ(image_filenames.size(), 1u);
|
}
|
CHECK(!oat_filenames.empty());
|
CHECK_EQ(image_filenames.size(), oat_filenames.size());
|
|
Thread* const self = Thread::Current();
|
{
|
ScopedObjectAccess soa(self);
|
for (size_t i = 0; i < oat_filenames.size(); ++i) {
|
CreateHeader(i);
|
CopyAndFixupNativeData(i);
|
}
|
}
|
|
{
|
// TODO: heap validation can't handle these fix up passes.
|
ScopedObjectAccess soa(self);
|
Runtime::Current()->GetHeap()->DisableObjectValidation();
|
CopyAndFixupObjects();
|
}
|
|
if (compiler_options_.IsAppImage()) {
|
CopyMetadata();
|
}
|
|
// Primary image header shall be written last for two reasons. First, this ensures
|
// that we shall not end up with a valid primary image and invalid secondary image.
|
// Second, its checksum shall include the checksums of the secondary images (XORed).
|
// This way only the primary image checksum needs to be checked to determine whether
|
// any of the images or oat files are out of date. (Oat file checksums are included
|
// in the image checksum calculation.)
|
ImageHeader* primary_header = reinterpret_cast<ImageHeader*>(image_infos_[0].image_.Begin());
|
ImageFileGuard primary_image_file;
|
for (size_t i = 0; i < image_filenames.size(); ++i) {
|
const std::string& image_filename = image_filenames[i];
|
ImageInfo& image_info = GetImageInfo(i);
|
ImageFileGuard image_file;
|
if (image_fd != kInvalidFd) {
|
if (image_filename.empty()) {
|
image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage));
|
// Empty the file in case it already exists.
|
if (image_file != nullptr) {
|
TEMP_FAILURE_RETRY(image_file->SetLength(0));
|
TEMP_FAILURE_RETRY(image_file->Flush());
|
}
|
} else {
|
LOG(ERROR) << "image fd " << image_fd << " name " << image_filename;
|
}
|
} else {
|
image_file.reset(OS::CreateEmptyFile(image_filename.c_str()));
|
}
|
|
if (image_file == nullptr) {
|
LOG(ERROR) << "Failed to open image file " << image_filename;
|
return false;
|
}
|
|
if (!compiler_options_.IsAppImage() && fchmod(image_file->Fd(), 0644) != 0) {
|
PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
|
return EXIT_FAILURE;
|
}
|
|
// Image data size excludes the bitmap and the header.
|
ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin());
|
|
// Block sources (from the image).
|
const bool is_compressed = image_storage_mode_ != ImageHeader::kStorageModeUncompressed;
|
std::vector<std::pair<uint32_t, uint32_t>> block_sources;
|
std::vector<ImageHeader::Block> blocks;
|
|
// Add a set of solid blocks such that no block is larger than the maximum size. A solid block
|
// is a block that must be decompressed all at once.
|
auto add_blocks = [&](uint32_t offset, uint32_t size) {
|
while (size != 0u) {
|
const uint32_t cur_size = std::min(size, compiler_options_.MaxImageBlockSize());
|
block_sources.emplace_back(offset, cur_size);
|
offset += cur_size;
|
size -= cur_size;
|
}
|
};
|
|
add_blocks(sizeof(ImageHeader), image_header->GetImageSize() - sizeof(ImageHeader));
|
|
// Checksum of compressed image data and header.
|
uint32_t image_checksum = adler32(0L, Z_NULL, 0);
|
image_checksum = adler32(image_checksum,
|
reinterpret_cast<const uint8_t*>(image_header),
|
sizeof(ImageHeader));
|
// Copy and compress blocks.
|
size_t out_offset = sizeof(ImageHeader);
|
for (const std::pair<uint32_t, uint32_t> block : block_sources) {
|
ArrayRef<const uint8_t> raw_image_data(image_info.image_.Begin() + block.first,
|
block.second);
|
std::vector<uint8_t> compressed_data;
|
ArrayRef<const uint8_t> image_data =
|
MaybeCompressData(raw_image_data, image_storage_mode_, &compressed_data);
|
|
if (!is_compressed) {
|
// For uncompressed, preserve alignment since the image will be directly mapped.
|
out_offset = block.first;
|
}
|
|
// Fill in the compressed location of the block.
|
blocks.emplace_back(ImageHeader::Block(
|
image_storage_mode_,
|
/*data_offset=*/ out_offset,
|
/*data_size=*/ image_data.size(),
|
/*image_offset=*/ block.first,
|
/*image_size=*/ block.second));
|
|
// Write out the image + fields + methods.
|
if (!image_file->PwriteFully(image_data.data(), image_data.size(), out_offset)) {
|
PLOG(ERROR) << "Failed to write image file data " << image_filename;
|
image_file->Erase();
|
return false;
|
}
|
out_offset += image_data.size();
|
image_checksum = adler32(image_checksum, image_data.data(), image_data.size());
|
}
|
|
// Write the block metadata directly after the image sections.
|
// Note: This is not part of the mapped image and is not preserved after decompressing, it's
|
// only used for image loading. For this reason, only write it out for compressed images.
|
if (is_compressed) {
|
// Align up since the compressed data is not necessarily aligned.
|
out_offset = RoundUp(out_offset, alignof(ImageHeader::Block));
|
CHECK(!blocks.empty());
|
const size_t blocks_bytes = blocks.size() * sizeof(blocks[0]);
|
if (!image_file->PwriteFully(&blocks[0], blocks_bytes, out_offset)) {
|
PLOG(ERROR) << "Failed to write image blocks " << image_filename;
|
image_file->Erase();
|
return false;
|
}
|
image_header->blocks_offset_ = out_offset;
|
image_header->blocks_count_ = blocks.size();
|
out_offset += blocks_bytes;
|
}
|
|
// Data size includes everything except the bitmap.
|
image_header->data_size_ = out_offset - sizeof(ImageHeader);
|
|
// Update and write the bitmap section. Note that the bitmap section is relative to the
|
// possibly compressed image.
|
ImageSection& bitmap_section = image_header->GetImageSection(ImageHeader::kSectionImageBitmap);
|
// Align up since data size may be unaligned if the image is compressed.
|
out_offset = RoundUp(out_offset, kPageSize);
|
bitmap_section = ImageSection(out_offset, bitmap_section.Size());
|
|
if (!image_file->PwriteFully(image_info.image_bitmap_->Begin(),
|
bitmap_section.Size(),
|
bitmap_section.Offset())) {
|
PLOG(ERROR) << "Failed to write image file bitmap " << image_filename;
|
return false;
|
}
|
|
int err = image_file->Flush();
|
if (err < 0) {
|
PLOG(ERROR) << "Failed to flush image file " << image_filename << " with result " << err;
|
return false;
|
}
|
|
// Calculate the image checksum of the remaining data.
|
image_checksum = adler32(image_checksum,
|
reinterpret_cast<const uint8_t*>(image_info.image_bitmap_->Begin()),
|
bitmap_section.Size());
|
image_header->SetImageChecksum(image_checksum);
|
|
if (VLOG_IS_ON(compiler)) {
|
const size_t separately_written_section_size = bitmap_section.Size();
|
const size_t total_uncompressed_size = image_info.image_size_ +
|
separately_written_section_size;
|
const size_t total_compressed_size = out_offset + separately_written_section_size;
|
|
VLOG(compiler) << "Dex2Oat:uncompressedImageSize = " << total_uncompressed_size;
|
if (total_uncompressed_size != total_compressed_size) {
|
VLOG(compiler) << "Dex2Oat:compressedImageSize = " << total_compressed_size;
|
}
|
}
|
|
CHECK_EQ(bitmap_section.End(), static_cast<size_t>(image_file->GetLength()))
|
<< "Bitmap should be at the end of the file";
|
|
// Write header last in case the compiler gets killed in the middle of image writing.
|
// We do not want to have a corrupted image with a valid header.
|
// Delay the writing of the primary image header until after writing secondary images.
|
if (i == 0u) {
|
primary_image_file = std::move(image_file);
|
} else {
|
if (!image_file.WriteHeaderAndClose(image_filename, image_header)) {
|
return false;
|
}
|
// Update the primary image checksum with the secondary image checksum.
|
primary_header->SetImageChecksum(primary_header->GetImageChecksum() ^ image_checksum);
|
}
|
}
|
DCHECK(primary_image_file != nullptr);
|
if (!primary_image_file.WriteHeaderAndClose(image_filenames[0], primary_header)) {
|
return false;
|
}
|
|
return true;
|
}
|
|
void ImageWriter::SetImageOffset(mirror::Object* object, size_t offset) {
|
DCHECK(object != nullptr);
|
DCHECK_NE(offset, 0U);
|
|
// The object is already deflated from when we set the bin slot. Just overwrite the lock word.
|
object->SetLockWord(LockWord::FromForwardingAddress(offset), false);
|
DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
|
DCHECK(IsImageOffsetAssigned(object));
|
}
|
|
void ImageWriter::UpdateImageOffset(mirror::Object* obj, uintptr_t offset) {
|
DCHECK(IsImageOffsetAssigned(obj)) << obj << " " << offset;
|
obj->SetLockWord(LockWord::FromForwardingAddress(offset), false);
|
DCHECK_EQ(obj->GetLockWord(false).ReadBarrierState(), 0u);
|
}
|
|
void ImageWriter::AssignImageOffset(mirror::Object* object, ImageWriter::BinSlot bin_slot) {
|
DCHECK(object != nullptr);
|
DCHECK_NE(image_objects_offset_begin_, 0u);
|
|
size_t oat_index = GetOatIndex(object);
|
ImageInfo& image_info = GetImageInfo(oat_index);
|
size_t bin_slot_offset = image_info.GetBinSlotOffset(bin_slot.GetBin());
|
size_t new_offset = bin_slot_offset + bin_slot.GetIndex();
|
DCHECK_ALIGNED(new_offset, kObjectAlignment);
|
|
SetImageOffset(object, new_offset);
|
DCHECK_LT(new_offset, image_info.image_end_);
|
}
|
|
bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const {
|
// Will also return true if the bin slot was assigned since we are reusing the lock word.
|
DCHECK(object != nullptr);
|
return object->GetLockWord(false).GetState() == LockWord::kForwardingAddress;
|
}
|
|
size_t ImageWriter::GetImageOffset(mirror::Object* object) const {
|
DCHECK(object != nullptr);
|
DCHECK(IsImageOffsetAssigned(object));
|
LockWord lock_word = object->GetLockWord(false);
|
size_t offset = lock_word.ForwardingAddress();
|
size_t oat_index = GetOatIndex(object);
|
const ImageInfo& image_info = GetImageInfo(oat_index);
|
DCHECK_LT(offset, image_info.image_end_);
|
return offset;
|
}
|
|
void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) {
|
DCHECK(object != nullptr);
|
DCHECK(!IsImageOffsetAssigned(object));
|
DCHECK(!IsImageBinSlotAssigned(object));
|
|
// Before we stomp over the lock word, save the hash code for later.
|
LockWord lw(object->GetLockWord(false));
|
switch (lw.GetState()) {
|
case LockWord::kFatLocked:
|
FALLTHROUGH_INTENDED;
|
case LockWord::kThinLocked: {
|
std::ostringstream oss;
|
bool thin = (lw.GetState() == LockWord::kThinLocked);
|
oss << (thin ? "Thin" : "Fat")
|
<< " locked object " << object << "(" << object->PrettyTypeOf()
|
<< ") found during object copy";
|
if (thin) {
|
oss << ". Lock owner:" << lw.ThinLockOwner();
|
}
|
LOG(FATAL) << oss.str();
|
UNREACHABLE();
|
}
|
case LockWord::kUnlocked:
|
// No hash, don't need to save it.
|
break;
|
case LockWord::kHashCode:
|
DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end());
|
saved_hashcode_map_.emplace(object, lw.GetHashCode());
|
break;
|
default:
|
LOG(FATAL) << "Unreachable.";
|
UNREACHABLE();
|
}
|
object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()), false);
|
DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
|
DCHECK(IsImageBinSlotAssigned(object));
|
}
|
|
void ImageWriter::PrepareDexCacheArraySlots() {
|
// Prepare dex cache array starts based on the ordering specified in the CompilerOptions.
|
// Set the slot size early to avoid DCHECK() failures in IsImageBinSlotAssigned()
|
// when AssignImageBinSlot() assigns their indexes out or order.
|
for (const DexFile* dex_file : compiler_options_.GetDexFilesForOatFile()) {
|
auto it = dex_file_oat_index_map_.find(dex_file);
|
DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
|
ImageInfo& image_info = GetImageInfo(it->second);
|
image_info.dex_cache_array_starts_.Put(
|
dex_file, image_info.GetBinSlotSize(Bin::kDexCacheArray));
|
DexCacheArraysLayout layout(target_ptr_size_, dex_file);
|
image_info.IncrementBinSlotSize(Bin::kDexCacheArray, layout.Size());
|
}
|
|
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
|
Thread* const self = Thread::Current();
|
ReaderMutexLock mu(self, *Locks::dex_lock_);
|
for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
|
ObjPtr<mirror::DexCache> dex_cache =
|
ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
|
if (dex_cache == nullptr || !IsImageObject(dex_cache)) {
|
continue;
|
}
|
const DexFile* dex_file = dex_cache->GetDexFile();
|
CHECK(dex_file_oat_index_map_.find(dex_file) != dex_file_oat_index_map_.end())
|
<< "Dex cache should have been pruned " << dex_file->GetLocation()
|
<< "; possibly in class path";
|
DexCacheArraysLayout layout(target_ptr_size_, dex_file);
|
DCHECK(layout.Valid());
|
size_t oat_index = GetOatIndexForDexCache(dex_cache);
|
ImageInfo& image_info = GetImageInfo(oat_index);
|
uint32_t start = image_info.dex_cache_array_starts_.Get(dex_file);
|
DCHECK_EQ(dex_file->NumTypeIds() != 0u, dex_cache->GetResolvedTypes() != nullptr);
|
AddDexCacheArrayRelocation(dex_cache->GetResolvedTypes(),
|
start + layout.TypesOffset(),
|
oat_index);
|
DCHECK_EQ(dex_file->NumMethodIds() != 0u, dex_cache->GetResolvedMethods() != nullptr);
|
AddDexCacheArrayRelocation(dex_cache->GetResolvedMethods(),
|
start + layout.MethodsOffset(),
|
oat_index);
|
DCHECK_EQ(dex_file->NumFieldIds() != 0u, dex_cache->GetResolvedFields() != nullptr);
|
AddDexCacheArrayRelocation(dex_cache->GetResolvedFields(),
|
start + layout.FieldsOffset(),
|
oat_index);
|
DCHECK_EQ(dex_file->NumStringIds() != 0u, dex_cache->GetStrings() != nullptr);
|
AddDexCacheArrayRelocation(dex_cache->GetStrings(), start + layout.StringsOffset(), oat_index);
|
|
AddDexCacheArrayRelocation(dex_cache->GetResolvedMethodTypes(),
|
start + layout.MethodTypesOffset(),
|
oat_index);
|
AddDexCacheArrayRelocation(dex_cache->GetResolvedCallSites(),
|
start + layout.CallSitesOffset(),
|
oat_index);
|
|
// Preresolved strings aren't part of the special layout.
|
GcRoot<mirror::String>* preresolved_strings = dex_cache->GetPreResolvedStrings();
|
if (preresolved_strings != nullptr) {
|
DCHECK(!IsInBootImage(preresolved_strings));
|
// Add the array to the metadata section.
|
const size_t count = dex_cache->NumPreResolvedStrings();
|
auto bin = BinTypeForNativeRelocationType(NativeObjectRelocationType::kGcRootPointer);
|
for (size_t i = 0; i < count; ++i) {
|
native_object_relocations_.emplace(&preresolved_strings[i],
|
NativeObjectRelocation { oat_index,
|
image_info.GetBinSlotSize(bin),
|
NativeObjectRelocationType::kGcRootPointer });
|
image_info.IncrementBinSlotSize(bin, sizeof(GcRoot<mirror::Object>));
|
}
|
}
|
}
|
}
|
|
void ImageWriter::AddDexCacheArrayRelocation(void* array,
|
size_t offset,
|
size_t oat_index) {
|
if (array != nullptr) {
|
DCHECK(!IsInBootImage(array));
|
native_object_relocations_.emplace(array,
|
NativeObjectRelocation { oat_index, offset, NativeObjectRelocationType::kDexCacheArray });
|
}
|
}
|
|
void ImageWriter::AddMethodPointerArray(ObjPtr<mirror::PointerArray> arr) {
|
DCHECK(arr != nullptr);
|
if (kIsDebugBuild) {
|
for (size_t i = 0, len = arr->GetLength(); i < len; i++) {
|
ArtMethod* method = arr->GetElementPtrSize<ArtMethod*>(i, target_ptr_size_);
|
if (method != nullptr && !method->IsRuntimeMethod()) {
|
ObjPtr<mirror::Class> klass = method->GetDeclaringClass();
|
CHECK(klass == nullptr || KeepClass(klass))
|
<< Class::PrettyClass(klass) << " should be a kept class";
|
}
|
}
|
}
|
// kBinArtMethodClean picked arbitrarily, just required to differentiate between ArtFields and
|
// ArtMethods.
