/*
|
* Copyright 2017 Google Inc.
|
*
|
* Use of this source code is governed by a BSD-style license that can be
|
* found in the LICENSE file.
|
*/
|
|
#include "SkPolyUtils.h"
|
|
#include <limits>
|
|
#include "SkNx.h"
|
#include "SkPointPriv.h"
|
#include "SkTArray.h"
|
#include "SkTemplates.h"
|
#include "SkTDPQueue.h"
|
#include "SkTInternalLList.h"
|
|
//////////////////////////////////////////////////////////////////////////////////
|
// Helper data structures and functions
|
|
struct OffsetSegment {
|
SkPoint fP0;
|
SkVector fV;
|
};
|
|
constexpr SkScalar kCrossTolerance = SK_ScalarNearlyZero * SK_ScalarNearlyZero;
|
|
// Computes perpDot for point p compared to segment defined by origin p0 and vector v.
|
// A positive value means the point is to the left of the segment,
|
// negative is to the right, 0 is collinear.
|
static int compute_side(const SkPoint& p0, const SkVector& v, const SkPoint& p) {
|
SkVector w = p - p0;
|
SkScalar perpDot = v.cross(w);
|
if (!SkScalarNearlyZero(perpDot, kCrossTolerance)) {
|
return ((perpDot > 0) ? 1 : -1);
|
}
|
|
return 0;
|
}
|
|
// Returns 1 for cw, -1 for ccw and 0 if zero signed area (either degenerate or self-intersecting)
|
int SkGetPolygonWinding(const SkPoint* polygonVerts, int polygonSize) {
|
if (polygonSize < 3) {
|
return 0;
|
}
|
|
// compute area and use sign to determine winding
|
SkScalar quadArea = 0;
|
SkVector v0 = polygonVerts[1] - polygonVerts[0];
|
for (int curr = 2; curr < polygonSize; ++curr) {
|
SkVector v1 = polygonVerts[curr] - polygonVerts[0];
|
quadArea += v0.cross(v1);
|
v0 = v1;
|
}
|
if (SkScalarNearlyZero(quadArea, kCrossTolerance)) {
|
return 0;
|
}
|
// 1 == ccw, -1 == cw
|
return (quadArea > 0) ? 1 : -1;
|
}
|
|
// Compute difference vector to offset p0-p1 'offset' units in direction specified by 'side'
|
bool compute_offset_vector(const SkPoint& p0, const SkPoint& p1, SkScalar offset, int side,
|
SkPoint* vector) {
|
SkASSERT(side == -1 || side == 1);
|
// if distances are equal, can just outset by the perpendicular
|
SkVector perp = SkVector::Make(p0.fY - p1.fY, p1.fX - p0.fX);
|
if (!perp.setLength(offset*side)) {
|
return false;
|
}
|
*vector = perp;
|
return true;
|
}
|
|
// check interval to see if intersection is in segment
|
static inline bool outside_interval(SkScalar numer, SkScalar denom, bool denomPositive) {
|
return (denomPositive && (numer < 0 || numer > denom)) ||
|
(!denomPositive && (numer > 0 || numer < denom));
|
}
|
|
// Compute the intersection 'p' between segments s0 and s1, if any.
|
// 's' is the parametric value for the intersection along 's0' & 't' is the same for 's1'.
|
// Returns false if there is no intersection.
|
static bool compute_intersection(const OffsetSegment& s0, const OffsetSegment& s1,
|
SkPoint* p, SkScalar* s, SkScalar* t) {
|
const SkVector& v0 = s0.fV;
|
const SkVector& v1 = s1.fV;
|
SkVector w = s1.fP0 - s0.fP0;
|
SkScalar denom = v0.cross(v1);
|
bool denomPositive = (denom > 0);
|
SkScalar sNumer, tNumer;
|
if (SkScalarNearlyZero(denom, kCrossTolerance)) {
|
// segments are parallel, but not collinear
|
if (!SkScalarNearlyZero(w.cross(v0), kCrossTolerance) ||
|
!SkScalarNearlyZero(w.cross(v1), kCrossTolerance)) {
|
return false;
|
}
|
|
// Check for zero-length segments
|
if (!SkPointPriv::CanNormalize(v0.fX, v0.fY)) {
|
// Both are zero-length
|
if (!SkPointPriv::CanNormalize(v1.fX, v1.fY)) {
|
// Check if they're the same point
|
if (!SkPointPriv::CanNormalize(w.fX, w.fY)) {
|
*p = s0.fP0;
|
*s = 0;
|
*t = 0;
|
return true;
|
} else {
|
return false;
|
}
|
}
|
// Otherwise project segment0's origin onto segment1
|
tNumer = v1.dot(-w);
|
denom = v1.dot(v1);
|
if (outside_interval(tNumer, denom, true)) {
|
return false;
|
}
|
sNumer = 0;
|
} else {
|
// Project segment1's endpoints onto segment0
|
sNumer = v0.dot(w);
|
denom = v0.dot(v0);
|
tNumer = 0;
|
if (outside_interval(sNumer, denom, true)) {
|
// The first endpoint doesn't lie on segment0
|
// If segment1 is degenerate, then there's no collision
|
if (!SkPointPriv::CanNormalize(v1.fX, v1.fY)) {
|
return false;
|
}
|
|
// Otherwise try the other one
|
SkScalar oldSNumer = sNumer;
|
sNumer = v0.dot(w + v1);
|
tNumer = denom;
|
if (outside_interval(sNumer, denom, true)) {
|
// it's possible that segment1's interval surrounds segment0
|
// this is false if params have the same signs, and in that case no collision
|
if (sNumer*oldSNumer > 0) {
|
return false;
|
}
|
// otherwise project segment0's endpoint onto segment1 instead
|
sNumer = 0;
|
tNumer = v1.dot(-w);
|
denom = v1.dot(v1);
|
}
|
}
|
}
|
} else {
|
sNumer = w.cross(v1);
|
if (outside_interval(sNumer, denom, denomPositive)) {
|
return false;
|
}
|
tNumer = w.cross(v0);
|
if (outside_interval(tNumer, denom, denomPositive)) {
|
return false;
|
}
|
}
|
|
SkScalar localS = sNumer/denom;
|
SkScalar localT = tNumer/denom;
|
|
*p = s0.fP0 + v0*localS;
|
*s = localS;
|
*t = localT;
|
|
return true;
|
}
|
|
bool SkIsConvexPolygon(const SkPoint* polygonVerts, int polygonSize) {
|
if (polygonSize < 3) {
|
return false;
|
}
|
|
SkScalar lastArea = 0;
|
SkScalar lastPerpDot = 0;
|
|
int prevIndex = polygonSize - 1;
|
int currIndex = 0;
|
int nextIndex = 1;
|
SkPoint origin = polygonVerts[0];
|
SkVector v0 = polygonVerts[currIndex] - polygonVerts[prevIndex];
|
SkVector v1 = polygonVerts[nextIndex] - polygonVerts[currIndex];
|
SkVector w0 = polygonVerts[currIndex] - origin;
|
SkVector w1 = polygonVerts[nextIndex] - origin;
|
for (int i = 0; i < polygonSize; ++i) {
|
if (!polygonVerts[i].isFinite()) {
|
return false;
|
}
|
|
// Check that winding direction is always the same (otherwise we have a reflex vertex)
|
SkScalar perpDot = v0.cross(v1);
|
if (lastPerpDot*perpDot < 0) {
|
return false;
|
}
|
if (0 != perpDot) {
|
lastPerpDot = perpDot;
|
}
|
|
// If the signed area ever flips it's concave
|
// TODO: see if we can verify convexity only with signed area
|
SkScalar quadArea = w0.cross(w1);
|
if (quadArea*lastArea < 0) {
|
return false;
|
}
|
if (0 != quadArea) {
|
lastArea = quadArea;
|
}
|
|
prevIndex = currIndex;
|
currIndex = nextIndex;
|
nextIndex = (currIndex + 1) % polygonSize;
|
v0 = v1;
|
v1 = polygonVerts[nextIndex] - polygonVerts[currIndex];
|
w0 = w1;
|
w1 = polygonVerts[nextIndex] - origin;
|
}
|
|
return true;
|
}
|
|
struct OffsetEdge {
|
OffsetEdge* fPrev;
|
OffsetEdge* fNext;
|
OffsetSegment fOffset;
|
SkPoint fIntersection;
|
SkScalar fTValue;
|
uint16_t fIndex;
|
uint16_t fEnd;
|
|
void init(uint16_t start = 0, uint16_t end = 0) {
|
fIntersection = fOffset.fP0;
|
fTValue = SK_ScalarMin;
|
fIndex = start;
|
fEnd = end;
|
}
|
|
// special intersection check that looks for endpoint intersection
|
bool checkIntersection(const OffsetEdge* that,
|
SkPoint* p, SkScalar* s, SkScalar* t) {
|
if (this->fEnd == that->fIndex) {
|
SkPoint p1 = this->fOffset.fP0 + this->fOffset.fV;
|
if (SkPointPriv::EqualsWithinTolerance(p1, that->fOffset.fP0)) {
|
*p = p1;
|
*s = SK_Scalar1;
|
*t = 0;
|
return true;
|
}
|
}
|
|
return compute_intersection(this->fOffset, that->fOffset, p, s, t);
