/*
|
* Copyright 2011 Google Inc.
|
*
|
* Use of this source code is governed by a BSD-style license that can be
|
* found in the LICENSE file.
|
*/
|
#include "SkParse.h"
|
#include "SkParsePath.h"
|
|
static inline bool is_between(int c, int min, int max) {
|
return (unsigned)(c - min) <= (unsigned)(max - min);
|
}
|
|
static inline bool is_ws(int c) {
|
return is_between(c, 1, 32);
|
}
|
|
static inline bool is_digit(int c) {
|
return is_between(c, '0', '9');
|
}
|
|
static inline bool is_sep(int c) {
|
return is_ws(c) || c == ',';
|
}
|
|
static inline bool is_lower(int c) {
|
return is_between(c, 'a', 'z');
|
}
|
|
static inline int to_upper(int c) {
|
return c - 'a' + 'A';
|
}
|
|
static const char* skip_ws(const char str[]) {
|
SkASSERT(str);
|
while (is_ws(*str))
|
str++;
|
return str;
|
}
|
|
static const char* skip_sep(const char str[]) {
|
if (!str) {
|
return nullptr;
|
}
|
while (is_sep(*str))
|
str++;
|
return str;
|
}
|
|
static const char* find_points(const char str[], SkPoint value[], int count,
|
bool isRelative, SkPoint* relative) {
|
str = SkParse::FindScalars(str, &value[0].fX, count * 2);
|
if (isRelative) {
|
for (int index = 0; index < count; index++) {
|
value[index].fX += relative->fX;
|
value[index].fY += relative->fY;
|
}
|
}
|
return str;
|
}
|
|
static const char* find_scalar(const char str[], SkScalar* value,
|
bool isRelative, SkScalar relative) {
|
str = SkParse::FindScalar(str, value);
|
if (!str) {
|
return nullptr;
|
}
|
if (isRelative) {
|
*value += relative;
|
}
|
str = skip_sep(str);
|
return str;
|
}
|
|
bool SkParsePath::FromSVGString(const char data[], SkPath* result) {
|
SkPath path;
|
SkPoint first = {0, 0};
|
SkPoint c = {0, 0};
|
SkPoint lastc = {0, 0};
|
SkPoint points[3];
|
char op = '\0';
|
char previousOp = '\0';
|
bool relative = false;
|
for (;;) {
|
if (!data) {
|
// Truncated data
|
return false;
|
}
|
data = skip_ws(data);
|
if (data[0] == '\0') {
|
break;
|
}
|
char ch = data[0];
|
if (is_digit(ch) || ch == '-' || ch == '+' || ch == '.') {
|
if (op == '\0') {
|
return false;
|
}
|
} else if (is_sep(ch)) {
|
data = skip_sep(data);
|
} else {
|
op = ch;
|
relative = false;
|
if (is_lower(op)) {
|
op = (char) to_upper(op);
|
relative = true;
|
}
|
data++;
|
data = skip_sep(data);
|
}
|
switch (op) {
|
case 'M':
|
data = find_points(data, points, 1, relative, &c);
|
path.moveTo(points[0]);
|
previousOp = '\0';
|
op = 'L';
|
c = points[0];
|
break;
|
case 'L':
|
data = find_points(data, points, 1, relative, &c);
|
path.lineTo(points[0]);
|
c = points[0];
|
break;
|
case 'H': {
|
SkScalar x;
|
data = find_scalar(data, &x, relative, c.fX);
|
path.lineTo(x, c.fY);
|
c.fX = x;
|
} break;
|
case 'V': {
|
SkScalar y;
|
data = find_scalar(data, &y, relative, c.fY);
|
path.lineTo(c.fX, y);
|
c.fY = y;
|
} break;
|
case 'C':
|
data = find_points(data, points, 3, relative, &c);
|
goto cubicCommon;
|
case 'S':
|
data = find_points(data, &points[1], 2, relative, &c);
|
points[0] = c;
|
if (previousOp == 'C' || previousOp == 'S') {
|
points[0].fX -= lastc.fX - c.fX;
|
points[0].fY -= lastc.fY - c.fY;
|
}
|
cubicCommon:
|
path.cubicTo(points[0], points[1], points[2]);
|
lastc = points[1];
|
c = points[2];
|
break;
|