|
pointer_arrays_.emplace(arr.Ptr(), Bin::kArtMethodClean);
|
}
|
|
void ImageWriter::AssignImageBinSlot(mirror::Object* object, size_t oat_index) {
|
DCHECK(object != nullptr);
|
size_t object_size = object->SizeOf();
|
|
// The magic happens here. We segregate objects into different bins based
|
// on how likely they are to get dirty at runtime.
|
//
|
// Likely-to-dirty objects get packed together into the same bin so that
|
// at runtime their page dirtiness ratio (how many dirty objects a page has) is
|
// maximized.
|
//
|
// This means more pages will stay either clean or shared dirty (with zygote) and
|
// the app will use less of its own (private) memory.
|
Bin bin = Bin::kRegular;
|
|
if (kBinObjects) {
|
//
|
// Changing the bin of an object is purely a memory-use tuning.
|
// It has no change on runtime correctness.
|
//
|
// Memory analysis has determined that the following types of objects get dirtied
|
// the most:
|
//
|
// * Dex cache arrays are stored in a special bin. The arrays for each dex cache have
|
// a fixed layout which helps improve generated code (using PC-relative addressing),
|
// so we pre-calculate their offsets separately in PrepareDexCacheArraySlots().
|
// Since these arrays are huge, most pages do not overlap other objects and it's not
|
// really important where they are for the clean/dirty separation. Due to their
|
// special PC-relative addressing, we arbitrarily keep them at the end.
|
// * Class'es which are verified [their clinit runs only at runtime]
|
// - classes in general [because their static fields get overwritten]
|
// - initialized classes with all-final statics are unlikely to be ever dirty,
|
// so bin them separately
|
// * Art Methods that are:
|
// - native [their native entry point is not looked up until runtime]
|
// - have declaring classes that aren't initialized
|
// [their interpreter/quick entry points are trampolines until the class
|
// becomes initialized]
|
//
|
// We also assume the following objects get dirtied either never or extremely rarely:
|
// * Strings (they are immutable)
|
// * Art methods that aren't native and have initialized declared classes
|
//
|
// We assume that "regular" bin objects are highly unlikely to become dirtied,
|
// so packing them together will not result in a noticeably tighter dirty-to-clean ratio.
|
//
|
if (object->IsClass()) {
|
bin = Bin::kClassVerified;
|
ObjPtr<mirror::Class> klass = object->AsClass();
|
|
// Add non-embedded vtable to the pointer array table if there is one.
|
ObjPtr<mirror::PointerArray> vtable = klass->GetVTable();
|
if (vtable != nullptr) {
|
AddMethodPointerArray(vtable);
|
}
|
ObjPtr<mirror::IfTable> iftable = klass->GetIfTable();
|
if (iftable != nullptr) {
|
for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
|
if (iftable->GetMethodArrayCount(i) > 0) {
|
AddMethodPointerArray(iftable->GetMethodArray(i));
|
}
|
}
|
}
|
|
// Move known dirty objects into their own sections. This includes:
|
// - classes with dirty static fields.
|
if (dirty_image_objects_ != nullptr &&
|
dirty_image_objects_->find(klass->PrettyDescriptor()) != dirty_image_objects_->end()) {
|
bin = Bin::kKnownDirty;
|
} else if (klass->GetStatus() == ClassStatus::kInitialized) {
|
bin = Bin::kClassInitialized;
|
|
// If the class's static fields are all final, put it into a separate bin
|
// since it's very likely it will stay clean.
|
uint32_t num_static_fields = klass->NumStaticFields();
|
if (num_static_fields == 0) {
|
bin = Bin::kClassInitializedFinalStatics;
|
} else {
|
// Maybe all the statics are final?
|
bool all_final = true;
|
for (uint32_t i = 0; i < num_static_fields; ++i) {
|
ArtField* field = klass->GetStaticField(i);
|
if (!field->IsFinal()) {
|
all_final = false;
|
break;
|
}
|
}
|
|
if (all_final) {
|
bin = Bin::kClassInitializedFinalStatics;
|
}
|
}
|
}
|
} else if (object->GetClass<kVerifyNone>()->IsStringClass()) {
|
bin = Bin::kString; // Strings are almost always immutable (except for object header).
|
} else if (object->GetClass<kVerifyNone>() == GetClassRoot<mirror::Object>()) {
|
// Instance of java lang object, probably a lock object. This means it will be dirty when we
|
// synchronize on it.
|
bin = Bin::kMiscDirty;
|
} else if (object->IsDexCache()) {
|
// Dex file field becomes dirty when the image is loaded.
|
bin = Bin::kMiscDirty;
|
}
|
// else bin = kBinRegular
|
}
|
|
// Assign the oat index too.
|
DCHECK(oat_index_map_.find(object) == oat_index_map_.end());
|
oat_index_map_.emplace(object, oat_index);
|
|
ImageInfo& image_info = GetImageInfo(oat_index);
|
|
size_t offset_delta = RoundUp(object_size, kObjectAlignment); // 64-bit alignment
|
// How many bytes the current bin is at (aligned).
|
size_t current_offset = image_info.GetBinSlotSize(bin);
|
// Move the current bin size up to accommodate the object we just assigned a bin slot.
|
image_info.IncrementBinSlotSize(bin, offset_delta);
|
|
BinSlot new_bin_slot(bin, current_offset);
|
SetImageBinSlot(object, new_bin_slot);
|
|
image_info.IncrementBinSlotCount(bin, 1u);
|
|
// Grow the image closer to the end by the object we just assigned.
|
image_info.image_end_ += offset_delta;
|
}
|
|
bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const {
|
if (m->IsNative()) {
|
return true;
|
}
|
ObjPtr<mirror::Class> declaring_class = m->GetDeclaringClass();
|
// Initialized is highly unlikely to dirty since there's no entry points to mutate.
|
return declaring_class == nullptr || declaring_class->GetStatus() != ClassStatus::kInitialized;
|
}
|
|
bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const {
|
DCHECK(object != nullptr);
|
|
// We always stash the bin slot into a lockword, in the 'forwarding address' state.
|
// If it's in some other state, then we haven't yet assigned an image bin slot.
|
if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) {
|
return false;
|
} else if (kIsDebugBuild) {
|
LockWord lock_word = object->GetLockWord(false);
|
size_t offset = lock_word.ForwardingAddress();
|
BinSlot bin_slot(offset);
|
size_t oat_index = GetOatIndex(object);
|
const ImageInfo& image_info = GetImageInfo(oat_index);
|
DCHECK_LT(bin_slot.GetIndex(), image_info.GetBinSlotSize(bin_slot.GetBin()))
|
<< "bin slot offset should not exceed the size of that bin";
|
}
|
return true;
|
}
|
|
ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object) const {
|
DCHECK(object != nullptr);
|
DCHECK(IsImageBinSlotAssigned(object));
|
|
LockWord lock_word = object->GetLockWord(false);
|
size_t offset = lock_word.ForwardingAddress(); // TODO: ForwardingAddress should be uint32_t
|
DCHECK_LE(offset, std::numeric_limits<uint32_t>::max());
|
|
BinSlot bin_slot(static_cast<uint32_t>(offset));
|
size_t oat_index = GetOatIndex(object);
|
const ImageInfo& image_info = GetImageInfo(oat_index);
|
DCHECK_LT(bin_slot.GetIndex(), image_info.GetBinSlotSize(bin_slot.GetBin()));
|
|
return bin_slot;
|
}
|
|
bool ImageWriter::AllocMemory() {
|
for (ImageInfo& image_info : image_infos_) {
|
const size_t length = RoundUp(image_info.CreateImageSections().first, kPageSize);
|
|
std::string error_msg;
|
image_info.image_ = MemMap::MapAnonymous("image writer image",
|
length,
|
PROT_READ | PROT_WRITE,
|
/*low_4gb=*/ false,
|
&error_msg);
|
if (UNLIKELY(!image_info.image_.IsValid())) {
|
LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
|
return false;
|
}
|
|
// Create the image bitmap, only needs to cover mirror object section which is up to image_end_.
|
CHECK_LE(image_info.image_end_, length);
|
image_info.image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create(
|
"image bitmap", image_info.image_.Begin(), RoundUp(image_info.image_end_, kPageSize)));
|
if (image_info.image_bitmap_.get() == nullptr) {
|
LOG(ERROR) << "Failed to allocate memory for image bitmap";
|
return false;
|
}
|
}
|
return true;
|
}
|
|
static bool IsBootClassLoaderClass(ObjPtr<mirror::Class> klass)
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
return klass->GetClassLoader() == nullptr;
|
}
|
|
bool ImageWriter::IsBootClassLoaderNonImageClass(mirror::Class* klass) {
|
return IsBootClassLoaderClass(klass) && !IsInBootImage(klass);
|
}
|
|
// This visitor follows the references of an instance, recursively then prune this class
|
// if a type of any field is pruned.
|
class ImageWriter::PruneObjectReferenceVisitor {
|
public:
|
PruneObjectReferenceVisitor(ImageWriter* image_writer,
|
bool* early_exit,
|
std::unordered_set<mirror::Object*>* visited,
|
bool* result)
|
: image_writer_(image_writer), early_exit_(early_exit), visited_(visited), result_(result) {}
|
|
ALWAYS_INLINE void VisitRootIfNonNull(
|
mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const
|
REQUIRES_SHARED(Locks::mutator_lock_) { }
|
|
ALWAYS_INLINE void VisitRoot(
|
mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const
|
REQUIRES_SHARED(Locks::mutator_lock_) { }
|
|
ALWAYS_INLINE void operator() (ObjPtr<mirror::Object> obj,
|
MemberOffset offset,
|
bool is_static ATTRIBUTE_UNUSED) const
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
mirror::Object* ref =
|
obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
|
if (ref == nullptr || visited_->find(ref) != visited_->end()) {
|
return;
|
}
|
|
ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
|
Runtime::Current()->GetClassLinker()->GetClassRoots();
|
ObjPtr<mirror::Class> klass = ref->IsClass() ? ref->AsClass() : ref->GetClass();
|
if (klass == GetClassRoot<mirror::Method>(class_roots) ||
|
klass == GetClassRoot<mirror::Constructor>(class_roots)) {
|
// Prune all classes using reflection because the content they held will not be fixup.
|
*result_ = true;
|
}
|
|
if (ref->IsClass()) {
|
*result_ = *result_ ||
|
image_writer_->PruneAppImageClassInternal(ref->AsClass(), early_exit_, visited_);
|
} else {
|
// Record the object visited in case of circular reference.
|
visited_->emplace(ref);
|
*result_ = *result_ ||
|
image_writer_->PruneAppImageClassInternal(klass, early_exit_, visited_);
|
ref->VisitReferences(*this, *this);
|
// Clean up before exit for next call of this function.
|
visited_->erase(ref);
|
}
|
}
|
|
ALWAYS_INLINE void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
|
ObjPtr<mirror::Reference> ref) const
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
|
}
|
|
ALWAYS_INLINE bool GetResult() const {
|
return result_;
|
}
|
|
private:
|
ImageWriter* image_writer_;
|
bool* early_exit_;
|
std::unordered_set<mirror::Object*>* visited_;
|
bool* const result_;
|
};
|
|
|
bool ImageWriter::PruneAppImageClass(ObjPtr<mirror::Class> klass) {
|
bool early_exit = false;
|
std::unordered_set<mirror::Object*> visited;
|
return PruneAppImageClassInternal(klass, &early_exit, &visited);
|
}
|
|
bool ImageWriter::PruneAppImageClassInternal(
|
ObjPtr<mirror::Class> klass,
|
bool* early_exit,
|
std::unordered_set<mirror::Object*>* visited) {
|
DCHECK(early_exit != nullptr);
|
DCHECK(visited != nullptr);
|
DCHECK(compiler_options_.IsAppImage());
|
if (klass == nullptr || IsInBootImage(klass.Ptr())) {
|
return false;
|
}
|
auto found = prune_class_memo_.find(klass.Ptr());
|
if (found != prune_class_memo_.end()) {
|
// Already computed, return the found value.
|
return found->second;
|
}
|
// Circular dependencies, return false but do not store the result in the memoization table.
|
if (visited->find(klass.Ptr()) != visited->end()) {
|
*early_exit = true;
|
return false;
|
}
|
visited->emplace(klass.Ptr());
|
bool result = IsBootClassLoaderClass(klass);
|
std::string temp;
|
// Prune if not an image class, this handles any broken sets of image classes such as having a
|
// class in the set but not it's superclass.
|
result = result || !compiler_options_.IsImageClass(klass->GetDescriptor(&temp));
|
bool my_early_exit = false; // Only for ourselves, ignore caller.
|
// Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the
|
// app image.
|
if (klass->IsErroneous()) {
|
result = true;
|
} else {
|
ObjPtr<mirror::ClassExt> ext(klass->GetExtData());
|
CHECK(ext.IsNull() || ext->GetVerifyError() == nullptr) << klass->PrettyClass();
|
}
|
if (!result) {
|
// Check interfaces since these wont be visited through VisitReferences.)
|
ObjPtr<mirror::IfTable> if_table = klass->GetIfTable();
|
for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) {
|
result = result || PruneAppImageClassInternal(if_table->GetInterface(i),
|
&my_early_exit,
|
visited);
|
}
|
}
|
if (klass->IsObjectArrayClass()) {
|
result = result || PruneAppImageClassInternal(klass->GetComponentType(),
|
&my_early_exit,
|
visited);
|
}
|
// Check static fields and their classes.
|
if (klass->IsResolved() && klass->NumReferenceStaticFields() != 0) {
|
size_t num_static_fields = klass->NumReferenceStaticFields();
|
// Presumably GC can happen when we are cross compiling, it should not cause performance
|
// problems to do pointer size logic.
|
MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(
|
Runtime::Current()->GetClassLinker()->GetImagePointerSize());
|
for (size_t i = 0u; i < num_static_fields; ++i) {
|
mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset);
|
if (ref != nullptr) {
|
if (ref->IsClass()) {
|
result = result || PruneAppImageClassInternal(ref->AsClass(),
|
&my_early_exit,
|
visited);
|
} else {
|
mirror::Class* type = ref->GetClass();
|
result = result || PruneAppImageClassInternal(type,
|
&my_early_exit,
|
visited);
|
if (!result) {
|
// For non-class case, also go through all the types mentioned by it's fields'
|
// references recursively to decide whether to keep this class.
|
bool tmp = false;
|
PruneObjectReferenceVisitor visitor(this, &my_early_exit, visited, &tmp);
|
ref->VisitReferences(visitor, visitor);
|
result = result || tmp;
|
}
|
}
|
}
|
field_offset = MemberOffset(field_offset.Uint32Value() +
|
sizeof(mirror::HeapReference<mirror::Object>));
|
}
|
}
|
result = result || PruneAppImageClassInternal(klass->GetSuperClass(),
|
&my_early_exit,
|
visited);
|
// Remove the class if the dex file is not in the set of dex files. This happens for classes that
|
// are from uses-library if there is no profile. b/30688277
|
ObjPtr<mirror::DexCache> dex_cache = klass->GetDexCache();
|
if (dex_cache != nullptr) {
|
result = result ||
|
dex_file_oat_index_map_.find(dex_cache->GetDexFile()) == dex_file_oat_index_map_.end();
|
}
|
// Erase the element we stored earlier since we are exiting the function.
|
auto it = visited->find(klass.Ptr());
|
DCHECK(it != visited->end());
|
visited->erase(it);
|
// Only store result if it is true or none of the calls early exited due to circular
|
// dependencies. If visited is empty then we are the root caller, in this case the cycle was in
|
// a child call and we can remember the result.