|
}
|
|
// computes the line intersection and then the "distance" from that to this
|
// this is really a signed squared distance, where negative means that
|
// the intersection lies inside this->fOffset
|
SkScalar computeCrossingDistance(const OffsetEdge* that) {
|
const OffsetSegment& s0 = this->fOffset;
|
const OffsetSegment& s1 = that->fOffset;
|
const SkVector& v0 = s0.fV;
|
const SkVector& v1 = s1.fV;
|
|
SkScalar denom = v0.cross(v1);
|
if (SkScalarNearlyZero(denom, kCrossTolerance)) {
|
// segments are parallel
|
return SK_ScalarMax;
|
}
|
|
SkVector w = s1.fP0 - s0.fP0;
|
SkScalar localS = w.cross(v1) / denom;
|
if (localS < 0) {
|
localS = -localS;
|
} else {
|
localS -= SK_Scalar1;
|
}
|
|
localS *= SkScalarAbs(localS);
|
localS *= v0.dot(v0);
|
|
return localS;
|
}
|
|
};
|
|
static void remove_node(const OffsetEdge* node, OffsetEdge** head) {
|
// remove from linked list
|
node->fPrev->fNext = node->fNext;
|
node->fNext->fPrev = node->fPrev;
|
if (node == *head) {
|
*head = (node->fNext == node) ? nullptr : node->fNext;
|
}
|
}
|
|
//////////////////////////////////////////////////////////////////////////////////
|
|
// The objective here is to inset all of the edges by the given distance, and then
|
// remove any invalid inset edges by detecting right-hand turns. In a ccw polygon,
|
// we should only be making left-hand turns (for cw polygons, we use the winding
|
// parameter to reverse this). We detect this by checking whether the second intersection
|
// on an edge is closer to its tail than the first one.
|
//
|
// We might also have the case that there is no intersection between two neighboring inset edges.
|
// In this case, one edge will lie to the right of the other and should be discarded along with
|
// its previous intersection (if any).
|
//
|
// Note: the assumption is that inputPolygon is convex and has no coincident points.
|
//
|
bool SkInsetConvexPolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
|
SkScalar inset, SkTDArray<SkPoint>* insetPolygon) {
|
if (inputPolygonSize < 3) {
|
return false;
|
}
|
|
// restrict this to match other routines
|
// practically we don't want anything bigger than this anyway
|
if (inputPolygonSize > std::numeric_limits<uint16_t>::max()) {
|
return false;
|
}
|
|
// can't inset by a negative or non-finite amount
|
if (inset < -SK_ScalarNearlyZero || !SkScalarIsFinite(inset)) {
|
return false;
|
}
|
|
// insetting close to zero just returns the original poly
|
if (inset <= SK_ScalarNearlyZero) {
|
for (int i = 0; i < inputPolygonSize; ++i) {
|
*insetPolygon->push() = inputPolygonVerts[i];
|
}
|
return true;
|
}
|
|
// get winding direction
|
int winding = SkGetPolygonWinding(inputPolygonVerts, inputPolygonSize);
|
if (0 == winding) {
|
return false;
|
}
|
|
// set up
|
SkAutoSTMalloc<64, OffsetEdge> edgeData(inputPolygonSize);
|
int prev = inputPolygonSize - 1;
|
for (int curr = 0; curr < inputPolygonSize; prev = curr, ++curr) {
|
int next = (curr + 1) % inputPolygonSize;
|
if (!inputPolygonVerts[curr].isFinite()) {
|
return false;
|
}
|
// check for convexity just to be sure
|
if (compute_side(inputPolygonVerts[prev], inputPolygonVerts[curr] - inputPolygonVerts[prev],
|
inputPolygonVerts[next])*winding < 0) {
|
return false;
|
}
|
SkVector v = inputPolygonVerts[next] - inputPolygonVerts[curr];
|
SkVector perp = SkVector::Make(-v.fY, v.fX);
|
perp.setLength(inset*winding);
|
edgeData[curr].fPrev = &edgeData[prev];
|
edgeData[curr].fNext = &edgeData[next];
|
edgeData[curr].fOffset.fP0 = inputPolygonVerts[curr] + perp;
|
edgeData[curr].fOffset.fV = v;
|
edgeData[curr].init();
|
}
|
|
OffsetEdge* head = &edgeData[0];
|
OffsetEdge* currEdge = head;
|
OffsetEdge* prevEdge = currEdge->fPrev;
|
int insetVertexCount = inputPolygonSize;
|
unsigned int iterations = 0;
|
unsigned int maxIterations = inputPolygonSize * inputPolygonSize;
|
while (head && prevEdge != currEdge) {
|
++iterations;
|
// we should check each edge against each other edge at most once
|
if (iterations > maxIterations) {
|
return false;
|
}
|
|
SkScalar s, t;
|
SkPoint intersection;
|
if (compute_intersection(prevEdge->fOffset, currEdge->fOffset,
|
&intersection, &s, &t)) {
|
// if new intersection is further back on previous inset from the prior intersection
|
if (s < prevEdge->fTValue) {
|
// no point in considering this one again
|
remove_node(prevEdge, &head);
|
--insetVertexCount;
|
// go back one segment
|
prevEdge = prevEdge->fPrev;
|
// we've already considered this intersection, we're done
|
} else if (currEdge->fTValue > SK_ScalarMin &&
|
SkPointPriv::EqualsWithinTolerance(intersection,
|
currEdge->fIntersection,
|
1.0e-6f)) {
|
break;
|
} else {
|
// add intersection
|
currEdge->fIntersection = intersection;
|
currEdge->fTValue = t;
|
|
// go to next segment
|
prevEdge = currEdge;
|
currEdge = currEdge->fNext;
|
}
|
} else {
|
// if prev to right side of curr
|
int side = winding*compute_side(currEdge->fOffset.fP0,
|
currEdge->fOffset.fV,
|
prevEdge->fOffset.fP0);
|
if (side < 0 &&
|
side == winding*compute_side(currEdge->fOffset.fP0,
|
currEdge->fOffset.fV,
|
prevEdge->fOffset.fP0 + prevEdge->fOffset.fV)) {
|
// no point in considering this one again
|
remove_node(prevEdge, &head);
|
--insetVertexCount;
|
// go back one segment
|
prevEdge = prevEdge->fPrev;
|
} else {
|
// move to next segment
|
remove_node(currEdge, &head);
|
--insetVertexCount;
|
currEdge = currEdge->fNext;
|
}
|
}
|
}
|
|
// store all the valid intersections that aren't nearly coincident
|
// TODO: look at the main algorithm and see if we can detect these better
|
insetPolygon->reset();
|
if (!head) {
|
return false;
|
}
|
|
static constexpr SkScalar kCleanupTolerance = 0.01f;
|
if (insetVertexCount >= 0) {
|
insetPolygon->setReserve(insetVertexCount);
|
}
|
int currIndex = 0;
|
*insetPolygon->push() = head->fIntersection;
|
currEdge = head->fNext;
|
while (currEdge != head) {
|
if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection,
|
(*insetPolygon)[currIndex],
|
kCleanupTolerance)) {
|
*insetPolygon->push() = currEdge->fIntersection;
|
currIndex++;
|
}
|
currEdge = currEdge->fNext;
|
}
|
// make sure the first and last points aren't coincident
|
if (currIndex >= 1 &&
|
SkPointPriv::EqualsWithinTolerance((*insetPolygon)[0], (*insetPolygon)[currIndex],
|
kCleanupTolerance)) {
|
insetPolygon->pop();
|
}
|
|
return SkIsConvexPolygon(insetPolygon->begin(), insetPolygon->count());
|
}
|
|
///////////////////////////////////////////////////////////////////////////////////////////
|
|
// compute the number of points needed for a circular join when offsetting a reflex vertex
|
bool SkComputeRadialSteps(const SkVector& v1, const SkVector& v2, SkScalar offset,
|
SkScalar* rotSin, SkScalar* rotCos, int* n) {
|
const SkScalar kRecipPixelsPerArcSegment = 0.25f;
|
|
SkScalar rCos = v1.dot(v2);
|
if (!SkScalarIsFinite(rCos)) {
|
return false;
|
}
|
SkScalar rSin = v1.cross(v2);
|
if (!SkScalarIsFinite(rSin)) {
|
return false;
|
}
|
SkScalar theta = SkScalarATan2(rSin, rCos);
|
|