case 'Q': // Quadratic Bezier Curve
|
data = find_points(data, points, 2, relative, &c);
|
goto quadraticCommon;
|
case 'T':
|
data = find_points(data, &points[1], 1, relative, &c);
|
points[0] = c;
|
if (previousOp == 'Q' || previousOp == 'T') {
|
points[0].fX -= lastc.fX - c.fX;
|
points[0].fY -= lastc.fY - c.fY;
|
}
|
quadraticCommon:
|
path.quadTo(points[0], points[1]);
|
lastc = points[0];
|
c = points[1];
|
break;
|
case 'A': {
|
SkPoint radii;
|
SkScalar angle, largeArc, sweep;
|
if ((data = find_points(data, &radii, 1, false, nullptr))
|
&& (data = skip_sep(data))
|
&& (data = find_scalar(data, &angle, false, 0))
|
&& (data = skip_sep(data))
|
&& (data = find_scalar(data, &largeArc, false, 0))
|
&& (data = skip_sep(data))
|
&& (data = find_scalar(data, &sweep, false, 0))
|
&& (data = skip_sep(data))
|
&& (data = find_points(data, &points[0], 1, relative, &c))) {
|
path.arcTo(radii, angle, (SkPath::ArcSize) SkToBool(largeArc),
|
(SkPath::Direction) !SkToBool(sweep), points[0]);
|
path.getLastPt(&c);
|
}
|
} break;
|
case 'Z':
|
path.close();
|
c = first;
|
break;
|
case '~': {
|
SkPoint args[2];
|
data = find_points(data, args, 2, false, nullptr);
|
path.moveTo(args[0].fX, args[0].fY);
|
path.lineTo(args[1].fX, args[1].fY);
|
} break;
|
default:
|
return false;
|
}
|
if (previousOp == 0) {
|
first = c;
|
}
|
previousOp = op;
|
}
|
// we're good, go ahead and swap in the result
|
result->swap(path);
|
return true;
|
}
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
#include "SkGeometry.h"
|
#include "SkString.h"
|
#include "SkStream.h"
|
|
static void write_scalar(SkWStream* stream, SkScalar value) {
|
char buffer[64];
|
#ifdef SK_BUILD_FOR_WIN
|
int len = _snprintf(buffer, sizeof(buffer), "%g", value);
|
#else
|
int len = snprintf(buffer, sizeof(buffer), "%g", value);
|
#endif
|
char* stop = buffer + len;
|
stream->write(buffer, stop - buffer);
|
}
|
|
static void append_scalars(SkWStream* stream, char verb, const SkScalar data[],
|
int count) {
|
stream->write(&verb, 1);
|
write_scalar(stream, data[0]);
|
for (int i = 1; i < count; i++) {
|
stream->write(" ", 1);
|
write_scalar(stream, data[i]);
|
}
|
}
|
|
void SkParsePath::ToSVGString(const SkPath& path, SkString* str) {
|
SkDynamicMemoryWStream stream;
|
|
SkPath::Iter iter(path, false);
|
SkPoint pts[4];
|
|
for (;;) {
|
switch (iter.next(pts, false)) {
|
case SkPath::kConic_Verb: {
|
const SkScalar tol = SK_Scalar1 / 1024; // how close to a quad
|
SkAutoConicToQuads quadder;
|
const SkPoint* quadPts = quadder.computeQuads(pts, iter.conicWeight(), tol);
|
for (int i = 0; i < quadder.countQuads(); ++i) {
|
append_scalars(&stream, 'Q', &quadPts[i*2 + 1].fX, 4);
|
}
|
} break;
|
case SkPath::kMove_Verb:
|
append_scalars(&stream, 'M', &pts[0].fX, 2);
|
break;
|
case SkPath::kLine_Verb:
|
append_scalars(&stream, 'L', &pts[1].fX, 2);
|
break;
|
case SkPath::kQuad_Verb:
|
append_scalars(&stream, 'Q', &pts[1].fX, 4);
|
break;
|
case SkPath::kCubic_Verb:
|
append_scalars(&stream, 'C', &pts[1].fX, 6);
|
break;
|
case SkPath::kClose_Verb:
|
stream.write("Z", 1);
|
break;
|
case SkPath::kDone_Verb:
|
str->resize(stream.bytesWritten());
|
stream.copyTo(str->writable_str());
|
return;
|
}
|
}
|
}
|