|
if (result == true || !my_early_exit || visited->empty()) {
|
prune_class_memo_[klass.Ptr()] = result;
|
}
|
*early_exit |= my_early_exit;
|
return result;
|
}
|
|
bool ImageWriter::KeepClass(ObjPtr<mirror::Class> klass) {
|
if (klass == nullptr) {
|
return false;
|
}
|
if (!compiler_options_.IsBootImage() &&
|
Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) {
|
// Already in boot image, return true.
|
return true;
|
}
|
std::string temp;
|
if (!compiler_options_.IsImageClass(klass->GetDescriptor(&temp))) {
|
return false;
|
}
|
if (compiler_options_.IsAppImage()) {
|
// For app images, we need to prune boot loader classes that are not in the boot image since
|
// these may have already been loaded when the app image is loaded.
|
// Keep classes in the boot image space since we don't want to re-resolve these.
|
return !PruneAppImageClass(klass);
|
}
|
return true;
|
}
|
|
class ImageWriter::PruneClassesVisitor : public ClassVisitor {
|
public:
|
PruneClassesVisitor(ImageWriter* image_writer, ObjPtr<mirror::ClassLoader> class_loader)
|
: image_writer_(image_writer),
|
class_loader_(class_loader),
|
classes_to_prune_(),
|
defined_class_count_(0u) { }
|
|
bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
|
if (!image_writer_->KeepClass(klass.Ptr())) {
|
classes_to_prune_.insert(klass.Ptr());
|
if (klass->GetClassLoader() == class_loader_) {
|
++defined_class_count_;
|
}
|
}
|
return true;
|
}
|
|
size_t Prune() REQUIRES_SHARED(Locks::mutator_lock_) {
|
ClassTable* class_table =
|
Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader_);
|
for (mirror::Class* klass : classes_to_prune_) {
|
std::string storage;
|
const char* descriptor = klass->GetDescriptor(&storage);
|
bool result = class_table->Remove(descriptor);
|
DCHECK(result);
|
DCHECK(!class_table->Remove(descriptor)) << descriptor;
|
}
|
return defined_class_count_;
|
}
|
|
private:
|
ImageWriter* const image_writer_;
|
const ObjPtr<mirror::ClassLoader> class_loader_;
|
std::unordered_set<mirror::Class*> classes_to_prune_;
|
size_t defined_class_count_;
|
};
|
|
class ImageWriter::PruneClassLoaderClassesVisitor : public ClassLoaderVisitor {
|
public:
|
explicit PruneClassLoaderClassesVisitor(ImageWriter* image_writer)
|
: image_writer_(image_writer), removed_class_count_(0) {}
|
|
void Visit(ObjPtr<mirror::ClassLoader> class_loader) override
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
PruneClassesVisitor classes_visitor(image_writer_, class_loader);
|
ClassTable* class_table =
|
Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader);
|
class_table->Visit(classes_visitor);
|
removed_class_count_ += classes_visitor.Prune();
|
}
|
|
size_t GetRemovedClassCount() const {
|
return removed_class_count_;
|
}
|
|
private:
|
ImageWriter* const image_writer_;
|
size_t removed_class_count_;
|
};
|
|
void ImageWriter::VisitClassLoaders(ClassLoaderVisitor* visitor) {
|
WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
|
visitor->Visit(nullptr); // Visit boot class loader.
|
Runtime::Current()->GetClassLinker()->VisitClassLoaders(visitor);
|
}
|
|
void ImageWriter::PruneDexCache(ObjPtr<mirror::DexCache> dex_cache,
|
ObjPtr<mirror::ClassLoader> class_loader) {
|
Runtime* runtime = Runtime::Current();
|
ClassLinker* class_linker = runtime->GetClassLinker();
|
const DexFile& dex_file = *dex_cache->GetDexFile();
|
// Prune methods.
|
dex::TypeIndex last_class_idx; // Initialized to invalid index.
|
ObjPtr<mirror::Class> last_class = nullptr;
|
mirror::MethodDexCacheType* resolved_methods = dex_cache->GetResolvedMethods();
|
for (size_t slot_idx = 0, num = dex_cache->NumResolvedMethods(); slot_idx != num; ++slot_idx) {
|
auto pair =
|
mirror::DexCache::GetNativePairPtrSize(resolved_methods, slot_idx, target_ptr_size_);
|
uint32_t stored_index = pair.index;
|
ArtMethod* method = pair.object;
|
if (method == nullptr) {
|
continue; // Empty entry.
|
}
|
// Check if the referenced class is in the image. Note that we want to check the referenced
|
// class rather than the declaring class to preserve the semantics, i.e. using a MethodId
|
// results in resolving the referenced class and that can for example throw OOME.
|
const dex::MethodId& method_id = dex_file.GetMethodId(stored_index);
|
if (method_id.class_idx_ != last_class_idx) {
|
last_class_idx = method_id.class_idx_;
|
last_class = class_linker->LookupResolvedType(last_class_idx, dex_cache, class_loader);
|
if (last_class != nullptr && !KeepClass(last_class)) {
|
last_class = nullptr;
|
}
|
}
|
if (last_class == nullptr) {
|
dex_cache->ClearResolvedMethod(stored_index, target_ptr_size_);
|
}
|
}
|
// Prune fields.
|
mirror::FieldDexCacheType* resolved_fields = dex_cache->GetResolvedFields();
|
last_class_idx = dex::TypeIndex(); // Initialized to invalid index.
|
last_class = nullptr;
|
for (size_t slot_idx = 0, num = dex_cache->NumResolvedFields(); slot_idx != num; ++slot_idx) {
|
auto pair = mirror::DexCache::GetNativePairPtrSize(resolved_fields, slot_idx, target_ptr_size_);
|
uint32_t stored_index = pair.index;
|
ArtField* field = pair.object;
|
if (field == nullptr) {
|
continue; // Empty entry.
|
}
|
// Check if the referenced class is in the image. Note that we want to check the referenced
|
// class rather than the declaring class to preserve the semantics, i.e. using a FieldId
|
// results in resolving the referenced class and that can for example throw OOME.
|
const dex::FieldId& field_id = dex_file.GetFieldId(stored_index);
|
if (field_id.class_idx_ != last_class_idx) {
|
last_class_idx = field_id.class_idx_;
|
last_class = class_linker->LookupResolvedType(last_class_idx, dex_cache, class_loader);
|
if (last_class != nullptr && !KeepClass(last_class)) {
|
last_class = nullptr;
|
}
|
}
|
if (last_class == nullptr) {
|
dex_cache->ClearResolvedField(stored_index, target_ptr_size_);
|
}
|
}
|
// Prune types.
|
for (size_t slot_idx = 0, num = dex_cache->NumResolvedTypes(); slot_idx != num; ++slot_idx) {
|
mirror::TypeDexCachePair pair =
|
dex_cache->GetResolvedTypes()[slot_idx].load(std::memory_order_relaxed);
|
uint32_t stored_index = pair.index;
|
ObjPtr<mirror::Class> klass = pair.object.Read();
|
if (klass != nullptr && !KeepClass(klass)) {
|
dex_cache->ClearResolvedType(dex::TypeIndex(stored_index));
|
}
|
}
|
// Strings do not need pruning.
|
}
|
|
void ImageWriter::PreloadDexCache(ObjPtr<mirror::DexCache> dex_cache,
|
ObjPtr<mirror::ClassLoader> class_loader) {
|
// To ensure deterministic contents of the hash-based arrays, each slot shall contain
|
// the candidate with the lowest index. As we're processing entries in increasing index
|
// order, this means trying to look up the entry for the current index if the slot is
|
// empty or if it contains a higher index.
|
|
Runtime* runtime = Runtime::Current();
|
ClassLinker* class_linker = runtime->GetClassLinker();
|
const DexFile& dex_file = *dex_cache->GetDexFile();
|
// Preload the methods array and make the contents deterministic.
|
mirror::MethodDexCacheType* resolved_methods = dex_cache->GetResolvedMethods();
|
dex::TypeIndex last_class_idx; // Initialized to invalid index.
|
ObjPtr<mirror::Class> last_class = nullptr;
|
for (size_t i = 0, num = dex_cache->GetDexFile()->NumMethodIds(); i != num; ++i) {
|
uint32_t slot_idx = dex_cache->MethodSlotIndex(i);
|
auto pair =
|
mirror::DexCache::GetNativePairPtrSize(resolved_methods, slot_idx, target_ptr_size_);
|
uint32_t stored_index = pair.index;
|
ArtMethod* method = pair.object;
|
if (method != nullptr && i > stored_index) {
|
continue; // Already checked.
|
}
|
// Check if the referenced class is in the image. Note that we want to check the referenced
|
// class rather than the declaring class to preserve the semantics, i.e. using a MethodId
|
// results in resolving the referenced class and that can for example throw OOME.
|
const dex::MethodId& method_id = dex_file.GetMethodId(i);
|
if (method_id.class_idx_ != last_class_idx) {
|
last_class_idx = method_id.class_idx_;
|
last_class = class_linker->LookupResolvedType(last_class_idx, dex_cache, class_loader);
|
}
|
if (method == nullptr || i < stored_index) {
|
if (last_class != nullptr) {
|
// Try to resolve the method with the class linker, which will insert
|
// it into the dex cache if successful.
|
method = class_linker->FindResolvedMethod(last_class, dex_cache, class_loader, i);
|
DCHECK(method == nullptr || dex_cache->GetResolvedMethod(i, target_ptr_size_) == method);
|
}
|
} else {
|
DCHECK_EQ(i, stored_index);
|
DCHECK(last_class != nullptr);
|
}
|
}
|
// Preload the fields array and make the contents deterministic.
|
mirror::FieldDexCacheType* resolved_fields = dex_cache->GetResolvedFields();
|
last_class_idx = dex::TypeIndex(); // Initialized to invalid index.
|
last_class = nullptr;
|
for (size_t i = 0, end = dex_file.NumFieldIds(); i < end; ++i) {
|
uint32_t slot_idx = dex_cache->FieldSlotIndex(i);
|
auto pair = mirror::DexCache::GetNativePairPtrSize(resolved_fields, slot_idx, target_ptr_size_);
|
uint32_t stored_index = pair.index;
|
ArtField* field = pair.object;
|
if (field != nullptr && i > stored_index) {
|
continue; // Already checked.
|
}
|
// Check if the referenced class is in the image. Note that we want to check the referenced
|
// class rather than the declaring class to preserve the semantics, i.e. using a FieldId
|
// results in resolving the referenced class and that can for example throw OOME.
|
const dex::FieldId& field_id = dex_file.GetFieldId(i);
|
if (field_id.class_idx_ != last_class_idx) {
|
last_class_idx = field_id.class_idx_;
|
last_class = class_linker->LookupResolvedType(last_class_idx, dex_cache, class_loader);
|
if (last_class != nullptr && !KeepClass(last_class)) {
|
last_class = nullptr;
|
}
|
}
|
if (field == nullptr || i < stored_index) {
|
if (last_class != nullptr) {
|
// Try to resolve the field with the class linker, which will insert
|
// it into the dex cache if successful.
|
field = class_linker->FindResolvedFieldJLS(last_class, dex_cache, class_loader, i);
|
DCHECK(field == nullptr || dex_cache->GetResolvedField(i, target_ptr_size_) == field);
|
}
|
} else {
|
DCHECK_EQ(i, stored_index);
|
DCHECK(last_class != nullptr);
|
}
|
}
|
// Preload the types array and make the contents deterministic.
|
// This is done after fields and methods as their lookup can touch the types array.
|
for (size_t i = 0, end = dex_cache->GetDexFile()->NumTypeIds(); i < end; ++i) {
|
dex::TypeIndex type_idx(i);
|
uint32_t slot_idx = dex_cache->TypeSlotIndex(type_idx);
|
mirror::TypeDexCachePair pair =
|
dex_cache->GetResolvedTypes()[slot_idx].load(std::memory_order_relaxed);
|
uint32_t stored_index = pair.index;
|
ObjPtr<mirror::Class> klass = pair.object.Read();
|
if (klass == nullptr || i < stored_index) {
|
klass = class_linker->LookupResolvedType(type_idx, dex_cache, class_loader);
|
DCHECK(klass == nullptr || dex_cache->GetResolvedType(type_idx) == klass);
|
}
|
}
|
// Preload the strings array and make the contents deterministic.
|
for (size_t i = 0, end = dex_cache->GetDexFile()->NumStringIds(); i < end; ++i) {
|
dex::StringIndex string_idx(i);
|
uint32_t slot_idx = dex_cache->StringSlotIndex(string_idx);
|
mirror::StringDexCachePair pair =
|
dex_cache->GetStrings()[slot_idx].load(std::memory_order_relaxed);
|
uint32_t stored_index = pair.index;
|
ObjPtr<mirror::String> string = pair.object.Read();
|
if (string == nullptr || i < stored_index) {
|
string = class_linker->LookupString(string_idx, dex_cache);
|
DCHECK(string == nullptr || dex_cache->GetResolvedString(string_idx) == string);
|
}
|
}
|
}
|
|
void ImageWriter::PruneNonImageClasses() {
|
Runtime* runtime = Runtime::Current();
|
ClassLinker* class_linker = runtime->GetClassLinker();
|
Thread* self = Thread::Current();
|
ScopedAssertNoThreadSuspension sa(__FUNCTION__);
|
|
// Prune uses-library dex caches. Only prune the uses-library dex caches since we want to make
|
// sure the other ones don't get unloaded before the OatWriter runs.
|
class_linker->VisitClassTables(
|
[&](ClassTable* table) REQUIRES_SHARED(Locks::mutator_lock_) {
|
table->RemoveStrongRoots(
|
[&](GcRoot<mirror::Object> root) REQUIRES_SHARED(Locks::mutator_lock_) {
|
ObjPtr<mirror::Object> obj = root.Read();
|
if (obj->IsDexCache()) {
|
// Return true if the dex file is not one of the ones in the map.
|
return dex_file_oat_index_map_.find(obj->AsDexCache()->GetDexFile()) ==
|
dex_file_oat_index_map_.end();
|
}
|
// Return false to avoid removing.
|
return false;
|
});
|
});
|
|
// Remove the undesired classes from the class roots.
|
{
|
PruneClassLoaderClassesVisitor class_loader_visitor(this);
|
VisitClassLoaders(&class_loader_visitor);
|
VLOG(compiler) << "Pruned " << class_loader_visitor.GetRemovedClassCount() << " classes";
|
}
|
|
// Clear references to removed classes from the DexCaches.
|
std::vector<ObjPtr<mirror::DexCache>> dex_caches = FindDexCaches(self);
|
for (ObjPtr<mirror::DexCache> dex_cache : dex_caches) {
|
// Pass the class loader associated with the DexCache. This can either be
|
// the app's `class_loader` or `nullptr` if boot class loader.
|
bool is_app_image_dex_cache = compiler_options_.IsAppImage() && IsImageObject(dex_cache);
|
PruneDexCache(dex_cache, is_app_image_dex_cache ? GetAppClassLoader() : nullptr);
|
}
|
|
// Drop the array class cache in the ClassLinker, as these are roots holding those classes live.
|
class_linker->DropFindArrayClassCache();
|
|
// Clear to save RAM.
