/*
|
* Copyright 2008 The Android Open Source Project
|
*
|
* Use of this source code is governed by a BSD-style license that can be
|
* found in the LICENSE file.
|
*/
|
|
#include "SkInterpolator.h"
|
|
#include "SkFixed.h"
|
#include "SkMalloc.h"
|
#include "SkMath.h"
|
#include "SkTSearch.h"
|
#include "SkTo.h"
|
|
SkInterpolatorBase::SkInterpolatorBase() {
|
fStorage = nullptr;
|
fTimes = nullptr;
|
SkDEBUGCODE(fTimesArray = nullptr;)
|
}
|
|
SkInterpolatorBase::~SkInterpolatorBase() {
|
if (fStorage) {
|
sk_free(fStorage);
|
}
|
}
|
|
void SkInterpolatorBase::reset(int elemCount, int frameCount) {
|
fFlags = 0;
|
fElemCount = SkToU8(elemCount);
|
fFrameCount = SkToS16(frameCount);
|
fRepeat = SK_Scalar1;
|
if (fStorage) {
|
sk_free(fStorage);
|
fStorage = nullptr;
|
fTimes = nullptr;
|
SkDEBUGCODE(fTimesArray = nullptr);
|
}
|
}
|
|
/* Each value[] run is formated as:
|
<time (in msec)>
|
<blend>
|
<data[fElemCount]>
|
|
Totaling fElemCount+2 entries per keyframe
|
*/
|
|
bool SkInterpolatorBase::getDuration(SkMSec* startTime, SkMSec* endTime) const {
|
if (fFrameCount == 0) {
|
return false;
|
}
|
|
if (startTime) {
|
*startTime = fTimes[0].fTime;
|
}
|
if (endTime) {
|
*endTime = fTimes[fFrameCount - 1].fTime;
|
}
|
return true;
|
}
|
|
SkScalar SkInterpolatorBase::ComputeRelativeT(SkMSec time, SkMSec prevTime,
|
SkMSec nextTime, const SkScalar blend[4]) {
|
SkASSERT(time > prevTime && time < nextTime);
|
|
SkScalar t = (SkScalar)(time - prevTime) / (SkScalar)(nextTime - prevTime);
|
return blend ?
|
SkUnitCubicInterp(t, blend[0], blend[1], blend[2], blend[3]) : t;
|
}
|
|
SkInterpolatorBase::Result SkInterpolatorBase::timeToT(SkMSec time, SkScalar* T,
|
int* indexPtr, bool* exactPtr) const {
|
SkASSERT(fFrameCount > 0);
|
Result result = kNormal_Result;
|
if (fRepeat != SK_Scalar1) {
|
SkMSec startTime = 0, endTime = 0; // initialize to avoid warning
|
this->getDuration(&startTime, &endTime);
|
SkMSec totalTime = endTime - startTime;
|
SkMSec offsetTime = time - startTime;
|
endTime = SkScalarFloorToInt(fRepeat * totalTime);
|
if (offsetTime >= endTime) {
|
SkScalar fraction = SkScalarFraction(fRepeat);
|
offsetTime = fraction == 0 && fRepeat > 0 ? totalTime :
|
(SkMSec) SkScalarFloorToInt(fraction * totalTime);
|
result = kFreezeEnd_Result;
|
} else {
|
int mirror = fFlags & kMirror;
|
offsetTime = offsetTime % (totalTime << mirror);
|
if (offsetTime > totalTime) { // can only be true if fMirror is true
|
offsetTime = (totalTime << 1) - offsetTime;
|
}
|
}
|
time = offsetTime + startTime;
|
}
|
|
int index = SkTSearch<SkMSec>(&fTimes[0].fTime, fFrameCount, time,
|
sizeof(SkTimeCode));
|
|
bool exact = true;
|
|
if (index < 0) {
|
index = ~index;
|
if (index == 0) {
|
result = kFreezeStart_Result;
|
} else if (index == fFrameCount) {
|
if (fFlags & kReset) {
|
index = 0;
|
} else {
|
index -= 1;
|
}
|
result = kFreezeEnd_Result;
|
} else {
|
exact = false;
|
}
|
}
|
SkASSERT(index < fFrameCount);
|
const SkTimeCode* nextTime = &fTimes[index];
|
SkMSec nextT = nextTime[0].fTime;
|
if (exact) {
|
*T = 0;
|
} else {
|
SkMSec prevT = nextTime[-1].fTime;
|
*T = ComputeRelativeT(time, prevT, nextT, nextTime[-1].fBlend);
|
}
|
*indexPtr = index;
|
*exactPtr = exact;
|
return result;
|
}
|
|
|
SkInterpolator::SkInterpolator() {
|
INHERITED::reset(0, 0);
|
fValues = nullptr;
|
SkDEBUGCODE(fScalarsArray = nullptr;)
|
}
|
|
SkInterpolator::SkInterpolator(int elemCount, int frameCount) {