SkScalar floatSteps = SkScalarAbs(offset*theta*kRecipPixelsPerArcSegment);
|
// limit the number of steps to at most max uint16_t (that's all we can index)
|
// knock one value off the top to account for rounding
|
if (floatSteps >= std::numeric_limits<uint16_t>::max()) {
|
return false;
|
}
|
int steps = SkScalarRoundToInt(floatSteps);
|
|
SkScalar dTheta = steps > 0 ? theta / steps : 0;
|
*rotSin = SkScalarSinCos(dTheta, rotCos);
|
*n = steps;
|
return true;
|
}
|
|
///////////////////////////////////////////////////////////////////////////////////////////
|
|
// a point is "left" to another if its x-coord is less, or if equal, its y-coord is greater
|
static bool left(const SkPoint& p0, const SkPoint& p1) {
|
return p0.fX < p1.fX || (!(p0.fX > p1.fX) && p0.fY > p1.fY);
|
}
|
|
// a point is "right" to another if its x-coord is greater, or if equal, its y-coord is less
|
static bool right(const SkPoint& p0, const SkPoint& p1) {
|
return p0.fX > p1.fX || (!(p0.fX < p1.fX) && p0.fY < p1.fY);
|
}
|
|
struct Vertex {
|
static bool Left(const Vertex& qv0, const Vertex& qv1) {
|
return left(qv0.fPosition, qv1.fPosition);
|
}
|
|
// packed to fit into 16 bytes (one cache line)
|
SkPoint fPosition;
|
uint16_t fIndex; // index in unsorted polygon
|
uint16_t fPrevIndex; // indices for previous and next vertex in unsorted polygon
|
uint16_t fNextIndex;
|
uint16_t fFlags;
|
};
|
|
enum VertexFlags {
|
kPrevLeft_VertexFlag = 0x1,
|
kNextLeft_VertexFlag = 0x2,
|
};
|
|
struct ActiveEdge {
|
ActiveEdge() : fChild{ nullptr, nullptr }, fAbove(nullptr), fBelow(nullptr), fRed(false) {}
|
ActiveEdge(const SkPoint& p0, const SkVector& v, uint16_t index0, uint16_t index1)
|
: fSegment({ p0, v })
|
, fIndex0(index0)
|
, fIndex1(index1)
|
, fAbove(nullptr)
|
, fBelow(nullptr)
|
, fRed(true) {
|
fChild[0] = nullptr;
|
fChild[1] = nullptr;
|
}
|
|
// Returns true if "this" is above "that", assuming this->p0 is to the left of that->p0
|
// This is only used to verify the edgelist -- the actual test for insertion/deletion is much
|
// simpler because we can make certain assumptions then.
|
bool aboveIfLeft(const ActiveEdge* that) const {
|
const SkPoint& p0 = this->fSegment.fP0;
|
const SkPoint& q0 = that->fSegment.fP0;
|
SkASSERT(p0.fX <= q0.fX);
|
SkVector d = q0 - p0;
|
const SkVector& v = this->fSegment.fV;
|
const SkVector& w = that->fSegment.fV;
|
// The idea here is that if the vector between the origins of the two segments (d)
|
// rotates counterclockwise up to the vector representing the "this" segment (v),
|
// then we know that "this" is above "that". If the result is clockwise we say it's below.
|
if (this->fIndex0 != that->fIndex0) {
|
SkScalar cross = d.cross(v);
|
if (cross > kCrossTolerance) {
|
return true;
|
} else if (cross < -kCrossTolerance) {
|
return false;
|
}
|
} else if (this->fIndex1 == that->fIndex1) {
|
return false;
|
}
|
// At this point either the two origins are nearly equal or the origin of "that"
|
// lies on dv. So then we try the same for the vector from the tail of "this"
|
// to the head of "that". Again, ccw means "this" is above "that".
|
// d = that.P1 - this.P0
|
// = that.fP0 + that.fV - this.fP0
|
// = that.fP0 - this.fP0 + that.fV
|
// = old_d + that.fV
|
d += w;
|
SkScalar cross = d.cross(v);
|
if (cross > kCrossTolerance) {
|
return true;
|
} else if (cross < -kCrossTolerance) {
|
return false;
|
}
|
// If the previous check fails, the two segments are nearly collinear
|
// First check y-coord of first endpoints
|
if (p0.fX < q0.fX) {
|
return (p0.fY >= q0.fY);
|
} else if (p0.fY > q0.fY) {
|
return true;
|
} else if (p0.fY < q0.fY) {
|
return false;
|
}
|
// The first endpoints are the same, so check the other endpoint
|
SkPoint p1 = p0 + v;
|
SkPoint q1 = q0 + w;
|
if (p1.fX < q1.fX) {
|
return (p1.fY >= q1.fY);
|
} else {
|
return (p1.fY > q1.fY);
|
}
|
}
|
|
// same as leftAndAbove(), but generalized
|
bool above(const ActiveEdge* that) const {
|
const SkPoint& p0 = this->fSegment.fP0;
|
const SkPoint& q0 = that->fSegment.fP0;
|
if (right(p0, q0)) {
|
return !that->aboveIfLeft(this);
|
} else {
|
return this->aboveIfLeft(that);
|
}
|
}
|
|
bool intersect(const SkPoint& q0, const SkVector& w, uint16_t index0, uint16_t index1) const {
|
// check first to see if these edges are neighbors in the polygon
|
if (this->fIndex0 == index0 || this->fIndex1 == index0 ||
|
this->fIndex0 == index1 || this->fIndex1 == index1) {
|
return false;
|
}
|
|
// We don't need the exact intersection point so we can do a simpler test here.
|
const SkPoint& p0 = this->fSegment.fP0;
|
const SkVector& v = this->fSegment.fV;
|
SkPoint p1 = p0 + v;
|
SkPoint q1 = q0 + w;
|
|
// We assume some x-overlap due to how the edgelist works
|
// This allows us to simplify our test
|
// We need some slop here because storing the vector and recomputing the second endpoint
|
// doesn't necessary give us the original result in floating point.
|
// TODO: Store vector as double? Store endpoint as well?
|
SkASSERT(q0.fX <= p1.fX + SK_ScalarNearlyZero);
|
|
// if each segment straddles the other (i.e., the endpoints have different sides)
|
// then they intersect
|
bool result;
|
if (p0.fX < q0.fX) {
|
if (q1.fX < p1.fX) {
|
result = (compute_side(p0, v, q0)*compute_side(p0, v, q1) < 0);
|
} else {
|
result = (compute_side(p0, v, q0)*compute_side(q0, w, p1) > 0);
|
}
|
} else {
|
if (p1.fX < q1.fX) {
|
result = (compute_side(q0, w, p0)*compute_side(q0, w, p1) < 0);
|
} else {
|
result = (compute_side(q0, w, p0)*compute_side(p0, v, q1) > 0);
|
}
|
}
|
return result;
|
}
|
|
bool intersect(const ActiveEdge* edge) {
|
return this->intersect(edge->fSegment.fP0, edge->fSegment.fV, edge->fIndex0, edge->fIndex1);
|
}
|
|
bool lessThan(const ActiveEdge* that) const {
|
SkASSERT(!this->above(this));
|
SkASSERT(!that->above(that));
|
SkASSERT(!(this->above(that) && that->above(this)));
|
return this->above(that);
|
}
|
|
bool equals(uint16_t index0, uint16_t index1) const {
|
return (this->fIndex0 == index0 && this->fIndex1 == index1);
|
}
|
|
OffsetSegment fSegment;
|
uint16_t fIndex0; // indices for previous and next vertex in polygon
|
uint16_t fIndex1;
|
ActiveEdge* fChild[2];
|
ActiveEdge* fAbove;
|
ActiveEdge* fBelow;
|
int32_t fRed;
|
};
|
|
class ActiveEdgeList {
|
public:
|
ActiveEdgeList(int maxEdges) {
|
fAllocation = (char*) sk_malloc_throw(sizeof(ActiveEdge)*maxEdges);
|
fCurrFree = 0;
|
fMaxFree = maxEdges;
|
}
|
~ActiveEdgeList() {
|
fTreeHead.fChild[1] = nullptr;
|
sk_free(fAllocation);
|
}
|
|
bool insert(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) {
|
SkVector v = p1 - p0;
|
if (!v.isFinite()) {
|
return false;
|
}
|
// empty tree case -- easy
|
if (!fTreeHead.fChild[1]) {
|
ActiveEdge* root = fTreeHead.fChild[1] = this->allocate(p0, v, index0, index1);
|
SkASSERT(root);
|
if (!root) {
|
return false;
|
}
|
root->fRed = false;
|
return true;
|
}
|
|
// set up helpers
|
ActiveEdge* top = &fTreeHead;
|
ActiveEdge *grandparent = nullptr;
|
ActiveEdge *parent = nullptr;
|
ActiveEdge *curr = top->fChild[1];
|
int dir = 0;
|
int last = 0; // ?