|
prune_class_memo_.clear();
|
}
|
|
std::vector<ObjPtr<mirror::DexCache>> ImageWriter::FindDexCaches(Thread* self) {
|
std::vector<ObjPtr<mirror::DexCache>> dex_caches;
|
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
|
ReaderMutexLock mu2(self, *Locks::dex_lock_);
|
dex_caches.reserve(class_linker->GetDexCachesData().size());
|
for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
|
if (self->IsJWeakCleared(data.weak_root)) {
|
continue;
|
}
|
dex_caches.push_back(self->DecodeJObject(data.weak_root)->AsDexCache());
|
}
|
return dex_caches;
|
}
|
|
void ImageWriter::CheckNonImageClassesRemoved() {
|
auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
|
if (obj->IsClass() && !IsInBootImage(obj)) {
|
ObjPtr<Class> klass = obj->AsClass();
|
if (!KeepClass(klass)) {
|
DumpImageClasses();
|
CHECK(KeepClass(klass))
|
<< Runtime::Current()->GetHeap()->GetVerification()->FirstPathFromRootSet(klass);
|
}
|
}
|
};
|
gc::Heap* heap = Runtime::Current()->GetHeap();
|
heap->VisitObjects(visitor);
|
}
|
|
void ImageWriter::DumpImageClasses() {
|
for (const std::string& image_class : compiler_options_.GetImageClasses()) {
|
LOG(INFO) << " " << image_class;
|
}
|
}
|
|
mirror::String* ImageWriter::FindInternedString(mirror::String* string) {
|
Thread* const self = Thread::Current();
|
for (const ImageInfo& image_info : image_infos_) {
|
const ObjPtr<mirror::String> found = image_info.intern_table_->LookupStrong(self, string);
|
DCHECK(image_info.intern_table_->LookupWeak(self, string) == nullptr)
|
<< string->ToModifiedUtf8();
|
if (found != nullptr) {
|
return found.Ptr();
|
}
|
}
|
if (!compiler_options_.IsBootImage()) {
|
Runtime* const runtime = Runtime::Current();
|
ObjPtr<mirror::String> found = runtime->GetInternTable()->LookupStrong(self, string);
|
// If we found it in the runtime intern table it could either be in the boot image or interned
|
// during app image compilation. If it was in the boot image return that, otherwise return null
|
// since it belongs to another image space.
|
if (found != nullptr && runtime->GetHeap()->ObjectIsInBootImageSpace(found.Ptr())) {
|
return found.Ptr();
|
}
|
DCHECK(runtime->GetInternTable()->LookupWeak(self, string) == nullptr)
|
<< string->ToModifiedUtf8();
|
}
|
return nullptr;
|
}
|
|
ObjPtr<mirror::ObjectArray<mirror::Object>> ImageWriter::CollectDexCaches(Thread* self,
|
size_t oat_index) const {
|
std::unordered_set<const DexFile*> image_dex_files;
|
for (auto& pair : dex_file_oat_index_map_) {
|
const DexFile* image_dex_file = pair.first;
|
size_t image_oat_index = pair.second;
|
if (oat_index == image_oat_index) {
|
image_dex_files.insert(image_dex_file);
|
}
|
}
|
|
// build an Object[] of all the DexCaches used in the source_space_.
|
// Since we can't hold the dex lock when allocating the dex_caches
|
// ObjectArray, we lock the dex lock twice, first to get the number
|
// of dex caches first and then lock it again to copy the dex
|
// caches. We check that the number of dex caches does not change.
|
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
|
size_t dex_cache_count = 0;
|
{
|
ReaderMutexLock mu(self, *Locks::dex_lock_);
|
// Count number of dex caches not in the boot image.
|
for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
|
ObjPtr<mirror::DexCache> dex_cache =
|
ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
|
if (dex_cache == nullptr) {
|
continue;
|
}
|
const DexFile* dex_file = dex_cache->GetDexFile();
|
if (IsImageObject(dex_cache)) {
|
dex_cache_count += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
|
}
|
}
|
}
|
ObjPtr<ObjectArray<Object>> dex_caches = ObjectArray<Object>::Alloc(
|
self, GetClassRoot<ObjectArray<Object>>(class_linker), dex_cache_count);
|
CHECK(dex_caches != nullptr) << "Failed to allocate a dex cache array.";
|
{
|
ReaderMutexLock mu(self, *Locks::dex_lock_);
|
size_t non_image_dex_caches = 0;
|
// Re-count number of non image dex caches.
|
for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
|
ObjPtr<mirror::DexCache> dex_cache =
|
ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
|
if (dex_cache == nullptr) {
|
continue;
|
}
|
const DexFile* dex_file = dex_cache->GetDexFile();
|
if (IsImageObject(dex_cache)) {
|
non_image_dex_caches += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
|
}
|
}
|
CHECK_EQ(dex_cache_count, non_image_dex_caches)
|
<< "The number of non-image dex caches changed.";
|
size_t i = 0;
|
for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
|
ObjPtr<mirror::DexCache> dex_cache =
|
ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
|
if (dex_cache == nullptr) {
|
continue;
|
}
|
const DexFile* dex_file = dex_cache->GetDexFile();
|
if (IsImageObject(dex_cache) &&
|
image_dex_files.find(dex_file) != image_dex_files.end()) {
|
dex_caches->Set<false>(i, dex_cache.Ptr());
|
++i;
|
}
|
}
|
}
|
return dex_caches;
|
}
|
|
ObjPtr<ObjectArray<Object>> ImageWriter::CreateImageRoots(
|
size_t oat_index,
|
Handle<mirror::ObjectArray<mirror::Object>> boot_image_live_objects) const {
|
Runtime* runtime = Runtime::Current();
|
ClassLinker* class_linker = runtime->GetClassLinker();
|
Thread* self = Thread::Current();
|
StackHandleScope<2> hs(self);
|
|
Handle<ObjectArray<Object>> dex_caches(hs.NewHandle(CollectDexCaches(self, oat_index)));
|
|
// build an Object[] of the roots needed to restore the runtime
|
int32_t image_roots_size = ImageHeader::NumberOfImageRoots(compiler_options_.IsAppImage());
|
Handle<ObjectArray<Object>> image_roots(hs.NewHandle(ObjectArray<Object>::Alloc(
|
self, GetClassRoot<ObjectArray<Object>>(class_linker), image_roots_size)));
|
image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches.Get());
|
image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots());
|
image_roots->Set<false>(ImageHeader::kOomeWhenThrowingException,
|
runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingException());
|
image_roots->Set<false>(ImageHeader::kOomeWhenThrowingOome,
|
runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME());
|
image_roots->Set<false>(ImageHeader::kOomeWhenHandlingStackOverflow,
|
runtime->GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow());
|
image_roots->Set<false>(ImageHeader::kNoClassDefFoundError,
|
runtime->GetPreAllocatedNoClassDefFoundError());
|
if (!compiler_options_.IsAppImage()) {
|
DCHECK(boot_image_live_objects != nullptr);
|
image_roots->Set<false>(ImageHeader::kBootImageLiveObjects, boot_image_live_objects.Get());
|
} else {
|
DCHECK(boot_image_live_objects == nullptr);
|
}
|
for (int32_t i = 0; i != image_roots_size; ++i) {
|
if (compiler_options_.IsAppImage() && i == ImageHeader::kAppImageClassLoader) {
|
// image_roots[ImageHeader::kAppImageClassLoader] will be set later for app image.
|
continue;
|
}
|
CHECK(image_roots->Get(i) != nullptr);
|
}
|
return image_roots.Get();
|
}
|
|
mirror::Object* ImageWriter::TryAssignBinSlot(WorkStack& work_stack,
|
mirror::Object* obj,
|
size_t oat_index) {
|
if (obj == nullptr || !IsImageObject(obj)) {
|
// Object is null or already in the image, there is no work to do.
|
return obj;
|
}
|
if (!IsImageBinSlotAssigned(obj)) {
|
// We want to intern all strings but also assign offsets for the source string. Since the
|
// pruning phase has already happened, if we intern a string to one in the image we still
|
// end up copying an unreachable string.
|
if (obj->IsString()) {
|
// Need to check if the string is already interned in another image info so that we don't have
|
// the intern tables of two different images contain the same string.
|
mirror::String* interned = FindInternedString(obj->AsString().Ptr());
|
if (interned == nullptr) {
|
// Not in another image space, insert to our table.
|
interned =
|
GetImageInfo(oat_index).intern_table_->InternStrongImageString(obj->AsString()).Ptr();
|
DCHECK_EQ(interned, obj);
|
}
|
} else if (obj->IsDexCache()) {
|
oat_index = GetOatIndexForDexCache(obj->AsDexCache());
|
} else if (obj->IsClass()) {
|
// Visit and assign offsets for fields and field arrays.
|
ObjPtr<mirror::Class> as_klass = obj->AsClass();
|
ObjPtr<mirror::DexCache> dex_cache = as_klass->GetDexCache();
|
DCHECK(!as_klass->IsErroneous()) << as_klass->GetStatus();
|
if (compiler_options_.IsAppImage()) {
|
// Extra sanity, no boot loader classes should be left!
|
CHECK(!IsBootClassLoaderClass(as_klass)) << as_klass->PrettyClass();
|
}
|
LengthPrefixedArray<ArtField>* fields[] = {
|
as_klass->GetSFieldsPtr(), as_klass->GetIFieldsPtr(),
|
};
|
// Overwrite the oat index value since the class' dex cache is more accurate of where it
|
// belongs.
|
oat_index = GetOatIndexForDexCache(dex_cache);
|
ImageInfo& image_info = GetImageInfo(oat_index);
|
if (!compiler_options_.IsAppImage()) {
|
// Note: Avoid locking to prevent lock order violations from root visiting;
|
// image_info.class_table_ is only accessed from the image writer.
|
image_info.class_table_->InsertWithoutLocks(as_klass);
|
}
|
for (LengthPrefixedArray<ArtField>* cur_fields : fields) {
|
// Total array length including header.
|
if (cur_fields != nullptr) {
|
const size_t header_size = LengthPrefixedArray<ArtField>::ComputeSize(0);
|
// Forward the entire array at once.
|
auto it = native_object_relocations_.find(cur_fields);
|
CHECK(it == native_object_relocations_.end()) << "Field array " << cur_fields
|
<< " already forwarded";
|
size_t offset = image_info.GetBinSlotSize(Bin::kArtField);
|
DCHECK(!IsInBootImage(cur_fields));
|
native_object_relocations_.emplace(
|
cur_fields,
|
NativeObjectRelocation {
|
oat_index, offset, NativeObjectRelocationType::kArtFieldArray
|
});
|
offset += header_size;
|
// Forward individual fields so that we can quickly find where they belong.
|
for (size_t i = 0, count = cur_fields->size(); i < count; ++i) {
|
// Need to forward arrays separate of fields.
|
ArtField* field = &cur_fields->At(i);
|
auto it2 = native_object_relocations_.find(field);
|
CHECK(it2 == native_object_relocations_.end()) << "Field at index=" << i
|
<< " already assigned " << field->PrettyField() << " static=" << field->IsStatic();
|
DCHECK(!IsInBootImage(field));
|
native_object_relocations_.emplace(
|
field,
|
NativeObjectRelocation { oat_index,
|
offset,
|
NativeObjectRelocationType::kArtField });
|
offset += sizeof(ArtField);
|
}
|
image_info.IncrementBinSlotSize(
|
Bin::kArtField, header_size + cur_fields->size() * sizeof(ArtField));
|
DCHECK_EQ(offset, image_info.GetBinSlotSize(Bin::kArtField));
|
}
|
}
|
// Visit and assign offsets for methods.
|
size_t num_methods = as_klass->NumMethods();
|
if (num_methods != 0) {
|
bool any_dirty = false;
|
for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
|
if (WillMethodBeDirty(&m)) {
|
any_dirty = true;
|
break;
|
}
|
}
|
NativeObjectRelocationType type = any_dirty
|
? NativeObjectRelocationType::kArtMethodDirty
|
: NativeObjectRelocationType::kArtMethodClean;
|
Bin bin_type = BinTypeForNativeRelocationType(type);
|
// Forward the entire array at once, but header first.
|
const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
|
const size_t method_size = ArtMethod::Size(target_ptr_size_);
|
const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0,
|
method_size,
|
method_alignment);
|
LengthPrefixedArray<ArtMethod>* array = as_klass->GetMethodsPtr();
|
auto it = native_object_relocations_.find(array);
|
CHECK(it == native_object_relocations_.end())
|
<< "Method array " << array << " already forwarded";
|
size_t offset = image_info.GetBinSlotSize(bin_type);
|
DCHECK(!IsInBootImage(array));
|
native_object_relocations_.emplace(array,
|
NativeObjectRelocation {
|
oat_index,
|
offset,
|
any_dirty ? NativeObjectRelocationType::kArtMethodArrayDirty
|
: NativeObjectRelocationType::kArtMethodArrayClean });
|
image_info.IncrementBinSlotSize(bin_type, header_size);
|
for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
|
AssignMethodOffset(&m, type, oat_index);
|
}
|
(any_dirty ? dirty_methods_ : clean_methods_) += num_methods;
|
}
|
// Assign offsets for all runtime methods in the IMT since these may hold conflict tables
|
// live.
|
if (as_klass->ShouldHaveImt()) {
|
ImTable* imt = as_klass->GetImt(target_ptr_size_);
|
if (TryAssignImTableOffset(imt, oat_index)) {
|
// Since imt's can be shared only do this the first time to not double count imt method
|
// fixups.
|
for (size_t i = 0; i < ImTable::kSize; ++i) {
|
ArtMethod* imt_method = imt->Get(i, target_ptr_size_);
|
DCHECK(imt_method != nullptr);
|
if (imt_method->IsRuntimeMethod() &&
|
!IsInBootImage(imt_method) &&
|
!NativeRelocationAssigned(imt_method)) {
|
AssignMethodOffset(imt_method, NativeObjectRelocationType::kRuntimeMethod, oat_index);
|
}
|
}
|
}
|
}
|
} else if (obj->IsClassLoader()) {
|
// Register the class loader if it has a class table.
|
// The fake boot class loader should not get registered.
|
ObjPtr<mirror::ClassLoader> class_loader = obj->AsClassLoader();
|
if (class_loader->GetClassTable() != nullptr) {
|
DCHECK(compiler_options_.IsAppImage());
|
if (class_loader == GetAppClassLoader()) {
|
ImageInfo& image_info = GetImageInfo(oat_index);
|
// Note: Avoid locking to prevent lock order violations from root visiting;
|
// image_info.class_table_ table is only accessed from the image writer
|
// and class_loader->GetClassTable() is iterated but not modified.
|
image_info.class_table_->CopyWithoutLocks(*class_loader->GetClassTable());
|
}
|
}
|
}
|
AssignImageBinSlot(obj, oat_index);
|
work_stack.emplace(obj, oat_index);
|
}
|
if (obj->IsString()) {
|
// Always return the interned string if there exists one.
|
mirror::String* interned = FindInternedString(obj->AsString().Ptr());
|
if (interned != nullptr) {
|
return interned;
|
}
|
}
|
return obj;
|
}
|
|
bool ImageWriter::NativeRelocationAssigned(void* ptr) const {
|
return native_object_relocations_.find(ptr) != native_object_relocations_.end();
|
}
|
|
bool ImageWriter::TryAssignImTableOffset(ImTable* imt, size_t oat_index) {
|
// No offset, or already assigned.
|
if (imt == nullptr || IsInBootImage(imt) || NativeRelocationAssigned(imt)) {
|
return false;
|
}
|
// If the method is a conflict method we also want to assign the conflict table offset.
|
ImageInfo& image_info = GetImageInfo(oat_index);
|
const size_t size = ImTable::SizeInBytes(target_ptr_size_);
|
native_object_relocations_.emplace(
|
imt,
|
NativeObjectRelocation {
|
oat_index,
|
image_info.GetBinSlotSize(Bin::kImTable),
|
NativeObjectRelocationType::kIMTable});
|
image_info.IncrementBinSlotSize(Bin::kImTable, size);
|
return true;
|
}
|
|
void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) {
|
// No offset, or already assigned.
|
if (table == nullptr || NativeRelocationAssigned(table)) {
|
return;
|
}
|
CHECK(!IsInBootImage(table));
|
// If the method is a conflict method we also want to assign the conflict table offset.
|
ImageInfo& image_info = GetImageInfo(oat_index);
|
const size_t size = table->ComputeSize(target_ptr_size_);
|
native_object_relocations_.emplace(
|
table,
|
NativeObjectRelocation {
|
oat_index,
|
image_info.GetBinSlotSize(Bin::kIMTConflictTable),
|
NativeObjectRelocationType::kIMTConflictTable});
|
image_info.IncrementBinSlotSize(Bin::kIMTConflictTable, size);
|
}
|
|
void ImageWriter::AssignMethodOffset(ArtMethod* method,
|
NativeObjectRelocationType type,
|
size_t oat_index) {
|
DCHECK(!IsInBootImage(method));
|
CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned "
|
<< ArtMethod::PrettyMethod(method);
|
if (method->IsRuntimeMethod()) {
|
TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index);
|
}
|
ImageInfo& image_info = GetImageInfo(oat_index);
|
Bin bin_type = BinTypeForNativeRelocationType(type);
|
size_t offset = image_info.GetBinSlotSize(bin_type);
|
native_object_relocations_.emplace(method, NativeObjectRelocation { oat_index, offset, type });
|
image_info.IncrementBinSlotSize(bin_type, ArtMethod::Size(target_ptr_size_));
|
}
|
|
void ImageWriter::UnbinObjectsIntoOffset(mirror::Object* obj) {
|
DCHECK(!IsInBootImage(obj));
|
CHECK(obj != nullptr);
|
|
// We know the bin slot, and the total bin sizes for all objects by now,
|
// so calculate the object's final image offset.