|
SkASSERT(elemCount > 0);
|
this->reset(elemCount, frameCount);
|
}
|
|
void SkInterpolator::reset(int elemCount, int frameCount) {
|
INHERITED::reset(elemCount, frameCount);
|
fStorage = sk_malloc_throw((sizeof(SkScalar) * elemCount +
|
sizeof(SkTimeCode)) * frameCount);
|
fTimes = (SkTimeCode*) fStorage;
|
fValues = (SkScalar*) ((char*) fStorage + sizeof(SkTimeCode) * frameCount);
|
#ifdef SK_DEBUG
|
fTimesArray = (SkTimeCode(*)[10]) fTimes;
|
fScalarsArray = (SkScalar(*)[10]) fValues;
|
#endif
|
}
|
|
#define SK_Fixed1Third (SK_Fixed1/3)
|
#define SK_Fixed2Third (SK_Fixed1*2/3)
|
|
static const SkScalar gIdentityBlend[4] = {
|
0.33333333f, 0.33333333f, 0.66666667f, 0.66666667f
|
};
|
|
bool SkInterpolator::setKeyFrame(int index, SkMSec time,
|
const SkScalar values[], const SkScalar blend[4]) {
|
SkASSERT(values != nullptr);
|
|
if (blend == nullptr) {
|
blend = gIdentityBlend;
|
}
|
|
bool success = ~index == SkTSearch<SkMSec>(&fTimes->fTime, index, time,
|
sizeof(SkTimeCode));
|
SkASSERT(success);
|
if (success) {
|
SkTimeCode* timeCode = &fTimes[index];
|
timeCode->fTime = time;
|
memcpy(timeCode->fBlend, blend, sizeof(timeCode->fBlend));
|
SkScalar* dst = &fValues[fElemCount * index];
|
memcpy(dst, values, fElemCount * sizeof(SkScalar));
|
}
|
return success;
|
}
|
|
SkInterpolator::Result SkInterpolator::timeToValues(SkMSec time,
|
SkScalar values[]) const {
|
SkScalar T;
|
int index;
|
bool exact;
|
Result result = timeToT(time, &T, &index, &exact);
|
if (values) {
|
const SkScalar* nextSrc = &fValues[index * fElemCount];
|
|
if (exact) {
|
memcpy(values, nextSrc, fElemCount * sizeof(SkScalar));
|
} else {
|
SkASSERT(index > 0);
|
|
const SkScalar* prevSrc = nextSrc - fElemCount;
|
|
for (int i = fElemCount - 1; i >= 0; --i) {
|
values[i] = SkScalarInterp(prevSrc[i], nextSrc[i], T);
|
}
|
}
|
}
|
return result;
|
}
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
typedef int Dot14;
|
#define Dot14_ONE (1 << 14)
|
#define Dot14_HALF (1 << 13)
|
|
#define Dot14ToFloat(x) ((x) / 16384.f)
|
|
static inline Dot14 Dot14Mul(Dot14 a, Dot14 b) {
|
return (a * b + Dot14_HALF) >> 14;
|
}
|
|
static inline Dot14 eval_cubic(Dot14 t, Dot14 A, Dot14 B, Dot14 C) {
|
return Dot14Mul(Dot14Mul(Dot14Mul(C, t) + B, t) + A, t);
|
}
|
|
static inline Dot14 pin_and_convert(SkScalar x) {
|
if (x <= 0) {
|
return 0;
|
}
|
if (x >= SK_Scalar1) {
|
return Dot14_ONE;
|
}
|
return SkScalarToFixed(x) >> 2;
|
}
|
|
SkScalar SkUnitCubicInterp(SkScalar value, SkScalar bx, SkScalar by,
|
SkScalar cx, SkScalar cy) {
|
// pin to the unit-square, and convert to 2.14
|
Dot14 x = pin_and_convert(value);
|
|
if (x == 0) return 0;
|
if (x == Dot14_ONE) return SK_Scalar1;
|
|
Dot14 b = pin_and_convert(bx);
|
Dot14 c = pin_and_convert(cx);
|
|
// Now compute our coefficients from the control points
|
// t -> 3b
|
// t^2 -> 3c - 6b
|
// t^3 -> 3b - 3c + 1
|
Dot14 A = 3*b;
|
Dot14 B = 3*(c - 2*b);
|
Dot14 C = 3*(b - c) + Dot14_ONE;
|
|
// Now search for a t value given x
|
Dot14 t = Dot14_HALF;
|
Dot14 dt = Dot14_HALF;
|
for (int i = 0; i < 13; i++) {
|
dt >>= 1;
|
Dot14 guess = eval_cubic(t, A, B, C);
|
if (x < guess) {
|
t -= dt;
|
} else {
|
t += dt;
|
}
|
}
|
|
// Now we have t, so compute the coeff for Y and evaluate
|
b = pin_and_convert(by);
|
c = pin_and_convert(cy);
|
A = 3*b;
|
B = 3*(c - 2*b);
|
C = 3*(b - c) + Dot14_ONE;
|
return SkFixedToScalar(eval_cubic(t, A, B, C) << 2);
|
}
|