|
// predecessor and successor, for intersection check
|
ActiveEdge* pred = nullptr;
|
ActiveEdge* succ = nullptr;
|
|
// search down the tree
|
while (true) {
|
if (!curr) {
|
// check for intersection with predecessor and successor
|
if ((pred && pred->intersect(p0, v, index0, index1)) ||
|
(succ && succ->intersect(p0, v, index0, index1))) {
|
return false;
|
}
|
// insert new node at bottom
|
parent->fChild[dir] = curr = this->allocate(p0, v, index0, index1);
|
SkASSERT(curr);
|
if (!curr) {
|
return false;
|
}
|
curr->fAbove = pred;
|
curr->fBelow = succ;
|
if (pred) {
|
pred->fBelow = curr;
|
}
|
if (succ) {
|
succ->fAbove = curr;
|
}
|
if (IsRed(parent)) {
|
int dir2 = (top->fChild[1] == grandparent);
|
if (curr == parent->fChild[last]) {
|
top->fChild[dir2] = SingleRotation(grandparent, !last);
|
} else {
|
top->fChild[dir2] = DoubleRotation(grandparent, !last);
|
}
|
}
|
break;
|
} else if (IsRed(curr->fChild[0]) && IsRed(curr->fChild[1])) {
|
// color flip
|
curr->fRed = true;
|
curr->fChild[0]->fRed = false;
|
curr->fChild[1]->fRed = false;
|
if (IsRed(parent)) {
|
int dir2 = (top->fChild[1] == grandparent);
|
if (curr == parent->fChild[last]) {
|
top->fChild[dir2] = SingleRotation(grandparent, !last);
|
} else {
|
top->fChild[dir2] = DoubleRotation(grandparent, !last);
|
}
|
}
|
}
|
|
last = dir;
|
int side;
|
// check to see if segment is above or below
|
if (curr->fIndex0 == index0) {
|
side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1);
|
} else {
|
side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0);
|
}
|
if (0 == side) {
|
return false;
|
}
|
dir = (side < 0);
|
|
if (0 == dir) {
|
succ = curr;
|
} else {
|
pred = curr;
|
}
|
|
// update helpers
|
if (grandparent) {
|
top = grandparent;
|
}
|
grandparent = parent;
|
parent = curr;
|
curr = curr->fChild[dir];
|
}
|
|
// update root and make it black
|
fTreeHead.fChild[1]->fRed = false;
|
|
SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1]));
|
|
return true;
|
}
|
|
// replaces edge p0p1 with p1p2
|
bool replace(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
|
uint16_t index0, uint16_t index1, uint16_t index2) {
|
if (!fTreeHead.fChild[1]) {
|
return false;
|
}
|
|
SkVector v = p2 - p1;
|
ActiveEdge* curr = &fTreeHead;
|
ActiveEdge* found = nullptr;
|
int dir = 1;
|
|
// search
|
while (curr->fChild[dir] != nullptr) {
|
// update helpers
|
curr = curr->fChild[dir];
|
// save found node
|
if (curr->equals(index0, index1)) {
|
found = curr;
|
break;
|
} else {
|
// check to see if segment is above or below
|
int side;
|
if (curr->fIndex1 == index1) {
|
side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0);
|
} else {
|
side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1);
|
}
|
if (0 == side) {
|
return false;
|
}
|
dir = (side < 0);
|
}
|
}
|
|
if (!found) {
|
return false;
|
}
|
|
// replace if found
|
ActiveEdge* pred = found->fAbove;
|
ActiveEdge* succ = found->fBelow;
|
// check deletion and insert intersection cases
|
if (pred && (pred->intersect(found) || pred->intersect(p1, v, index1, index2))) {
|
return false;
|
}
|
if (succ && (succ->intersect(found) || succ->intersect(p1, v, index1, index2))) {
|
return false;
|
}
|
found->fSegment.fP0 = p1;
|
found->fSegment.fV = v;
|
found->fIndex0 = index1;
|
found->fIndex1 = index2;
|
// above and below should stay the same
|
|
SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1]));
|
|
return true;
|
}
|
|
bool remove(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) {
|
if (!fTreeHead.fChild[1]) {
|
return false;
|
}
|
|
ActiveEdge* curr = &fTreeHead;
|
ActiveEdge* parent = nullptr;
|
ActiveEdge* grandparent = nullptr;
|
ActiveEdge* found = nullptr;
|
int dir = 1;
|
|
// search and push a red node down
|
while (curr->fChild[dir] != nullptr) {
|
int last = dir;
|
|
// update helpers
|
grandparent = parent;
|
parent = curr;
|
curr = curr->fChild[dir];
|
// save found node
|
if (curr->equals(index0, index1)) {
|
found = curr;
|
dir = 0;
|
} else {
|
// check to see if segment is above or below
|
int side;
|
if (curr->fIndex1 == index1) {
|
side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0);
|
} else {
|
side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1);
|
}
|
if (0 == side) {
|
return false;
|
}
|
dir = (side < 0);
|
}
|
|
// push the red node down
|
if (!IsRed(curr) && !IsRed(curr->fChild[dir])) {
|
if (IsRed(curr->fChild[!dir])) {
|
parent = parent->fChild[last] = SingleRotation(curr, dir);
|
} else {
|
ActiveEdge *s = parent->fChild[!last];
|
|
if (s != NULL) {
|
if (!IsRed(s->fChild[!last]) && !IsRed(s->fChild[last])) {
|
// color flip
|
parent->fRed = false;
|
s->fRed = true;
|
curr->fRed = true;
|
} else {
|
int dir2 = (grandparent->fChild[1] == parent);
|
|
if (IsRed(s->fChild[last])) {
|
grandparent->fChild[dir2] = DoubleRotation(parent, last);
|
} else if (IsRed(s->fChild[!last])) {
|
grandparent->fChild[dir2] = SingleRotation(parent, last);
|
}
|
|
// ensure correct coloring
|
curr->fRed = grandparent->fChild[dir2]->fRed = true;
|
grandparent->fChild[dir2]->fChild[0]->fRed = false;
|
grandparent->fChild[dir2]->fChild[1]->fRed = false;
|
}
|
}
|
}
|
}
|
}
|
|
// replace and remove if found
|
if (found) {
|
ActiveEdge* pred = found->fAbove;
|
ActiveEdge* succ = found->fBelow;
|
if ((pred && pred->intersect(found)) || (succ && succ->intersect(found))) {
|
return false;
|
}
|
if (found != curr) {
|
found->fSegment = curr->fSegment;
|
found->fIndex0 = curr->fIndex0;
|
found->fIndex1 = curr->fIndex1;
|
found->fAbove = curr->fAbove;
|
pred = found->fAbove;
|
// we don't need to set found->fBelow here
|
} else {
|
if (succ) {
|
succ->fAbove = pred;
|
}
|
}
|
if (pred) {
|
pred->fBelow = curr->fBelow;
|
}
|
parent->fChild[parent->fChild[1] == curr] = curr->fChild[!curr->fChild[0]];
|
|
// no need to delete
|
curr->fAbove = reinterpret_cast<ActiveEdge*>(0xdeadbeefll);
|
curr->fBelow = reinterpret_cast<ActiveEdge*>(0xdeadbeefll);
|
if (fTreeHead.fChild[1]) {
|
fTreeHead.fChild[1]->fRed = false;
|
}
|
}
|
|
// update root and make it black
|
if (fTreeHead.fChild[1]) {
|
fTreeHead.fChild[1]->fRed = false;
|
}
|
|
SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1]));
|
|
return true;
|
}
|
|
private:
|
// allocator
|
ActiveEdge * allocate(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) {
|
if (fCurrFree >= fMaxFree) {
|
return nullptr;
|
}
|
char* bytes = fAllocation + sizeof(ActiveEdge)*fCurrFree;
|
++fCurrFree;
|
return new(bytes) ActiveEdge(p0, p1, index0, index1);
|
}
|
|
///////////////////////////////////////////////////////////////////////////////////
|
// Red-black tree methods
|
///////////////////////////////////////////////////////////////////////////////////
|
static bool IsRed(const ActiveEdge* node) {
|
return node && node->fRed;
|
}
|
|
static ActiveEdge* SingleRotation(ActiveEdge* node, int dir) {
|
ActiveEdge* tmp = node->fChild[!dir];
|
|
node->fChild[!dir] = tmp->fChild[dir];
|
tmp->fChild[dir] = node;
|
|
node->fRed = true;
|
tmp->fRed = false;
|
|
return tmp;
|
}
|
|
static ActiveEdge* DoubleRotation(ActiveEdge* node, int dir) {