|
|
DCHECK(IsImageBinSlotAssigned(obj));
|
BinSlot bin_slot = GetImageBinSlot(obj);
|
// Change the lockword from a bin slot into an offset
|
AssignImageOffset(obj, bin_slot);
|
}
|
|
class ImageWriter::VisitReferencesVisitor {
|
public:
|
VisitReferencesVisitor(ImageWriter* image_writer, WorkStack* work_stack, size_t oat_index)
|
: image_writer_(image_writer), work_stack_(work_stack), oat_index_(oat_index) {}
|
|
// Fix up separately since we also need to fix up method entrypoints.
|
ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
if (!root->IsNull()) {
|
VisitRoot(root);
|
}
|
}
|
|
ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
root->Assign(VisitReference(root->AsMirrorPtr()));
|
}
|
|
ALWAYS_INLINE void operator() (ObjPtr<mirror::Object> obj,
|
MemberOffset offset,
|
bool is_static ATTRIBUTE_UNUSED) const
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
mirror::Object* ref =
|
obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
|
obj->SetFieldObject</*kTransactionActive*/false>(offset, VisitReference(ref));
|
}
|
|
ALWAYS_INLINE void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
|
ObjPtr<mirror::Reference> ref) const
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
|
}
|
|
private:
|
mirror::Object* VisitReference(mirror::Object* ref) const REQUIRES_SHARED(Locks::mutator_lock_) {
|
return image_writer_->TryAssignBinSlot(*work_stack_, ref, oat_index_);
|
}
|
|
ImageWriter* const image_writer_;
|
WorkStack* const work_stack_;
|
const size_t oat_index_;
|
};
|
|
class ImageWriter::GetRootsVisitor : public RootVisitor {
|
public:
|
explicit GetRootsVisitor(std::vector<mirror::Object*>* roots) : roots_(roots) {}
|
|
void VisitRoots(mirror::Object*** roots,
|
size_t count,
|
const RootInfo& info ATTRIBUTE_UNUSED) override
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
for (size_t i = 0; i < count; ++i) {
|
roots_->push_back(*roots[i]);
|
}
|
}
|
|
void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
|
size_t count,
|
const RootInfo& info ATTRIBUTE_UNUSED) override
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
for (size_t i = 0; i < count; ++i) {
|
roots_->push_back(roots[i]->AsMirrorPtr());
|
}
|
}
|
|
private:
|
std::vector<mirror::Object*>* const roots_;
|
};
|
|
void ImageWriter::ProcessWorkStack(WorkStack* work_stack) {
|
while (!work_stack->empty()) {
|
std::pair<mirror::Object*, size_t> pair(work_stack->top());
|
work_stack->pop();
|
VisitReferencesVisitor visitor(this, work_stack, /*oat_index*/ pair.second);
|
// Walk references and assign bin slots for them.
|
pair.first->VisitReferences</*kVisitNativeRoots*/true, kVerifyNone, kWithoutReadBarrier>(
|
visitor,
|
visitor);
|
}
|
}
|
|
void ImageWriter::CalculateNewObjectOffsets() {
|
Thread* const self = Thread::Current();
|
Runtime* const runtime = Runtime::Current();
|
VariableSizedHandleScope handles(self);
|
MutableHandle<ObjectArray<Object>> boot_image_live_objects = handles.NewHandle(
|
compiler_options_.IsAppImage()
|
? nullptr
|
: IntrinsicObjects::AllocateBootImageLiveObjects(self, runtime->GetClassLinker()));
|
std::vector<Handle<ObjectArray<Object>>> image_roots;
|
for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) {
|
image_roots.push_back(handles.NewHandle(CreateImageRoots(i, boot_image_live_objects)));
|
}
|
|
gc::Heap* const heap = runtime->GetHeap();
|
|
// Leave space for the header, but do not write it yet, we need to
|
// know where image_roots is going to end up
|
image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment); // 64-bit-alignment
|
|
const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
|
// Write the image runtime methods.
|
image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod();
|
image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod();
|
image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod();
|
image_methods_[ImageHeader::kSaveAllCalleeSavesMethod] =
|
runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves);
|
image_methods_[ImageHeader::kSaveRefsOnlyMethod] =
|
runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly);
|
image_methods_[ImageHeader::kSaveRefsAndArgsMethod] =
|
runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs);
|
image_methods_[ImageHeader::kSaveEverythingMethod] =
|
runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything);
|
image_methods_[ImageHeader::kSaveEverythingMethodForClinit] =
|
runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit);
|
image_methods_[ImageHeader::kSaveEverythingMethodForSuspendCheck] =
|
runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck);
|
// Visit image methods first to have the main runtime methods in the first image.
|
for (auto* m : image_methods_) {
|
CHECK(m != nullptr);
|
CHECK(m->IsRuntimeMethod());
|
DCHECK_EQ(!compiler_options_.IsBootImage(), IsInBootImage(m))
|
<< "Trampolines should be in boot image";
|
if (!IsInBootImage(m)) {
|
AssignMethodOffset(m, NativeObjectRelocationType::kRuntimeMethod, GetDefaultOatIndex());
|
}
|
}
|
|
// Deflate monitors before we visit roots since deflating acquires the monitor lock. Acquiring
|
// this lock while holding other locks may cause lock order violations.
|
{
|
auto deflate_monitor = [](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
|
Monitor::Deflate(Thread::Current(), obj);
|
};
|
heap->VisitObjects(deflate_monitor);
|
}
|
|
// From this point on, there shall be no GC anymore and no objects shall be allocated.
|
// We can now assign a BitSlot to each object and store it in its lockword.
|
|
// Work list of <object, oat_index> for objects. Everything on the stack must already be
|
// assigned a bin slot.
|
WorkStack work_stack;
|
|
// Special case interned strings to put them in the image they are likely to be resolved from.
|
for (const DexFile* dex_file : compiler_options_.GetDexFilesForOatFile()) {
|
auto it = dex_file_oat_index_map_.find(dex_file);
|
DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
|
const size_t oat_index = it->second;
|
InternTable* const intern_table = runtime->GetInternTable();
|
for (size_t i = 0, count = dex_file->NumStringIds(); i < count; ++i) {
|
uint32_t utf16_length;
|
const char* utf8_data = dex_file->StringDataAndUtf16LengthByIdx(dex::StringIndex(i),
|
&utf16_length);
|
mirror::String* string = intern_table->LookupStrong(self, utf16_length, utf8_data).Ptr();
|
TryAssignBinSlot(work_stack, string, oat_index);
|
}
|
}
|
|
// Get the GC roots and then visit them separately to avoid lock violations since the root visitor
|
// visits roots while holding various locks.
|
{
|
std::vector<mirror::Object*> roots;
|
GetRootsVisitor root_visitor(&roots);
|
runtime->VisitRoots(&root_visitor);
|
for (mirror::Object* obj : roots) {
|
TryAssignBinSlot(work_stack, obj, GetDefaultOatIndex());
|
}
|
}
|
ProcessWorkStack(&work_stack);
|
|
// For app images, there may be objects that are only held live by the boot image. One
|
// example is finalizer references. Forward these objects so that EnsureBinSlotAssignedCallback
|
// does not fail any checks.
|
if (compiler_options_.IsAppImage()) {
|
for (gc::space::ImageSpace* space : heap->GetBootImageSpaces()) {
|
DCHECK(space->IsImageSpace());
|
gc::accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
|
live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
|
reinterpret_cast<uintptr_t>(space->Limit()),
|
[this, &work_stack](mirror::Object* obj)
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
VisitReferencesVisitor visitor(this, &work_stack, GetDefaultOatIndex());
|
// Visit all references and try to assign bin slots for them (calls TryAssignBinSlot).
|
obj->VisitReferences</*kVisitNativeRoots*/true, kVerifyNone, kWithoutReadBarrier>(
|
visitor,
|
visitor);
|
});
|
}
|
// Process the work stack in case anything was added by TryAssignBinSlot.
|
ProcessWorkStack(&work_stack);
|
|
// Store the class loader in the class roots.
|
CHECK_EQ(image_roots.size(), 1u);
|
image_roots[0]->Set<false>(ImageHeader::kAppImageClassLoader, GetAppClassLoader());
|
}
|
|
// Verify that all objects have assigned image bin slots.
|
{
|
auto ensure_bin_slots_assigned = [&](mirror::Object* obj)
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
if (IsImageObject(obj)) {
|
CHECK(IsImageBinSlotAssigned(obj)) << mirror::Object::PrettyTypeOf(obj) << " " << obj;
|
}
|
};
|
heap->VisitObjects(ensure_bin_slots_assigned);
|
}
|
|
// Calculate size of the dex cache arrays slot and prepare offsets.
|
PrepareDexCacheArraySlots();
|
|
// Calculate the sizes of the intern tables, class tables, and fixup tables.
|
for (ImageInfo& image_info : image_infos_) {
|
// Calculate how big the intern table will be after being serialized.
|
InternTable* const intern_table = image_info.intern_table_.get();
|
CHECK_EQ(intern_table->WeakSize(), 0u) << " should have strong interned all the strings";
|
if (intern_table->StrongSize() != 0u) {
|
image_info.intern_table_bytes_ = intern_table->WriteToMemory(nullptr);
|
}
|
|
// Calculate the size of the class table.
|
ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
|
DCHECK_EQ(image_info.class_table_->NumReferencedZygoteClasses(), 0u);
|
if (image_info.class_table_->NumReferencedNonZygoteClasses() != 0u) {
|
image_info.class_table_bytes_ += image_info.class_table_->WriteToMemory(nullptr);
|
}
|
}
|
|
// Calculate bin slot offsets.
|
for (size_t oat_index = 0; oat_index < image_infos_.size(); ++oat_index) {
|
ImageInfo& image_info = image_infos_[oat_index];
|
size_t bin_offset = image_objects_offset_begin_;
|
// Need to visit the objects in bin order since alignment requirements might change the
|
// section sizes.
|
// Avoid using ObjPtr since VisitObjects invalidates. This is safe since concurrent GC can not
|
// occur during image writing.
|
using BinPair = std::pair<BinSlot, mirror::Object*>;
|
std::vector<BinPair> objects;
|
heap->VisitObjects([&](mirror::Object* obj)
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
// Only visit the oat index for the current image.
|
if (IsImageObject(obj) && GetOatIndex(obj) == oat_index) {
|
objects.emplace_back(GetImageBinSlot(obj), obj);
|
}
|
});
|
std::sort(objects.begin(), objects.end(), [](const BinPair& a, const BinPair& b) -> bool {
|
if (a.first.GetBin() != b.first.GetBin()) {
|
return a.first.GetBin() < b.first.GetBin();
|
}
|
// Note that the index is really the relative offset in this case.
|
return a.first.GetIndex() < b.first.GetIndex();
|
});
|
auto it = objects.begin();
|
for (size_t i = 0; i != kNumberOfBins; ++i) {
|
Bin bin = enum_cast<Bin>(i);
|
switch (bin) {
|
case Bin::kArtMethodClean:
|
case Bin::kArtMethodDirty: {
|
bin_offset = RoundUp(bin_offset, method_alignment);
|
break;
|
}
|
case Bin::kDexCacheArray:
|
bin_offset = RoundUp(bin_offset, DexCacheArraysLayout::Alignment(target_ptr_size_));
|
break;
|
case Bin::kImTable:
|
case Bin::kIMTConflictTable: {
|
bin_offset = RoundUp(bin_offset, static_cast<size_t>(target_ptr_size_));
|
break;
|
}
|
default: {
|
// Normal alignment.
|
}
|
}
|
image_info.bin_slot_offsets_[i] = bin_offset;
|
|
// If the bin is for mirror objects, assign the offsets since we may need to change sizes
|
// from alignment requirements.
|
if (i < static_cast<size_t>(Bin::kMirrorCount)) {
|
const size_t start_offset = bin_offset;
|
// Visit and assign offsets for all objects of the bin type.
|
while (it != objects.end() && it->first.GetBin() == bin) {
|
ObjPtr<mirror::Object> obj(it->second);
|
const size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
|
// If the object spans region bondaries, add padding objects between.
|
// TODO: Instead of adding padding, we should consider reordering the bins to reduce
|
// wasted space.
|
if (region_size_ != 0u) {
|
const size_t offset_after_header = bin_offset - sizeof(ImageHeader);
|
const size_t next_region = RoundUp(offset_after_header, region_size_);
|
if (offset_after_header != next_region &&
|
offset_after_header + object_size > next_region) {
|
// Add padding objects until aligned.
|
while (bin_offset - sizeof(ImageHeader) < next_region) {
|
image_info.padding_object_offsets_.push_back(bin_offset);
|
bin_offset += kObjectAlignment;
|
region_alignment_wasted_ += kObjectAlignment;
|
image_info.image_end_ += kObjectAlignment;
|
}
|
CHECK_EQ(bin_offset - sizeof(ImageHeader), next_region);
|
}
|
}
|
SetImageOffset(obj.Ptr(), bin_offset);
|
bin_offset = bin_offset + object_size;
|
++it;
|
}
|
image_info.bin_slot_sizes_[i] = bin_offset - start_offset;
|
} else {
|
bin_offset += image_info.bin_slot_sizes_[i];
|
}
|
}
|
// NOTE: There may be additional padding between the bin slots and the intern table.
|
DCHECK_EQ(image_info.image_end_,
|
image_info.GetBinSizeSum(Bin::kMirrorCount) + image_objects_offset_begin_);
|
}
|
|
VLOG(image) << "Space wasted for region alignment " << region_alignment_wasted_;
|
|
// Calculate image offsets.
|
size_t image_offset = 0;
|
for (ImageInfo& image_info : image_infos_) {
|
image_info.image_begin_ = global_image_begin_ + image_offset;
|
image_info.image_offset_ = image_offset;
|
image_info.image_size_ = RoundUp(image_info.CreateImageSections().first, kPageSize);
|
// There should be no gaps until the next image.
|
image_offset += image_info.image_size_;
|
}
|
|
size_t i = 0;
|
for (ImageInfo& image_info : image_infos_) {
|
image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots[i].Get()));
|
i++;
|
}
|
|
// Update the native relocations by adding their bin sums.
|
for (auto& pair : native_object_relocations_) {
|
NativeObjectRelocation& relocation = pair.second;
|
Bin bin_type = BinTypeForNativeRelocationType(relocation.type);
|
ImageInfo& image_info = GetImageInfo(relocation.oat_index);
|
relocation.offset += image_info.GetBinSlotOffset(bin_type);
|
}
|
|
// Remember the boot image live objects as raw pointer. No GC can happen anymore.
|
boot_image_live_objects_ = boot_image_live_objects.Get();
|
}
|
|
std::pair<size_t, std::vector<ImageSection>> ImageWriter::ImageInfo::CreateImageSections() const {
|
std::vector<ImageSection> sections(ImageHeader::kSectionCount);
|
|
// Do not round up any sections here that are represented by the bins since it
|
// will break offsets.
|
|
/*
|
* Objects section
|
*/
|
sections[ImageHeader::kSectionObjects] =
|
ImageSection(0u, image_end_);
|
|
/*
|
* Field section
|
*/
|
sections[ImageHeader::kSectionArtFields] =
|
ImageSection(GetBinSlotOffset(Bin::kArtField), GetBinSlotSize(Bin::kArtField));
|
|
/*
|
* Method section
|
*/
|
sections[ImageHeader::kSectionArtMethods] =
|
ImageSection(GetBinSlotOffset(Bin::kArtMethodClean),
|
GetBinSlotSize(Bin::kArtMethodClean) +
|
GetBinSlotSize(Bin::kArtMethodDirty));
|
|
/*
|
* IMT section
|
*/
|
sections[ImageHeader::kSectionImTables] =
|
ImageSection(GetBinSlotOffset(Bin::kImTable), GetBinSlotSize(Bin::kImTable));
|
|
/*
|
* Conflict Tables section
|
*/
|
sections[ImageHeader::kSectionIMTConflictTables] =
|
ImageSection(GetBinSlotOffset(Bin::kIMTConflictTable), GetBinSlotSize(Bin::kIMTConflictTable));
|
|
/*
|
* Runtime Methods section
|
*/
|
sections[ImageHeader::kSectionRuntimeMethods] =
|
ImageSection(GetBinSlotOffset(Bin::kRuntimeMethod), GetBinSlotSize(Bin::kRuntimeMethod));
|
|
/*
|
* DexCache Arrays section.
|
*/
|
const ImageSection& dex_cache_arrays_section =
|
sections[ImageHeader::kSectionDexCacheArrays] =
|
ImageSection(GetBinSlotOffset(Bin::kDexCacheArray),
|
GetBinSlotSize(Bin::kDexCacheArray));
|
|
/*
|
* Interned Strings section
|
*/
|
|
// Round up to the alignment the string table expects. See HashSet::WriteToMemory.
|
size_t cur_pos = RoundUp(dex_cache_arrays_section.End(), sizeof(uint64_t));
|
|
const ImageSection& interned_strings_section =
|
sections[ImageHeader::kSectionInternedStrings] =
|
ImageSection(cur_pos, intern_table_bytes_);
|
|
/*
|
* Class Table section
|
*/
|
|
// Obtain the new position and round it up to the appropriate alignment.
|
cur_pos = RoundUp(interned_strings_section.End(), sizeof(uint64_t));
|
|
const ImageSection& class_table_section =
|
sections[ImageHeader::kSectionClassTable] =
|
ImageSection(cur_pos, class_table_bytes_);
|
|
/*
|
* String Field Offsets section
|
*/
|
|
// Round up to the alignment of the offsets we are going to store.
|
cur_pos = RoundUp(class_table_section.End(), sizeof(uint32_t));
|
|
// The size of string_reference_offsets_ can't be used here because it hasn't
|
// been filled with AppImageReferenceOffsetInfo objects yet. The
|
// num_string_references_ value is calculated separately, before we can
|
// compute the actual offsets.
|
const ImageSection& string_reference_offsets =
|
sections[ImageHeader::kSectionStringReferenceOffsets] =
|
ImageSection(cur_pos,
|
sizeof(typename decltype(string_reference_offsets_)::value_type) *
|
num_string_references_);
|
|
/*
|
* Metadata section.
|
*/
|
|
// Round up to the alignment of the offsets we are going to store.
|
cur_pos = RoundUp(string_reference_offsets.End(),
|
mirror::DexCache::PreResolvedStringsAlignment());
|
|
const ImageSection& metadata_section =
|
sections[ImageHeader::kSectionMetadata] =
|
ImageSection(cur_pos, GetBinSlotSize(Bin::kMetadata));
|
|
// Return the number of bytes described by these sections, and the sections
|
// themselves.
|
return make_pair(metadata_section.End(), std::move(sections));
|
}
|
|
void ImageWriter::CreateHeader(size_t oat_index) {
|
ImageInfo& image_info = GetImageInfo(oat_index);
|
const uint8_t* oat_file_begin = image_info.oat_file_begin_;
|
const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_;
|
const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_;
|
|
uint32_t image_reservation_size = image_info.image_size_;
|
DCHECK_ALIGNED(image_reservation_size, kPageSize);
|
uint32_t component_count = 1u;
|
if (!compiler_options_.IsAppImage()) {
|
if (oat_index == 0u) {
|
const ImageInfo& last_info = image_infos_.back();
|
const uint8_t* end = last_info.oat_file_begin_ + last_info.oat_loaded_size_;
|
DCHECK_ALIGNED(image_info.image_begin_, kPageSize);
|
image_reservation_size =
|
dchecked_integral_cast<uint32_t>(RoundUp(end - image_info.image_begin_, kPageSize));
|
component_count = image_infos_.size();
|
} else {
|
image_reservation_size = 0u;
|
component_count = 0u;
|
}
|
}
|
|
// Create the image sections.
|
auto section_info_pair = image_info.CreateImageSections();
|
const size_t image_end = section_info_pair.first;
|
std::vector<ImageSection>& sections = section_info_pair.second;
|
|
// Finally bitmap section.
|
const size_t bitmap_bytes = image_info.image_bitmap_->Size();
|
auto* bitmap_section = §ions[ImageHeader::kSectionImageBitmap];
|
*bitmap_section = ImageSection(RoundUp(image_end, kPageSize), RoundUp(bitmap_bytes, kPageSize));
|
if (VLOG_IS_ON(compiler)) {
|
LOG(INFO) << "Creating header for " << oat_filenames_[oat_index];
|
size_t idx = 0;
|
for (const ImageSection& section : sections) {
|
LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section;
|
++idx;
|
}
|
LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_;
|
LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec;
|
LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_)
|
<< " Image offset=" << image_info.image_offset_ << std::dec;
|
LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin)
|
<< " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_)
|
<< " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end)
|
<< " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end);
|
}
|
// Store boot image info for app image so that we can relocate.
|
uint32_t boot_image_begin = 0;
|
uint32_t boot_image_end = 0;
|
uint32_t boot_oat_begin = 0;
|
uint32_t boot_oat_end = 0;
|
gc::Heap* const heap = Runtime::Current()->GetHeap();
|
heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
|
|
// Create the header, leave 0 for data size since we will fill this in as we are writing the
|
// image.
|
new (image_info.image_.Begin()) ImageHeader(
|
image_reservation_size,
|
component_count,
|
PointerToLowMemUInt32(image_info.image_begin_),
|
image_end,
|
sections.data(),
|
image_info.image_roots_address_,
|
image_info.oat_checksum_,
|
PointerToLowMemUInt32(oat_file_begin),
|
PointerToLowMemUInt32(image_info.oat_data_begin_),
|
PointerToLowMemUInt32(oat_data_end),
|
PointerToLowMemUInt32(oat_file_end),
|
boot_image_begin,
|
boot_oat_end - boot_image_begin,
|
static_cast<uint32_t>(target_ptr_size_));
|
}
|
|
ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) {
|
NativeObjectRelocation relocation = GetNativeRelocation(method);
|
const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
|
CHECK_GE(relocation.offset, image_info.image_end_) << "ArtMethods should be after Objects";
|
return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + relocation.offset);
|
}
|
|
const void* ImageWriter::GetIntrinsicReferenceAddress(uint32_t intrinsic_data) {
|
DCHECK(compiler_options_.IsBootImage());
|
switch (IntrinsicObjects::DecodePatchType(intrinsic_data)) {
|
case IntrinsicObjects::PatchType::kIntegerValueOfArray: {
|
const uint8_t* base_address =
|
reinterpret_cast<const uint8_t*>(GetImageAddress(boot_image_live_objects_));
|
MemberOffset data_offset =
|
IntrinsicObjects::GetIntegerValueOfArrayDataOffset(boot_image_live_objects_);
|
return base_address + data_offset.Uint32Value();
|
}
|
case IntrinsicObjects::PatchType::kIntegerValueOfObject: {
|
uint32_t index = IntrinsicObjects::DecodePatchIndex(intrinsic_data);
|
ObjPtr<mirror::Object> value =
|
IntrinsicObjects::GetIntegerValueOfObject(boot_image_live_objects_, index);
|
return GetImageAddress(value.Ptr());
|
}
|
}
|
LOG(FATAL) << "UNREACHABLE";
|
UNREACHABLE();
|
}
|
|
|
class ImageWriter::FixupRootVisitor : public RootVisitor {
|
public:
|
explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {
|
}
|
|
void VisitRoots(mirror::Object*** roots ATTRIBUTE_UNUSED,
|
size_t count ATTRIBUTE_UNUSED,
|
const RootInfo& info ATTRIBUTE_UNUSED)
|
override REQUIRES_SHARED(Locks::mutator_lock_) {
|
LOG(FATAL) << "Unsupported";
|
}
|
|
void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
|
size_t count,
|
const RootInfo& info ATTRIBUTE_UNUSED)
|
override REQUIRES_SHARED(Locks::mutator_lock_) {
|
for (size_t i = 0; i < count; ++i) {
|
// Copy the reference. Since we do not have the address for recording the relocation,
|
// it needs to be recorded explicitly by the user of FixupRootVisitor.
|
ObjPtr<mirror::Object> old_ptr = roots[i]->AsMirrorPtr();
|
roots[i]->Assign(image_writer_->GetImageAddress(old_ptr.Ptr()));
|
}
|
}
|
|
private:
|
ImageWriter* const image_writer_;
|
};
|
|
void ImageWriter::CopyAndFixupImTable(ImTable* orig, ImTable* copy) {
|
for (size_t i = 0; i < ImTable::kSize; ++i) {
|
ArtMethod* method = orig->Get(i, target_ptr_size_);
|
void** address = reinterpret_cast<void**>(copy->AddressOfElement(i, target_ptr_size_));
|
CopyAndFixupPointer(address, method);
|
DCHECK_EQ(copy->Get(i, target_ptr_size_), NativeLocationInImage(method));
|
}
|
}
|
|
void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) {
|
const size_t count = orig->NumEntries(target_ptr_size_);
|
for (size_t i = 0; i < count; ++i) {
|
ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_);
|
ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_);
|
CopyAndFixupPointer(copy->AddressOfInterfaceMethod(i, target_ptr_size_), interface_method);
|
CopyAndFixupPointer(
|
copy->AddressOfImplementationMethod(i, target_ptr_size_), implementation_method);
|
DCHECK_EQ(copy->GetInterfaceMethod(i, target_ptr_size_),
|
NativeLocationInImage(interface_method));
|
DCHECK_EQ(copy->GetImplementationMethod(i, target_ptr_size_),
|
NativeLocationInImage(implementation_method));
|
}
|
}
|
|
void ImageWriter::CopyAndFixupNativeData(size_t oat_index) {
|
const ImageInfo& image_info = GetImageInfo(oat_index);
|
// Copy ArtFields and methods to their locations and update the array for convenience.
|
for (auto& pair : native_object_relocations_) {
|
NativeObjectRelocation& relocation = pair.second;
|
// Only work with fields and methods that are in the current oat file.
|
if (relocation.oat_index != oat_index) {
|
continue;
|
}
|
auto* dest = image_info.image_.Begin() + relocation.offset;
|
DCHECK_GE(dest, image_info.image_.Begin() + image_info.image_end_);
|
DCHECK(!IsInBootImage(pair.first));
|
switch (relocation.type) {
|
case NativeObjectRelocationType::kArtField: {
|
memcpy(dest, pair.first, sizeof(ArtField));
|
CopyAndFixupReference(
|
reinterpret_cast<ArtField*>(dest)->GetDeclaringClassAddressWithoutBarrier(),
|
reinterpret_cast<ArtField*>(pair.first)->GetDeclaringClass());
|
break;
|
}
|
case NativeObjectRelocationType::kRuntimeMethod:
|
case NativeObjectRelocationType::kArtMethodClean:
|
case NativeObjectRelocationType::kArtMethodDirty: {
|
CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first),
|
reinterpret_cast<ArtMethod*>(dest),
|
oat_index);
|
break;
|
}
|
// For arrays, copy just the header since the elements will get copied by their corresponding
|
// relocations.
|
case NativeObjectRelocationType::kArtFieldArray: {
|
memcpy(dest, pair.first, LengthPrefixedArray<ArtField>::ComputeSize(0));
|
break;
|
}
|
case NativeObjectRelocationType::kArtMethodArrayClean:
|
case NativeObjectRelocationType::kArtMethodArrayDirty: {
|
size_t size = ArtMethod::Size(target_ptr_size_);
|
size_t alignment = ArtMethod::Alignment(target_ptr_size_);
|
memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment));
|
// Clear padding to avoid non-deterministic data in the image.
|
// Historical note: We also did that to placate Valgrind.
|
reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment);
|
break;
|
}
|
case NativeObjectRelocationType::kDexCacheArray:
|
// Nothing to copy here, everything is done in FixupDexCache().
|
break;
|
case NativeObjectRelocationType::kIMTable: {
|
ImTable* orig_imt = reinterpret_cast<ImTable*>(pair.first);
|
ImTable* dest_imt = reinterpret_cast<ImTable*>(dest);
|
CopyAndFixupImTable(orig_imt, dest_imt);
|
break;
|
}
|
case NativeObjectRelocationType::kIMTConflictTable: {
|
auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first);
|
CopyAndFixupImtConflictTable(
|
orig_table,
|
new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_));
|
break;
|
}
|
case NativeObjectRelocationType::kGcRootPointer: {
|
auto* orig_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(pair.first);
|
auto* dest_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(dest);
|
CopyAndFixupReference(dest_pointer->AddressWithoutBarrier(), orig_pointer->Read());
|
break;
|
}
|
}
|
}
|
// Fixup the image method roots.
|
auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin());
|
for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) {
|
ArtMethod* method = image_methods_[i];
|
CHECK(method != nullptr);
|
CopyAndFixupPointer(
|
reinterpret_cast<void**>(&image_header->image_methods_[i]), method, PointerSize::k32);
|
}
|
FixupRootVisitor root_visitor(this);
|
|
// Write the intern table into the image.
|
if (image_info.intern_table_bytes_ > 0) {
|
const ImageSection& intern_table_section = image_header->GetInternedStringsSection();
|
InternTable* const intern_table = image_info.intern_table_.get();
|
uint8_t* const intern_table_memory_ptr =
|
image_info.image_.Begin() + intern_table_section.Offset();
|
const size_t intern_table_bytes = intern_table->WriteToMemory(intern_table_memory_ptr);
|
CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_);
|
// Fixup the pointers in the newly written intern table to contain image addresses.
|
InternTable temp_intern_table;
|
// Note that we require that ReadFromMemory does not make an internal copy of the elements so
|
// that the VisitRoots() will update the memory directly rather than the copies.
|
// This also relies on visit roots not doing any verification which could fail after we update
|
// the roots to be the image addresses.
|
temp_intern_table.AddTableFromMemory(intern_table_memory_ptr,
|
VoidFunctor(),
|
/*is_boot_image=*/ false);
|
CHECK_EQ(temp_intern_table.Size(), intern_table->Size());
|
temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots);
|
// Record relocations. (The root visitor does not get to see the slot addresses.)
|
MutexLock lock(Thread::Current(), *Locks::intern_table_lock_);
|
DCHECK(!temp_intern_table.strong_interns_.tables_.empty());
|
DCHECK(!temp_intern_table.strong_interns_.tables_[0].Empty()); // Inserted at the beginning.
|
}
|
// Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple
|
// class loaders. Writing multiple class tables into the image is currently unsupported.
|
if (image_info.class_table_bytes_ > 0u) {
|
const ImageSection& class_table_section = image_header->GetClassTableSection();
|
uint8_t* const class_table_memory_ptr =
|
image_info.image_.Begin() + class_table_section.Offset();
|
Thread* self = Thread::Current();
|
ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
|
|
ClassTable* table = image_info.class_table_.get();
|
CHECK(table != nullptr);
|
const size_t class_table_bytes = table->WriteToMemory(class_table_memory_ptr);
|
CHECK_EQ(class_table_bytes, image_info.class_table_bytes_);
|
// Fixup the pointers in the newly written class table to contain image addresses. See
|
// above comment for intern tables.
|
ClassTable temp_class_table;
|
temp_class_table.ReadFromMemory(class_table_memory_ptr);
|
CHECK_EQ(temp_class_table.NumReferencedZygoteClasses(),
|
table->NumReferencedNonZygoteClasses() + table->NumReferencedZygoteClasses());
|
UnbufferedRootVisitor visitor(&root_visitor, RootInfo(kRootUnknown));
|
temp_class_table.VisitRoots(visitor);
|
// Record relocations. (The root visitor does not get to see the slot addresses.)
|
// Note that the low bits in the slots contain bits of the descriptors' hash codes
|
// but the relocation works fine for these "adjusted" references.
|
ReaderMutexLock lock(self, temp_class_table.lock_);
|
DCHECK(!temp_class_table.classes_.empty());
|
DCHECK(!temp_class_table.classes_[0].empty()); // The ClassSet was inserted at the beginning.
|
}
|
}
|
|
void ImageWriter::FixupPointerArray(mirror::Object* dst,
|
mirror::PointerArray* arr,
|
Bin array_type) {
|
CHECK(arr->IsIntArray() || arr->IsLongArray()) << arr->GetClass()->PrettyClass() << " " << arr;
|
// Fixup int and long pointers for the ArtMethod or ArtField arrays.