|
node->fChild[!dir] = SingleRotation(node->fChild[!dir], !dir);
|
|
return SingleRotation(node, dir);
|
}
|
|
// returns black link count
|
static int VerifyTree(const ActiveEdge* tree) {
|
if (!tree) {
|
return 1;
|
}
|
|
const ActiveEdge* left = tree->fChild[0];
|
const ActiveEdge* right = tree->fChild[1];
|
|
// no consecutive red links
|
if (IsRed(tree) && (IsRed(left) || IsRed(right))) {
|
SkASSERT(false);
|
return 0;
|
}
|
|
// check secondary links
|
if (tree->fAbove) {
|
SkASSERT(tree->fAbove->fBelow == tree);
|
SkASSERT(tree->fAbove->lessThan(tree));
|
}
|
if (tree->fBelow) {
|
SkASSERT(tree->fBelow->fAbove == tree);
|
SkASSERT(tree->lessThan(tree->fBelow));
|
}
|
|
// violates binary tree order
|
if ((left && tree->lessThan(left)) || (right && right->lessThan(tree))) {
|
SkASSERT(false);
|
return 0;
|
}
|
|
int leftCount = VerifyTree(left);
|
int rightCount = VerifyTree(right);
|
|
// return black link count
|
if (leftCount != 0 && rightCount != 0) {
|
// black height mismatch
|
if (leftCount != rightCount) {
|
SkASSERT(false);
|
return 0;
|
}
|
return IsRed(tree) ? leftCount : leftCount + 1;
|
} else {
|
return 0;
|
}
|
}
|
|
ActiveEdge fTreeHead;
|
char* fAllocation;
|
int fCurrFree;
|
int fMaxFree;
|
};
|
|
// Here we implement a sweep line algorithm to determine whether the provided points
|
// represent a simple polygon, i.e., the polygon is non-self-intersecting.
|
// We first insert the vertices into a priority queue sorting horizontally from left to right.
|
// Then as we pop the vertices from the queue we generate events which indicate that an edge
|
// should be added or removed from an edge list. If any intersections are detected in the edge
|
// list, then we know the polygon is self-intersecting and hence not simple.
|
bool SkIsSimplePolygon(const SkPoint* polygon, int polygonSize) {
|
if (polygonSize < 3) {
|
return false;
|
}
|
|
// need to be able to represent all the vertices in the 16-bit indices
|
if (polygonSize > std::numeric_limits<uint16_t>::max()) {
|
return false;
|
}
|
|
// If it's convex, it's simple
|
if (SkIsConvexPolygon(polygon, polygonSize)) {
|
return true;
|
}
|
|
SkTDPQueue <Vertex, Vertex::Left> vertexQueue(polygonSize);
|
for (int i = 0; i < polygonSize; ++i) {
|
Vertex newVertex;
|
if (!polygon[i].isFinite()) {
|
return false;
|
}
|
newVertex.fPosition = polygon[i];
|
newVertex.fIndex = i;
|
newVertex.fPrevIndex = (i - 1 + polygonSize) % polygonSize;
|
newVertex.fNextIndex = (i + 1) % polygonSize;
|
newVertex.fFlags = 0;
|
if (left(polygon[newVertex.fPrevIndex], polygon[i])) {
|
newVertex.fFlags |= kPrevLeft_VertexFlag;
|
}
|
if (left(polygon[newVertex.fNextIndex], polygon[i])) {
|
newVertex.fFlags |= kNextLeft_VertexFlag;
|
}
|
vertexQueue.insert(newVertex);
|
}
|
|
// pop each vertex from the queue and generate events depending on
|
// where it lies relative to its neighboring edges
|
ActiveEdgeList sweepLine(polygonSize);
|
while (vertexQueue.count() > 0) {
|
const Vertex& v = vertexQueue.peek();
|
|
// both to the right -- insert both
|
if (v.fFlags == 0) {
|
if (!sweepLine.insert(v.fPosition, polygon[v.fPrevIndex], v.fIndex, v.fPrevIndex)) {
|
break;
|
}
|
if (!sweepLine.insert(v.fPosition, polygon[v.fNextIndex], v.fIndex, v.fNextIndex)) {
|
break;
|
}
|
// both to the left -- remove both
|
} else if (v.fFlags == (kPrevLeft_VertexFlag | kNextLeft_VertexFlag)) {
|
if (!sweepLine.remove(polygon[v.fPrevIndex], v.fPosition, v.fPrevIndex, v.fIndex)) {
|
break;
|
}
|
if (!sweepLine.remove(polygon[v.fNextIndex], v.fPosition, v.fNextIndex, v.fIndex)) {
|
break;
|
}
|
// one to left and right -- replace one with another
|
} else {
|
if (v.fFlags & kPrevLeft_VertexFlag) {
|
if (!sweepLine.replace(polygon[v.fPrevIndex], v.fPosition, polygon[v.fNextIndex],
|
v.fPrevIndex, v.fIndex, v.fNextIndex)) {
|
break;
|
}
|
} else {
|
SkASSERT(v.fFlags & kNextLeft_VertexFlag);
|
if (!sweepLine.replace(polygon[v.fNextIndex], v.fPosition, polygon[v.fPrevIndex],
|
v.fNextIndex, v.fIndex, v.fPrevIndex)) {
|
break;
|
}
|
}
|
}
|
|
vertexQueue.pop();
|
}
|
|
return (vertexQueue.count() == 0);
|
}
|
|
///////////////////////////////////////////////////////////////////////////////////////////
|
|
// helper function for SkOffsetSimplePolygon
|
static void setup_offset_edge(OffsetEdge* currEdge,
|
const SkPoint& endpoint0, const SkPoint& endpoint1,
|
uint16_t startIndex, uint16_t endIndex) {
|
currEdge->fOffset.fP0 = endpoint0;
|
currEdge->fOffset.fV = endpoint1 - endpoint0;
|
currEdge->init(startIndex, endIndex);
|
}
|
|
static bool is_reflex_vertex(const SkPoint* inputPolygonVerts, int winding, SkScalar offset,
|
uint16_t prevIndex, uint16_t currIndex, uint16_t nextIndex) {
|
int side = compute_side(inputPolygonVerts[prevIndex],
|
inputPolygonVerts[currIndex] - inputPolygonVerts[prevIndex],
|
inputPolygonVerts[nextIndex]);
|
// if reflex point, we need to add extra edges
|
return (side*winding*offset < 0);
|
}
|
|
bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize, SkScalar offset,
|
SkTDArray<SkPoint>* offsetPolygon, SkTDArray<int>* polygonIndices) {
|
if (inputPolygonSize < 3) {
|
return false;
|
}
|
|
// need to be able to represent all the vertices in the 16-bit indices
|
if (inputPolygonSize >= std::numeric_limits<uint16_t>::max()) {
|
return false;
|
}
|
|
if (!SkScalarIsFinite(offset)) {
|
return false;
|
}
|
|
// offsetting close to zero just returns the original poly
|
if (SkScalarNearlyZero(offset)) {
|
for (int i = 0; i < inputPolygonSize; ++i) {
|
*offsetPolygon->push() = inputPolygonVerts[i];
|
*polygonIndices->push() = i;
|
}
|
return true;
|
}
|
|
// get winding direction
|
int winding = SkGetPolygonWinding(inputPolygonVerts, inputPolygonSize);
|
if (0 == winding) {
|
return false;
|
}
|
|
// build normals
|
SkAutoSTMalloc<64, SkVector> normals(inputPolygonSize);
|
unsigned int numEdges = 0;
|
for (int currIndex = 0, prevIndex = inputPolygonSize - 1;
|
currIndex < inputPolygonSize;
|
prevIndex = currIndex, ++currIndex) {
|
if (!inputPolygonVerts[currIndex].isFinite()) {
|
return false;
|
}
|
int nextIndex = (currIndex + 1) % inputPolygonSize;
|
if (!compute_offset_vector(inputPolygonVerts[currIndex], inputPolygonVerts[nextIndex],
|
offset, winding, &normals[currIndex])) {
|
return false;
|
}
|
if (currIndex > 0) {
|
// if reflex point, we need to add extra edges
|
if (is_reflex_vertex(inputPolygonVerts, winding, offset,
|
prevIndex, currIndex, nextIndex)) {
|
SkScalar rotSin, rotCos;
|
int numSteps;
|
if (!SkComputeRadialSteps(normals[prevIndex], normals[currIndex], offset,
|
&rotSin, &rotCos, &numSteps)) {
|
return false;
|
}
|
numEdges += SkTMax(numSteps, 1);
|
}
|
}
|
numEdges++;
|
}
|
// finish up the edge counting
|
if (is_reflex_vertex(inputPolygonVerts, winding, offset, inputPolygonSize-1, 0, 1)) {
|
SkScalar rotSin, rotCos;
|
int numSteps;
|
if (!SkComputeRadialSteps(normals[inputPolygonSize-1], normals[0], offset,
|
&rotSin, &rotCos, &numSteps)) {
|
return false;
|
}
|
numEdges += SkTMax(numSteps, 1);
|
}
|
|
// Make sure we don't overflow the max array count.