|
const size_t num_elements = arr->GetLength();
|
CopyAndFixupReference(
|
dst->GetFieldObjectReferenceAddr<kVerifyNone>(Class::ClassOffset()), arr->GetClass());
|
auto* dest_array = down_cast<mirror::PointerArray*>(dst);
|
for (size_t i = 0, count = num_elements; i < count; ++i) {
|
void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_);
|
if (kIsDebugBuild && elem != nullptr && !IsInBootImage(elem)) {
|
auto it = native_object_relocations_.find(elem);
|
if (UNLIKELY(it == native_object_relocations_.end())) {
|
if (it->second.IsArtMethodRelocation()) {
|
auto* method = reinterpret_cast<ArtMethod*>(elem);
|
LOG(FATAL) << "No relocation entry for ArtMethod " << method->PrettyMethod() << " @ "
|
<< method << " idx=" << i << "/" << num_elements << " with declaring class "
|
<< Class::PrettyClass(method->GetDeclaringClass());
|
} else {
|
CHECK_EQ(array_type, Bin::kArtField);
|
auto* field = reinterpret_cast<ArtField*>(elem);
|
LOG(FATAL) << "No relocation entry for ArtField " << field->PrettyField() << " @ "
|
<< field << " idx=" << i << "/" << num_elements << " with declaring class "
|
<< Class::PrettyClass(field->GetDeclaringClass());
|
}
|
UNREACHABLE();
|
}
|
}
|
CopyAndFixupPointer(dest_array->ElementAddress(i, target_ptr_size_), elem);
|
}
|
}
|
|
void ImageWriter::CopyAndFixupObject(Object* obj) {
|
if (!IsImageObject(obj)) {
|
return;
|
}
|
size_t offset = GetImageOffset(obj);
|
size_t oat_index = GetOatIndex(obj);
|
ImageInfo& image_info = GetImageInfo(oat_index);
|
auto* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + offset);
|
DCHECK_LT(offset, image_info.image_end_);
|
const auto* src = reinterpret_cast<const uint8_t*>(obj);
|
|
image_info.image_bitmap_->Set(dst); // Mark the obj as live.
|
|
const size_t n = obj->SizeOf();
|
|
if (kIsDebugBuild && region_size_ != 0u) {
|
const size_t offset_after_header = offset - sizeof(ImageHeader);
|
const size_t next_region = RoundUp(offset_after_header, region_size_);
|
if (offset_after_header != next_region) {
|
// If the object is not on a region bondary, it must not be cross region.
|
CHECK_LT(offset_after_header, next_region)
|
<< "offset_after_header=" << offset_after_header << " size=" << n;
|
CHECK_LE(offset_after_header + n, next_region)
|
<< "offset_after_header=" << offset_after_header << " size=" << n;
|
}
|
}
|
DCHECK_LE(offset + n, image_info.image_.Size());
|
memcpy(dst, src, n);
|
|
// Write in a hash code of objects which have inflated monitors or a hash code in their monitor
|
// word.
|
const auto it = saved_hashcode_map_.find(obj);
|
dst->SetLockWord(it != saved_hashcode_map_.end() ?
|
LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false);
|
if (kUseBakerReadBarrier && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects) {
|
// Treat all of the objects in the image as marked to avoid unnecessary dirty pages. This is
|
// safe since we mark all of the objects that may reference non immune objects as gray.
|
CHECK(dst->AtomicSetMarkBit(0, 1));
|
}
|
FixupObject(obj, dst);
|
}
|
|
// Rewrite all the references in the copied object to point to their image address equivalent
|
class ImageWriter::FixupVisitor {
|
public:
|
FixupVisitor(ImageWriter* image_writer, Object* copy)
|
: image_writer_(image_writer), copy_(copy) {
|
}
|
|
// Ignore class roots since we don't have a way to map them to the destination. These are handled
|
// with other logic.
|
void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
|
const {}
|
void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
|
|
void operator()(ObjPtr<Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
|
REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
|
ObjPtr<Object> ref = obj->GetFieldObject<Object, kVerifyNone>(offset);
|
// Copy the reference and record the fixup if necessary.
|
image_writer_->CopyAndFixupReference(
|
copy_->GetFieldObjectReferenceAddr<kVerifyNone>(offset), ref);
|
}
|
|
// java.lang.ref.Reference visitor.
|
void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
|
ObjPtr<mirror::Reference> ref) const
|
REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
|
operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
|
}
|
|
protected:
|
ImageWriter* const image_writer_;
|
mirror::Object* const copy_;
|
};
|
|
void ImageWriter::CopyAndFixupObjects() {
|
auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
|
DCHECK(obj != nullptr);
|
CopyAndFixupObject(obj);
|
};
|
Runtime::Current()->GetHeap()->VisitObjects(visitor);
|
// Copy the padding objects since they are required for in order traversal of the image space.
|
for (const ImageInfo& image_info : image_infos_) {
|
for (const size_t offset : image_info.padding_object_offsets_) {
|
auto* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + offset);
|
dst->SetClass<kVerifyNone>(GetImageAddress(GetClassRoot<mirror::Object>().Ptr()));
|
dst->SetLockWord<kVerifyNone>(LockWord::Default(), /*as_volatile=*/ false);
|
image_info.image_bitmap_->Set(dst); // Mark the obj as live.
|
}
|
}
|
// We no longer need the hashcode map, values have already been copied to target objects.
|
saved_hashcode_map_.clear();
|
}
|
|
class ImageWriter::FixupClassVisitor final : public FixupVisitor {
|
public:
|
FixupClassVisitor(ImageWriter* image_writer, Object* copy)
|
: FixupVisitor(image_writer, copy) {}
|
|
void operator()(ObjPtr<Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
|
REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
|
DCHECK(obj->IsClass());
|
FixupVisitor::operator()(obj, offset, /*is_static*/false);
|
}
|
|
void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
|
ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const
|
REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
|
LOG(FATAL) << "Reference not expected here.";
|
}
|
};
|
|
ImageWriter::NativeObjectRelocation ImageWriter::GetNativeRelocation(void* obj) {
|
DCHECK(obj != nullptr);
|
DCHECK(!IsInBootImage(obj));
|
auto it = native_object_relocations_.find(obj);
|
CHECK(it != native_object_relocations_.end()) << obj << " spaces "
|
<< Runtime::Current()->GetHeap()->DumpSpaces();
|
return it->second;
|
}
|
|
template <typename T>
|
std::string PrettyPrint(T* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
|
std::ostringstream oss;
|
oss << ptr;
|
return oss.str();
|
}
|
|
template <>
|
std::string PrettyPrint(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) {
|
return ArtMethod::PrettyMethod(method);
|
}
|
|
template <typename T>
|
T* ImageWriter::NativeLocationInImage(T* obj) {
|
if (obj == nullptr || IsInBootImage(obj)) {
|
return obj;
|
} else {
|
NativeObjectRelocation relocation = GetNativeRelocation(obj);
|
const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
|
return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset);
|
}
|
}
|
|
template <typename T>
|
T* ImageWriter::NativeCopyLocation(T* obj) {
|
const NativeObjectRelocation relocation = GetNativeRelocation(obj);
|
const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
|
return reinterpret_cast<T*>(image_info.image_.Begin() + relocation.offset);
|
}
|
|
class ImageWriter::NativeLocationVisitor {
|
public:
|
explicit NativeLocationVisitor(ImageWriter* image_writer)
|
: image_writer_(image_writer) {}
|
|
template <typename T>
|
T* operator()(T* ptr, void** dest_addr) const REQUIRES_SHARED(Locks::mutator_lock_) {
|
if (ptr != nullptr) {
|
image_writer_->CopyAndFixupPointer(dest_addr, ptr);
|
}
|
// TODO: The caller shall overwrite the value stored by CopyAndFixupPointer()
|
// with the value we return here. We should try to avoid the duplicate work.
|
return image_writer_->NativeLocationInImage(ptr);
|
}
|
|
private:
|
ImageWriter* const image_writer_;
|
};
|
|
void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) {
|
orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this));
|
FixupClassVisitor visitor(this, copy);
|
ObjPtr<mirror::Object>(orig)->VisitReferences(visitor, visitor);
|
|
if (kBitstringSubtypeCheckEnabled && compiler_options_.IsAppImage()) {
|
// When we call SubtypeCheck::EnsureInitialize, it Assigns new bitstring
|
// values to the parent of that class.
|
//
|
// Every time this happens, the parent class has to mutate to increment
|
// the "Next" value.
|
//
|
// If any of these parents are in the boot image, the changes [in the parents]
|
// would be lost when the app image is reloaded.
|
//
|
// To prevent newly loaded classes (not in the app image) from being reassigned
|
// the same bitstring value as an existing app image class, uninitialize
|
// all the classes in the app image.
|
//
|
// On startup, the class linker will then re-initialize all the app
|
// image bitstrings. See also ClassLinker::AddImageSpace.
|
MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_);
|
// Lock every time to prevent a dcheck failure when we suspend with the lock held.
|
SubtypeCheck<mirror::Class*>::ForceUninitialize(copy);
|
}
|
|
// Remove the clinitThreadId. This is required for image determinism.
|
copy->SetClinitThreadId(static_cast<pid_t>(0));
|
}
|
|
void ImageWriter::FixupObject(Object* orig, Object* copy) {
|
DCHECK(orig != nullptr);
|
DCHECK(copy != nullptr);
|
if (kUseBakerReadBarrier) {
|
orig->AssertReadBarrierState();
|
}
|
if (orig->IsIntArray() || orig->IsLongArray()) {
|
// Is this a native pointer array?
|
auto it = pointer_arrays_.find(down_cast<mirror::PointerArray*>(orig));
|
if (it != pointer_arrays_.end()) {
|
// Should only need to fixup every pointer array exactly once.
|
FixupPointerArray(copy, down_cast<mirror::PointerArray*>(orig), it->second);
|
pointer_arrays_.erase(it);
|
return;
|
}
|
}
|
if (orig->IsClass()) {
|
FixupClass(orig->AsClass<kVerifyNone>().Ptr(), down_cast<mirror::Class*>(copy));
|
} else {
|
ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
|
Runtime::Current()->GetClassLinker()->GetClassRoots();
|
ObjPtr<mirror::Class> klass = orig->GetClass();
|
if (klass == GetClassRoot<mirror::Method>(class_roots) ||
|
klass == GetClassRoot<mirror::Constructor>(class_roots)) {
|
// Need to go update the ArtMethod.
|
auto* dest = down_cast<mirror::Executable*>(copy);
|
auto* src = down_cast<mirror::Executable*>(orig);
|
ArtMethod* src_method = src->GetArtMethod();
|
CopyAndFixupPointer(dest, mirror::Executable::ArtMethodOffset(), src_method);
|
} else if (klass == GetClassRoot<mirror::DexCache>(class_roots)) {
|
FixupDexCache(down_cast<mirror::DexCache*>(orig), down_cast<mirror::DexCache*>(copy));
|
} else if (klass->IsClassLoaderClass()) {
|
mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy);
|
// If src is a ClassLoader, set the class table to null so that it gets recreated by the
|
// ClassLoader.
|
copy_loader->SetClassTable(nullptr);
|
// Also set allocator to null to be safe. The allocator is created when we create the class
|
// table. We also never expect to unload things in the image since they are held live as
|
// roots.
|
copy_loader->SetAllocator(nullptr);
|
}
|
FixupVisitor visitor(this, copy);
|
orig->VisitReferences(visitor, visitor);
|
}
|
}
|
|
template <typename T>
|
void ImageWriter::FixupDexCacheArrayEntry(std::atomic<mirror::DexCachePair<T>>* orig_array,
|
std::atomic<mirror::DexCachePair<T>>* new_array,
|
uint32_t array_index) {
|
static_assert(sizeof(std::atomic<mirror::DexCachePair<T>>) == sizeof(mirror::DexCachePair<T>),
|
"Size check for removing std::atomic<>.");
|
mirror::DexCachePair<T>* orig_pair =
|
reinterpret_cast<mirror::DexCachePair<T>*>(&orig_array[array_index]);
|
mirror::DexCachePair<T>* new_pair =
|
reinterpret_cast<mirror::DexCachePair<T>*>(&new_array[array_index]);
|
CopyAndFixupReference(
|
new_pair->object.AddressWithoutBarrier(), orig_pair->object.Read());
|
new_pair->index = orig_pair->index;
|
}
|
|
template <typename T>
|
void ImageWriter::FixupDexCacheArrayEntry(std::atomic<mirror::NativeDexCachePair<T>>* orig_array,
|
std::atomic<mirror::NativeDexCachePair<T>>* new_array,
|
uint32_t array_index) {
|
static_assert(
|
sizeof(std::atomic<mirror::NativeDexCachePair<T>>) == sizeof(mirror::NativeDexCachePair<T>),
|
"Size check for removing std::atomic<>.");
|
if (target_ptr_size_ == PointerSize::k64) {
|
DexCache::ConversionPair64* orig_pair =
|
reinterpret_cast<DexCache::ConversionPair64*>(orig_array) + array_index;
|
DexCache::ConversionPair64* new_pair =
|
reinterpret_cast<DexCache::ConversionPair64*>(new_array) + array_index;
|
*new_pair = *orig_pair; // Copy original value and index.
|
if (orig_pair->first != 0u) {
|
CopyAndFixupPointer(
|
reinterpret_cast<void**>(&new_pair->first), reinterpret_cast64<void*>(orig_pair->first));
|
}
|
} else {
|
DexCache::ConversionPair32* orig_pair =
|
reinterpret_cast<DexCache::ConversionPair32*>(orig_array) + array_index;
|
DexCache::ConversionPair32* new_pair =
|
reinterpret_cast<DexCache::ConversionPair32*>(new_array) + array_index;
|
*new_pair = *orig_pair; // Copy original value and index.
|
if (orig_pair->first != 0u) {
|
CopyAndFixupPointer(
|
reinterpret_cast<void**>(&new_pair->first), reinterpret_cast32<void*>(orig_pair->first));
|
}
|
}
|
}
|
|
void ImageWriter::FixupDexCacheArrayEntry(GcRoot<mirror::CallSite>* orig_array,
|
GcRoot<mirror::CallSite>* new_array,
|
uint32_t array_index) {
|
CopyAndFixupReference(
|
new_array[array_index].AddressWithoutBarrier(), orig_array[array_index].Read());
|
}
|
|
template <typename EntryType>
|
void ImageWriter::FixupDexCacheArray(DexCache* orig_dex_cache,
|
DexCache* copy_dex_cache,
|
MemberOffset array_offset,
|
uint32_t size) {
|
EntryType* orig_array = orig_dex_cache->GetFieldPtr64<EntryType*>(array_offset);
|
DCHECK_EQ(orig_array != nullptr, size != 0u);
|
if (orig_array != nullptr) {
|
// Though the DexCache array fields are usually treated as native pointers, we clear
|
// the top 32 bits for 32-bit targets.
|
CopyAndFixupPointer(copy_dex_cache, array_offset, orig_array, PointerSize::k64);
|
EntryType* new_array = NativeCopyLocation(orig_array);
|
for (uint32_t i = 0; i != size; ++i) {
|
FixupDexCacheArrayEntry(orig_array, new_array, i);
|
}
|
}
|
}
|
|
void ImageWriter::FixupDexCache(DexCache* orig_dex_cache, DexCache* copy_dex_cache) {
|
FixupDexCacheArray<mirror::StringDexCacheType>(orig_dex_cache,
|
copy_dex_cache,
|
DexCache::StringsOffset(),
|
orig_dex_cache->NumStrings());
|
FixupDexCacheArray<mirror::TypeDexCacheType>(orig_dex_cache,
|
copy_dex_cache,
|
DexCache::ResolvedTypesOffset(),
|
orig_dex_cache->NumResolvedTypes());
|
FixupDexCacheArray<mirror::MethodDexCacheType>(orig_dex_cache,
|
copy_dex_cache,
|
DexCache::ResolvedMethodsOffset(),
|
orig_dex_cache->NumResolvedMethods());
|
FixupDexCacheArray<mirror::FieldDexCacheType>(orig_dex_cache,
|
copy_dex_cache,
|
DexCache::ResolvedFieldsOffset(),
|
orig_dex_cache->NumResolvedFields());
|
FixupDexCacheArray<mirror::MethodTypeDexCacheType>(orig_dex_cache,
|
copy_dex_cache,
|
DexCache::ResolvedMethodTypesOffset(),
|
orig_dex_cache->NumResolvedMethodTypes());
|
FixupDexCacheArray<GcRoot<mirror::CallSite>>(orig_dex_cache,
|
copy_dex_cache,
|
DexCache::ResolvedCallSitesOffset(),
|
orig_dex_cache->NumResolvedCallSites());
|
if (orig_dex_cache->GetPreResolvedStrings() != nullptr) {
|
CopyAndFixupPointer(copy_dex_cache,
|
DexCache::PreResolvedStringsOffset(),
|
orig_dex_cache->GetPreResolvedStrings(),
|
PointerSize::k64);
|
}
|
|
// Remove the DexFile pointers. They will be fixed up when the runtime loads the oat file. Leaving
|
// compiler pointers in here will make the output non-deterministic.