|
// We shouldn't overflow numEdges, as SkComputeRadialSteps returns a max of 2^16-1,
|
// and we have a max of 2^16-1 original vertices.
|
if (numEdges > (unsigned int)std::numeric_limits<int32_t>::max()) {
|
return false;
|
}
|
|
// build initial offset edge list
|
SkSTArray<64, OffsetEdge> edgeData(numEdges);
|
OffsetEdge* prevEdge = nullptr;
|
for (int currIndex = 0, prevIndex = inputPolygonSize - 1;
|
currIndex < inputPolygonSize;
|
prevIndex = currIndex, ++currIndex) {
|
int nextIndex = (currIndex + 1) % inputPolygonSize;
|
// if reflex point, fill in curve
|
if (is_reflex_vertex(inputPolygonVerts, winding, offset,
|
prevIndex, currIndex, nextIndex)) {
|
SkScalar rotSin, rotCos;
|
int numSteps;
|
SkVector prevNormal = normals[prevIndex];
|
if (!SkComputeRadialSteps(prevNormal, normals[currIndex], offset,
|
&rotSin, &rotCos, &numSteps)) {
|
return false;
|
}
|
auto currEdge = edgeData.push_back_n(SkTMax(numSteps, 1));
|
for (int i = 0; i < numSteps - 1; ++i) {
|
SkVector currNormal = SkVector::Make(prevNormal.fX*rotCos - prevNormal.fY*rotSin,
|
prevNormal.fY*rotCos + prevNormal.fX*rotSin);
|
setup_offset_edge(currEdge,
|
inputPolygonVerts[currIndex] + prevNormal,
|
inputPolygonVerts[currIndex] + currNormal,
|
currIndex, currIndex);
|
prevNormal = currNormal;
|
currEdge->fPrev = prevEdge;
|
if (prevEdge) {
|
prevEdge->fNext = currEdge;
|
}
|
prevEdge = currEdge;
|
++currEdge;
|
}
|
setup_offset_edge(currEdge,
|
inputPolygonVerts[currIndex] + prevNormal,
|
inputPolygonVerts[currIndex] + normals[currIndex],
|
currIndex, currIndex);
|
currEdge->fPrev = prevEdge;
|
if (prevEdge) {
|
prevEdge->fNext = currEdge;
|
}
|
prevEdge = currEdge;
|
}
|
|
// Add the edge
|
auto currEdge = edgeData.push_back_n(1);
|
setup_offset_edge(currEdge,
|
inputPolygonVerts[currIndex] + normals[currIndex],
|
inputPolygonVerts[nextIndex] + normals[currIndex],
|
currIndex, nextIndex);
|
currEdge->fPrev = prevEdge;
|
if (prevEdge) {
|
prevEdge->fNext = currEdge;
|
}
|
prevEdge = currEdge;
|
}
|
// close up the linked list
|
SkASSERT(prevEdge);
|
prevEdge->fNext = &edgeData[0];
|
edgeData[0].fPrev = prevEdge;
|
|
// now clip edges
|
SkASSERT(edgeData.count() == (int)numEdges);
|
auto head = &edgeData[0];
|
auto currEdge = head;
|
unsigned int offsetVertexCount = numEdges;
|
unsigned long long iterations = 0;
|
unsigned long long maxIterations = (unsigned long long)(numEdges) * numEdges;
|
while (head && prevEdge != currEdge && offsetVertexCount > 0) {
|
++iterations;
|
// we should check each edge against each other edge at most once
|
if (iterations > maxIterations) {
|
return false;
|
}
|
|
SkScalar s, t;
|
SkPoint intersection;
|
if (prevEdge->checkIntersection(currEdge, &intersection, &s, &t)) {
|
// if new intersection is further back on previous inset from the prior intersection
|
if (s < prevEdge->fTValue) {
|
// no point in considering this one again
|
remove_node(prevEdge, &head);
|
--offsetVertexCount;
|
// go back one segment
|
prevEdge = prevEdge->fPrev;
|
// we've already considered this intersection, we're done
|
} else if (currEdge->fTValue > SK_ScalarMin &&
|
SkPointPriv::EqualsWithinTolerance(intersection,
|
currEdge->fIntersection,
|
1.0e-6f)) {
|
break;
|
} else {
|
// add intersection
|
currEdge->fIntersection = intersection;
|
currEdge->fTValue = t;
|
currEdge->fIndex = prevEdge->fEnd;
|
|
// go to next segment
|
prevEdge = currEdge;
|
currEdge = currEdge->fNext;
|
}
|
} else {
|
// If there is no intersection, we want to minimize the distance between
|
// the point where the segment lines cross and the segments themselves.
|
OffsetEdge* prevPrevEdge = prevEdge->fPrev;
|
OffsetEdge* currNextEdge = currEdge->fNext;
|
SkScalar dist0 = currEdge->computeCrossingDistance(prevPrevEdge);
|
SkScalar dist1 = prevEdge->computeCrossingDistance(currNextEdge);
|
// if both lead to direct collision
|
if (dist0 < 0 && dist1 < 0) {
|
// check first to see if either represent parts of one contour
|
SkPoint p1 = prevPrevEdge->fOffset.fP0 + prevPrevEdge->fOffset.fV;
|
bool prevSameContour = SkPointPriv::EqualsWithinTolerance(p1,
|
prevEdge->fOffset.fP0);
|
p1 = currEdge->fOffset.fP0 + currEdge->fOffset.fV;
|
bool currSameContour = SkPointPriv::EqualsWithinTolerance(p1,
|
currNextEdge->fOffset.fP0);
|
|
// want to step along contour to find intersections rather than jump to new one
|
if (currSameContour && !prevSameContour) {
|
remove_node(currEdge, &head);
|
currEdge = currNextEdge;
|
--offsetVertexCount;
|
continue;
|
} else if (prevSameContour && !currSameContour) {
|
remove_node(prevEdge, &head);
|
prevEdge = prevPrevEdge;
|
--offsetVertexCount;
|
continue;
|
}
|
}
|
|
// otherwise minimize collision distance along segment
|
if (dist0 < dist1) {
|
remove_node(prevEdge, &head);
|
prevEdge = prevPrevEdge;
|
} else {
|
remove_node(currEdge, &head);
|
currEdge = currNextEdge;
|
}
|
--offsetVertexCount;
|
}
|
}
|
|
// store all the valid intersections that aren't nearly coincident
|
// TODO: look at the main algorithm and see if we can detect these better
|
offsetPolygon->reset();
|
if (!head || offsetVertexCount == 0 ||
|
offsetVertexCount >= std::numeric_limits<uint16_t>::max()) {
|
return false;
|
}
|
|
static constexpr SkScalar kCleanupTolerance = 0.01f;
|
offsetPolygon->setReserve(offsetVertexCount);
|
int currIndex = 0;
|
*offsetPolygon->push() = head->fIntersection;
|
if (polygonIndices) {
|
*polygonIndices->push() = head->fIndex;
|
}
|
currEdge = head->fNext;
|
while (currEdge != head) {
|
if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection,
|
(*offsetPolygon)[currIndex],
|
kCleanupTolerance)) {
|
*offsetPolygon->push() = currEdge->fIntersection;
|
if (polygonIndices) {
|
*polygonIndices->push() = currEdge->fIndex;
|
}
|
currIndex++;
|
}
|
currEdge = currEdge->fNext;
|
}
|
// make sure the first and last points aren't coincident
|
if (currIndex >= 1 &&
|
SkPointPriv::EqualsWithinTolerance((*offsetPolygon)[0], (*offsetPolygon)[currIndex],
|
kCleanupTolerance)) {
|
offsetPolygon->pop();
|
if (polygonIndices) {
|
polygonIndices->pop();
|
}
|
}
|
|
// check winding of offset polygon (it should be same as the original polygon)
|
SkScalar offsetWinding = SkGetPolygonWinding(offsetPolygon->begin(), offsetPolygon->count());
|
|
return (winding*offsetWinding > 0 &&
|
SkIsSimplePolygon(offsetPolygon->begin(), offsetPolygon->count()));
|
}
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
struct TriangulationVertex {
|
SK_DECLARE_INTERNAL_LLIST_INTERFACE(TriangulationVertex);
|
|
enum class VertexType { kConvex, kReflex };
|
|
SkPoint fPosition;
|
VertexType fVertexType;
|
uint16_t fIndex;
|
uint16_t fPrevIndex;
|
uint16_t fNextIndex;
|
};
|
|
static void compute_triangle_bounds(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
|
SkRect* bounds) {
|
Sk4s min, max;
|
min = max = Sk4s(p0.fX, p0.fY, p0.fX, p0.fY);
|
Sk4s xy(p1.fX, p1.fY, p2.fX, p2.fY);
|
min = Sk4s::Min(min, xy);
|
max = Sk4s::Max(max, xy);
|
bounds->set(SkTMin(min[0], min[2]), SkTMin(min[1], min[3]),
|
SkTMax(max[0], max[2]), SkTMax(max[1], max[3]));
|
}
|
|
// test to see if point p is in triangle p0p1p2.
|
// for now assuming strictly inside -- if on the edge it's outside
|
static bool point_in_triangle(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
|
const SkPoint& p) {
|
SkVector v0 = p1 - p0;
|
SkVector v1 = p2 - p1;
|
SkScalar n = v0.cross(v1);
|
|
SkVector w0 = p - p0;
|
if (n*v0.cross(w0) < SK_ScalarNearlyZero) {
|
return false;
|
}
|
|
SkVector w1 = p - p1;
|
if (n*v1.cross(w1) < SK_ScalarNearlyZero) {
|
return false;
|
}
|
|
SkVector v2 = p0 - p2;
|
SkVector w2 = p - p2;
|
if (n*v2.cross(w2) < SK_ScalarNearlyZero) {
|
return false;
|
}
|
|
return true;
|
}
|
|
// Data structure to track reflex vertices and check whether any are inside a given triangle
|
class ReflexHash {
|
public:
|
bool init(const SkRect& bounds, int vertexCount) {
|
fBounds = bounds;
|
fNumVerts = 0;
|
SkScalar width = bounds.width();
|
SkScalar height = bounds.height();
|
if (!SkScalarIsFinite(width) || !SkScalarIsFinite(height)) {
|
return false;
|
}
|
|
// We want vertexCount grid cells, roughly distributed to match the bounds ratio
|
SkScalar hCount = SkScalarSqrt(sk_ieee_float_divide(vertexCount*width, height));
|
if (!SkScalarIsFinite(hCount)) {
|
return false;
|
}
|
fHCount = SkTMax(SkTMin(SkScalarRoundToInt(hCount), vertexCount), 1);
|
fVCount = vertexCount/fHCount;
|
fGridConversion.set(sk_ieee_float_divide(fHCount - 0.001f, width),
|
sk_ieee_float_divide(fVCount - 0.001f, height));
|
if (!fGridConversion.isFinite()) {
|
return false;
|
}
|
|
fGrid.setCount(fHCount*fVCount);
|
for (int i = 0; i < fGrid.count(); ++i) {
|
fGrid[i].reset();
|
}
|
|
return true;
|
}
|
|
void add(TriangulationVertex* v) {
|
int index = hash(v);
|
fGrid[index].addToTail(v);
|
++fNumVerts;
|
}
|
|
void remove(TriangulationVertex* v) {
|
int index = hash(v);
|
fGrid[index].remove(v);
|
--fNumVerts;
|
}
|
|
bool checkTriangle(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
|
uint16_t ignoreIndex0, uint16_t ignoreIndex1) const {
|
if (!fNumVerts) {
|
return false;
|
}
|
|
SkRect triBounds;
|
compute_triangle_bounds(p0, p1, p2, &triBounds);
|
int h0 = (triBounds.fLeft - fBounds.fLeft)*fGridConversion.fX;
|
int h1 = (triBounds.fRight - fBounds.fLeft)*fGridConversion.fX;
|
int v0 = (triBounds.fTop - fBounds.fTop)*fGridConversion.fY;
|
int v1 = (triBounds.fBottom - fBounds.fTop)*fGridConversion.fY;
|
|
for (int v = v0; v <= v1; ++v) {
|
for (int h = h0; h <= h1; ++h) {
|
int i = v * fHCount + h;
|
for (SkTInternalLList<TriangulationVertex>::Iter reflexIter = fGrid[i].begin();
|
reflexIter != fGrid[i].end(); ++reflexIter) {
|
TriangulationVertex* reflexVertex = *reflexIter;
|
if (reflexVertex->fIndex != ignoreIndex0 &&
|
reflexVertex->fIndex != ignoreIndex1 &&
|
point_in_triangle(p0, p1, p2, reflexVertex->fPosition)) {
|
return true;
|
}
|
}
|
|
}
|
}
|
|
return false;
|
}
|
|
private:
|
int hash(TriangulationVertex* vert) const {
|
int h = (vert->fPosition.fX - fBounds.fLeft)*fGridConversion.fX;
|
int v = (vert->fPosition.fY - fBounds.fTop)*fGridConversion.fY;
|
SkASSERT(v*fHCount + h >= 0);
|
return v*fHCount + h;
|
}
|
|
SkRect fBounds;
|
int fHCount;
|
int fVCount;
|
int fNumVerts;
|
// converts distance from the origin to a grid location (when cast to int)
|
SkVector fGridConversion;
|
SkTDArray<SkTInternalLList<TriangulationVertex>> fGrid;
|
};
|
|
// Check to see if a reflex vertex has become a convex vertex after clipping an ear
|
static void reclassify_vertex(TriangulationVertex* p, const SkPoint* polygonVerts,
|
int winding, ReflexHash* reflexHash,
|
SkTInternalLList<TriangulationVertex>* convexList) {
|
if (TriangulationVertex::VertexType::kReflex == p->fVertexType) {
|
SkVector v0 = p->fPosition - polygonVerts[p->fPrevIndex];
|
SkVector v1 = polygonVerts[p->fNextIndex] - p->fPosition;
|
if (winding*v0.cross(v1) > SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
|
p->fVertexType = TriangulationVertex::VertexType::kConvex;
|
reflexHash->remove(p);
|
p->fPrev = p->fNext = nullptr;
|
convexList->addToTail(p);
|
}
|
}
|
}
|
|
bool SkTriangulateSimplePolygon(const SkPoint* polygonVerts, uint16_t* indexMap, int polygonSize,
|
SkTDArray<uint16_t>* triangleIndices) {
|
if (polygonSize < 3) {
|
return false;
|
}
|
// need to be able to represent all the vertices in the 16-bit indices
|
if (polygonSize >= std::numeric_limits<uint16_t>::max()) {
|
return false;
|
}
|
|
// get bounds
|
SkRect bounds;
|
if (!bounds.setBoundsCheck(polygonVerts, polygonSize)) {
|
return false;
|
}
|
// get winding direction
|
// TODO: we do this for all the polygon routines -- might be better to have the client
|
// compute it and pass it in
|
int winding = SkGetPolygonWinding(polygonVerts, polygonSize);
|
if (0 == winding) {
|
return false;
|
}
|
|
// Set up vertices
|
SkAutoSTMalloc<64, TriangulationVertex> triangulationVertices(polygonSize);
|
int prevIndex = polygonSize - 1;
|
SkVector v0 = polygonVerts[0] - polygonVerts[prevIndex];
|
for (int currIndex = 0; currIndex < polygonSize; ++currIndex) {
|
int nextIndex = (currIndex + 1) % polygonSize;
|
|
SkDEBUGCODE(memset(&triangulationVertices[currIndex], 0, sizeof(TriangulationVertex)));
|
triangulationVertices[currIndex].fPosition = polygonVerts[currIndex];
|
triangulationVertices[currIndex].fIndex = currIndex;
|
triangulationVertices[currIndex].fPrevIndex = prevIndex;
|
triangulationVertices[currIndex].fNextIndex = nextIndex;
|
SkVector v1 = polygonVerts[nextIndex] - polygonVerts[currIndex];
|
if (winding*v0.cross(v1) > SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
|
triangulationVertices[currIndex].fVertexType = TriangulationVertex::VertexType::kConvex;
|
} else {
|
triangulationVertices[currIndex].fVertexType = TriangulationVertex::VertexType::kReflex;
|
}
|
|
prevIndex = currIndex;
|
v0 = v1;
|
}
|
|
// Classify initial vertices into a list of convex vertices and a hash of reflex vertices
|
// TODO: possibly sort the convexList in some way to get better triangles
|
SkTInternalLList<TriangulationVertex> convexList;
|
ReflexHash reflexHash;
|
if (!reflexHash.init(bounds, polygonSize)) {
|
return false;
|
}
|
prevIndex = polygonSize - 1;
|
for (int currIndex = 0; currIndex < polygonSize; prevIndex = currIndex, ++currIndex) {
|
TriangulationVertex::VertexType currType = triangulationVertices[currIndex].fVertexType;
|
if (TriangulationVertex::VertexType::kConvex == currType) {
|
int nextIndex = (currIndex + 1) % polygonSize;
|
TriangulationVertex::VertexType prevType = triangulationVertices[prevIndex].fVertexType;
|
TriangulationVertex::VertexType nextType = triangulationVertices[nextIndex].fVertexType;
|
// We prioritize clipping vertices with neighboring reflex vertices.