|
copy_dex_cache->SetDexFile(nullptr);
|
}
|
|
const uint8_t* ImageWriter::GetOatAddress(StubType type) const {
|
DCHECK_LE(type, StubType::kLast);
|
// If we are compiling an app image, we need to use the stubs of the boot image.
|
if (!compiler_options_.IsBootImage()) {
|
// Use the current image pointers.
|
const std::vector<gc::space::ImageSpace*>& image_spaces =
|
Runtime::Current()->GetHeap()->GetBootImageSpaces();
|
DCHECK(!image_spaces.empty());
|
const OatFile* oat_file = image_spaces[0]->GetOatFile();
|
CHECK(oat_file != nullptr);
|
const OatHeader& header = oat_file->GetOatHeader();
|
switch (type) {
|
// TODO: We could maybe clean this up if we stored them in an array in the oat header.
|
case StubType::kQuickGenericJNITrampoline:
|
return static_cast<const uint8_t*>(header.GetQuickGenericJniTrampoline());
|
case StubType::kJNIDlsymLookup:
|
return static_cast<const uint8_t*>(header.GetJniDlsymLookup());
|
case StubType::kQuickIMTConflictTrampoline:
|
return static_cast<const uint8_t*>(header.GetQuickImtConflictTrampoline());
|
case StubType::kQuickResolutionTrampoline:
|
return static_cast<const uint8_t*>(header.GetQuickResolutionTrampoline());
|
case StubType::kQuickToInterpreterBridge:
|
return static_cast<const uint8_t*>(header.GetQuickToInterpreterBridge());
|
default:
|
UNREACHABLE();
|
}
|
}
|
const ImageInfo& primary_image_info = GetImageInfo(0);
|
return GetOatAddressForOffset(primary_image_info.GetStubOffset(type), primary_image_info);
|
}
|
|
const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method,
|
const ImageInfo& image_info,
|
bool* quick_is_interpreted) {
|
DCHECK(!method->IsResolutionMethod()) << method->PrettyMethod();
|
DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << method->PrettyMethod();
|
DCHECK(!method->IsImtUnimplementedMethod()) << method->PrettyMethod();
|
DCHECK(method->IsInvokable()) << method->PrettyMethod();
|
DCHECK(!IsInBootImage(method)) << method->PrettyMethod();
|
|
// Use original code if it exists. Otherwise, set the code pointer to the resolution
|
// trampoline.
|
|
// Quick entrypoint:
|
const void* quick_oat_entry_point =
|
method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_);
|
const uint8_t* quick_code;
|
|
if (UNLIKELY(IsInBootImage(method->GetDeclaringClass().Ptr()))) {
|
DCHECK(method->IsCopied());
|
// If the code is not in the oat file corresponding to this image (e.g. default methods)
|
quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point);
|
} else {
|
uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point);
|
quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info);
|
}
|
|
*quick_is_interpreted = false;
|
if (quick_code != nullptr && (!method->IsStatic() || method->IsConstructor() ||
|
method->GetDeclaringClass()->IsInitialized())) {
|
// We have code for a non-static or initialized method, just use the code.
|
} else if (quick_code == nullptr && method->IsNative() &&
|
(!method->IsStatic() || method->GetDeclaringClass()->IsInitialized())) {
|
// Non-static or initialized native method missing compiled code, use generic JNI version.
|
quick_code = GetOatAddress(StubType::kQuickGenericJNITrampoline);
|
} else if (quick_code == nullptr && !method->IsNative()) {
|
// We don't have code at all for a non-native method, use the interpreter.
|
quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge);
|
*quick_is_interpreted = true;
|
} else {
|
CHECK(!method->GetDeclaringClass()->IsInitialized());
|
// We have code for a static method, but need to go through the resolution stub for class
|
// initialization.
|
quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
|
}
|
if (!IsInBootOatFile(quick_code)) {
|
// DCHECK_GE(quick_code, oat_data_begin_);
|
}
|
return quick_code;
|
}
|
|
void ImageWriter::CopyAndFixupMethod(ArtMethod* orig,
|
ArtMethod* copy,
|
size_t oat_index) {
|
if (orig->IsAbstract()) {
|
// Ignore the single-implementation info for abstract method.
|
// Do this on orig instead of copy, otherwise there is a crash due to methods
|
// are copied before classes.
|
// TODO: handle fixup of single-implementation method for abstract method.
|
orig->SetHasSingleImplementation(false);
|
orig->SetSingleImplementation(
|
nullptr, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
|
}
|
|
memcpy(copy, orig, ArtMethod::Size(target_ptr_size_));
|
|
CopyAndFixupReference(
|
copy->GetDeclaringClassAddressWithoutBarrier(), orig->GetDeclaringClassUnchecked());
|
|
// OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
|
// oat_begin_
|
|
// The resolution method has a special trampoline to call.
|
Runtime* runtime = Runtime::Current();
|
const void* quick_code;
|
if (orig->IsRuntimeMethod()) {
|
ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_);
|
if (orig_table != nullptr) {
|
// Special IMT conflict method, normal IMT conflict method or unimplemented IMT method.
|
quick_code = GetOatAddress(StubType::kQuickIMTConflictTrampoline);
|
CopyAndFixupPointer(copy, ArtMethod::DataOffset(target_ptr_size_), orig_table);
|
} else if (UNLIKELY(orig == runtime->GetResolutionMethod())) {
|
quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
|
} else {
|
bool found_one = false;
|
for (size_t i = 0; i < static_cast<size_t>(CalleeSaveType::kLastCalleeSaveType); ++i) {
|
auto idx = static_cast<CalleeSaveType>(i);
|
if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) {
|
found_one = true;
|
break;
|
}
|
}
|
CHECK(found_one) << "Expected to find callee save method but got " << orig->PrettyMethod();
|
CHECK(copy->IsRuntimeMethod());
|
CHECK(copy->GetEntryPointFromQuickCompiledCode() == nullptr);
|
quick_code = nullptr;
|
}
|
} else {
|
// We assume all methods have code. If they don't currently then we set them to the use the
|
// resolution trampoline. Abstract methods never have code and so we need to make sure their
|
// use results in an AbstractMethodError. We use the interpreter to achieve this.
|
if (UNLIKELY(!orig->IsInvokable())) {
|
quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge);
|
} else {
|
bool quick_is_interpreted;
|
const ImageInfo& image_info = image_infos_[oat_index];
|
quick_code = GetQuickCode(orig, image_info, &quick_is_interpreted);
|
|
// JNI entrypoint:
|
if (orig->IsNative()) {
|
// The native method's pointer is set to a stub to lookup via dlsym.
|
// Note this is not the code_ pointer, that is handled above.
|
copy->SetEntryPointFromJniPtrSize(
|
GetOatAddress(StubType::kJNIDlsymLookup), target_ptr_size_);
|
} else {
|
CHECK(copy->GetDataPtrSize(target_ptr_size_) == nullptr);
|
}
|
}
|
}
|
if (quick_code != nullptr) {
|
copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_);
|
}
|
}
|
|
size_t ImageWriter::ImageInfo::GetBinSizeSum(Bin up_to) const {
|
DCHECK_LE(static_cast<size_t>(up_to), kNumberOfBins);
|
return std::accumulate(&bin_slot_sizes_[0],
|
&bin_slot_sizes_[0] + static_cast<size_t>(up_to),
|
/*init*/ static_cast<size_t>(0));
|
}
|
|
ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) {
|
// These values may need to get updated if more bins are added to the enum Bin
|
static_assert(kBinBits == 3, "wrong number of bin bits");
|
static_assert(kBinShift == 27, "wrong number of shift");
|
static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes");
|
|
DCHECK_LT(GetBin(), Bin::kMirrorCount);
|
DCHECK_ALIGNED(GetIndex(), kObjectAlignment);
|
}
|
|
ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index)
|
: BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) {
|
DCHECK_EQ(index, GetIndex());
|
}
|
|
ImageWriter::Bin ImageWriter::BinSlot::GetBin() const {
|
return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift);
|
}
|
|
uint32_t ImageWriter::BinSlot::GetIndex() const {
|
return lockword_ & ~kBinMask;
|
}
|
|
ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) {
|
switch (type) {
|
case NativeObjectRelocationType::kArtField:
|
case NativeObjectRelocationType::kArtFieldArray:
|
return Bin::kArtField;
|
case NativeObjectRelocationType::kArtMethodClean:
|
case NativeObjectRelocationType::kArtMethodArrayClean:
|
return Bin::kArtMethodClean;
|
case NativeObjectRelocationType::kArtMethodDirty:
|
case NativeObjectRelocationType::kArtMethodArrayDirty:
|
return Bin::kArtMethodDirty;
|
case NativeObjectRelocationType::kDexCacheArray:
|
return Bin::kDexCacheArray;
|
case NativeObjectRelocationType::kRuntimeMethod:
|
return Bin::kRuntimeMethod;
|
case NativeObjectRelocationType::kIMTable:
|
return Bin::kImTable;
|
case NativeObjectRelocationType::kIMTConflictTable:
|
return Bin::kIMTConflictTable;
|
case NativeObjectRelocationType::kGcRootPointer:
|
return Bin::kMetadata;
|
}
|
UNREACHABLE();
|
}
|
|
size_t ImageWriter::GetOatIndex(mirror::Object* obj) const {
|
if (!IsMultiImage()) {
|
return GetDefaultOatIndex();
|
}
|
auto it = oat_index_map_.find(obj);
|
DCHECK(it != oat_index_map_.end()) << obj;
|
return it->second;
|
}
|
|
size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const {
|
if (!IsMultiImage()) {
|
return GetDefaultOatIndex();
|
}
|
auto it = dex_file_oat_index_map_.find(dex_file);
|
DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
|
return it->second;
|
}
|
|
size_t ImageWriter::GetOatIndexForDexCache(ObjPtr<mirror::DexCache> dex_cache) const {
|
return (dex_cache == nullptr)
|
? GetDefaultOatIndex()
|
: GetOatIndexForDexFile(dex_cache->GetDexFile());
|
}
|
|
void ImageWriter::UpdateOatFileLayout(size_t oat_index,
|
size_t oat_loaded_size,
|
size_t oat_data_offset,
|
size_t oat_data_size) {
|
DCHECK_GE(oat_loaded_size, oat_data_offset);
|
DCHECK_GE(oat_loaded_size - oat_data_offset, oat_data_size);
|
|
const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_;
|
DCHECK(images_end != nullptr); // Image space must be ready.
|
for (const ImageInfo& info : image_infos_) {
|
DCHECK_LE(info.image_begin_ + info.image_size_, images_end);
|
}
|
|
ImageInfo& cur_image_info = GetImageInfo(oat_index);
|
cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_;
|
cur_image_info.oat_loaded_size_ = oat_loaded_size;
|
cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset;
|
cur_image_info.oat_size_ = oat_data_size;
|
|
if (compiler_options_.IsAppImage()) {
|
CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image.";
|
return;
|
}
|
|
// Update the oat_offset of the next image info.
|
if (oat_index + 1u != oat_filenames_.size()) {
|
// There is a following one.
|
ImageInfo& next_image_info = GetImageInfo(oat_index + 1u);
|
next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size;
|
}
|
}
|
|
void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) {
|
ImageInfo& cur_image_info = GetImageInfo(oat_index);
|
cur_image_info.oat_checksum_ = oat_header.GetChecksum();
|
|
if (oat_index == GetDefaultOatIndex()) {
|
// Primary oat file, read the trampolines.
|
cur_image_info.SetStubOffset(StubType::kJNIDlsymLookup,
|
oat_header.GetJniDlsymLookupOffset());
|
cur_image_info.SetStubOffset(StubType::kQuickGenericJNITrampoline,
|
oat_header.GetQuickGenericJniTrampolineOffset());
|
cur_image_info.SetStubOffset(StubType::kQuickIMTConflictTrampoline,
|
oat_header.GetQuickImtConflictTrampolineOffset());
|
cur_image_info.SetStubOffset(StubType::kQuickResolutionTrampoline,
|
oat_header.GetQuickResolutionTrampolineOffset());
|
cur_image_info.SetStubOffset(StubType::kQuickToInterpreterBridge,
|
oat_header.GetQuickToInterpreterBridgeOffset());
|
}
|
}
|
|
ImageWriter::ImageWriter(
|
const CompilerOptions& compiler_options,
|
uintptr_t image_begin,
|
ImageHeader::StorageMode image_storage_mode,
|
const std::vector<std::string>& oat_filenames,
|
const std::unordered_map<const DexFile*, size_t>& dex_file_oat_index_map,
|
jobject class_loader,
|
const HashSet<std::string>* dirty_image_objects)
|
: compiler_options_(compiler_options),
|
global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)),
|
image_objects_offset_begin_(0),
|
target_ptr_size_(InstructionSetPointerSize(compiler_options.GetInstructionSet())),
|
image_infos_(oat_filenames.size()),
|
dirty_methods_(0u),
|
clean_methods_(0u),
|
app_class_loader_(class_loader),
|
boot_image_live_objects_(nullptr),
|
image_storage_mode_(image_storage_mode),
|
oat_filenames_(oat_filenames),
|
dex_file_oat_index_map_(dex_file_oat_index_map),
|
dirty_image_objects_(dirty_image_objects) {
|
DCHECK(compiler_options.IsBootImage() || compiler_options.IsAppImage());
|
CHECK_NE(image_begin, 0U);
|
std::fill_n(image_methods_, arraysize(image_methods_), nullptr);
|
CHECK_EQ(compiler_options.IsBootImage(),
|
Runtime::Current()->GetHeap()->GetBootImageSpaces().empty())
|
<< "Compiling a boot image should occur iff there are no boot image spaces loaded";
|
if (compiler_options_.IsAppImage()) {
|
// Make sure objects are not crossing region boundaries for app images.
|
region_size_ = gc::space::RegionSpace::kRegionSize;
|
}
|
}
|
|
ImageWriter::ImageInfo::ImageInfo()
|
: intern_table_(new InternTable),
|
class_table_(new ClassTable) {}
|
|
template <typename DestType>
|
void ImageWriter::CopyAndFixupReference(DestType* dest, ObjPtr<mirror::Object> src) {
|
static_assert(std::is_same<DestType, mirror::CompressedReference<mirror::Object>>::value ||
|
std::is_same<DestType, mirror::HeapReference<mirror::Object>>::value,
|
"DestType must be a Compressed-/HeapReference<Object>.");
|
dest->Assign(GetImageAddress(src.Ptr()));
|
}
|
|
void ImageWriter::CopyAndFixupPointer(void** target, void* value, PointerSize pointer_size) {
|
void* new_value = NativeLocationInImage(value);
|
if (pointer_size == PointerSize::k32) {
|
*reinterpret_cast<uint32_t*>(target) = reinterpret_cast32<uint32_t>(new_value);
|
} else {
|
*reinterpret_cast<uint64_t*>(target) = reinterpret_cast64<uint64_t>(new_value);
|
}
|
DCHECK(value != nullptr);
|
}
|
|
void ImageWriter::CopyAndFixupPointer(void** target, void* value)
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
CopyAndFixupPointer(target, value, target_ptr_size_);
|
}
|
|
void ImageWriter::CopyAndFixupPointer(
|
void* object, MemberOffset offset, void* value, PointerSize pointer_size) {
|
void** target =
|
reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(object) + offset.Uint32Value());
|
return CopyAndFixupPointer(target, value, pointer_size);
|
}
|
|
void ImageWriter::CopyAndFixupPointer(void* object, MemberOffset offset, void* value) {
|
return CopyAndFixupPointer(object, offset, value, target_ptr_size_);
|
}
|
|
} // namespace linker
|
} // namespace art
|