|
// The intent here is that it will cull reflex vertices more quickly.
|
if (TriangulationVertex::VertexType::kReflex == prevType ||
|
TriangulationVertex::VertexType::kReflex == nextType) {
|
convexList.addToHead(&triangulationVertices[currIndex]);
|
} else {
|
convexList.addToTail(&triangulationVertices[currIndex]);
|
}
|
} else {
|
// We treat near collinear vertices as reflex
|
reflexHash.add(&triangulationVertices[currIndex]);
|
}
|
}
|
|
// The general concept: We are trying to find three neighboring vertices where
|
// no other vertex lies inside the triangle (an "ear"). If we find one, we clip
|
// that ear off, and then repeat on the new polygon. Once we get down to three vertices
|
// we have triangulated the entire polygon.
|
// In the worst case this is an n^2 algorithm. We can cut down the search space somewhat by
|
// noting that only convex vertices can be potential ears, and we only need to check whether
|
// any reflex vertices lie inside the ear.
|
triangleIndices->setReserve(triangleIndices->count() + 3 * (polygonSize - 2));
|
int vertexCount = polygonSize;
|
while (vertexCount > 3) {
|
bool success = false;
|
TriangulationVertex* earVertex = nullptr;
|
TriangulationVertex* p0 = nullptr;
|
TriangulationVertex* p2 = nullptr;
|
// find a convex vertex to clip
|
for (SkTInternalLList<TriangulationVertex>::Iter convexIter = convexList.begin();
|
convexIter != convexList.end(); ++convexIter) {
|
earVertex = *convexIter;
|
SkASSERT(TriangulationVertex::VertexType::kReflex != earVertex->fVertexType);
|
|
p0 = &triangulationVertices[earVertex->fPrevIndex];
|
p2 = &triangulationVertices[earVertex->fNextIndex];
|
|
// see if any reflex vertices are inside the ear
|
bool failed = reflexHash.checkTriangle(p0->fPosition, earVertex->fPosition,
|
p2->fPosition, p0->fIndex, p2->fIndex);
|
if (failed) {
|
continue;
|
}
|
|
// found one we can clip
|
success = true;
|
break;
|
}
|
// If we can't find any ears to clip, this probably isn't a simple polygon
|
if (!success) {
|
return false;
|
}
|
|
// add indices
|
auto indices = triangleIndices->append(3);
|
indices[0] = indexMap[p0->fIndex];
|
indices[1] = indexMap[earVertex->fIndex];
|
indices[2] = indexMap[p2->fIndex];
|
|
// clip the ear
|
convexList.remove(earVertex);
|
--vertexCount;
|
|
// reclassify reflex verts
|
p0->fNextIndex = earVertex->fNextIndex;
|
reclassify_vertex(p0, polygonVerts, winding, &reflexHash, &convexList);
|
|
p2->fPrevIndex = earVertex->fPrevIndex;
|
reclassify_vertex(p2, polygonVerts, winding, &reflexHash, &convexList);
|
}
|
|
// output indices
|
for (SkTInternalLList<TriangulationVertex>::Iter vertexIter = convexList.begin();
|
vertexIter != convexList.end(); ++vertexIter) {
|
TriangulationVertex* vertex = *vertexIter;
|
*triangleIndices->push() = indexMap[vertex->fIndex];
|
}
|
|
return true;
|
}
|
|
///////////
|
|
static double crs(SkVector a, SkVector b) {
|
return a.fX * b.fY - a.fY * b.fX;
|
}
|
|
static int sign(SkScalar v) {
|
return v < 0 ? -1 : (v > 0);
|
}
|
|
struct SignTracker {
|
int fSign;
|
int fSignChanges;
|
|
void reset() {
|
fSign = 0;
|
fSignChanges = 0;
|
}
|
|
void init(int s) {
|
SkASSERT(fSignChanges == 0);
|
SkASSERT(s == 1 || s == -1 || s == 0);
|
fSign = s;
|
fSignChanges = 1;
|
}
|
|
void update(int s) {
|
if (s) {
|
if (fSign != s) {
|
fSignChanges += 1;
|
fSign = s;
|
}
|
}
|
}
|
};
|
|
struct ConvexTracker {
|
SkVector fFirst, fPrev;
|
SignTracker fDSign, fCSign;
|
int fVecCounter;
|
bool fIsConcave;
|
|
ConvexTracker() { this->reset(); }
|
|
void reset() {
|
fPrev = {0, 0};
|
fDSign.reset();
|
fCSign.reset();
|
fVecCounter = 0;
|
fIsConcave = false;
|
}
|
|
void addVec(SkPoint p1, SkPoint p0) {
|
this->addVec(p1 - p0);
|
}
|
void addVec(SkVector v) {
|
if (v.fX == 0 && v.fY == 0) {
|
return;
|
}
|
|
fVecCounter += 1;
|
if (fVecCounter == 1) {
|
fFirst = fPrev = v;
|
fDSign.update(sign(v.fX));
|
return;
|
}
|
|
SkScalar d = v.fX;
|
SkScalar c = crs(fPrev, v);
|
int sign_c;
|
if (c) {
|
sign_c = sign(c);
|
} else {
|
if (d >= 0) {
|
sign_c = fCSign.fSign;
|
} else {
|
sign_c = -fCSign.fSign;
|
}
|
}
|
|
fDSign.update(sign(d));
|
fCSign.update(sign_c);
|
fPrev = v;
|
|
if (fDSign.fSignChanges > 3 || fCSign.fSignChanges > 1) {
|
fIsConcave = true;
|
}
|
}
|
|
void finalCross() {
|
this->addVec(fFirst);
|
}
|
};
|
|
bool SkIsPolyConvex_experimental(const SkPoint pts[], int count) {
|
if (count <= 3) {
|
return true;
|
}
|
|
ConvexTracker tracker;
|
|
for (int i = 0; i < count - 1; ++i) {
|
tracker.addVec(pts[i + 1], pts[i]);
|
if (tracker.fIsConcave) {
|
return false;
|
}
|
}
|
tracker.addVec(pts[0], pts[count - 1]);
|
tracker.finalCross();
|
return !tracker.fIsConcave;
|
}
|