/*
|
* Copyright 2014 Google Inc.
|
*
|
* Use of this source code is governed by a BSD-style license that can be
|
* found in the LICENSE file.
|
*/
|
|
#include "SkDashPathPriv.h"
|
#include "SkPathMeasure.h"
|
#include "SkPointPriv.h"
|
#include "SkStrokeRec.h"
|
|
#include <utility>
|
|
static inline int is_even(int x) {
|
return !(x & 1);
|
}
|
|
static SkScalar find_first_interval(const SkScalar intervals[], SkScalar phase,
|
int32_t* index, int count) {
|
for (int i = 0; i < count; ++i) {
|
SkScalar gap = intervals[i];
|
if (phase > gap || (phase == gap && gap)) {
|
phase -= gap;
|
} else {
|
*index = i;
|
return gap - phase;
|
}
|
}
|
// If we get here, phase "appears" to be larger than our length. This
|
// shouldn't happen with perfect precision, but we can accumulate errors
|
// during the initial length computation (rounding can make our sum be too
|
// big or too small. In that event, we just have to eat the error here.
|
*index = 0;
|
return intervals[0];
|
}
|
|
void SkDashPath::CalcDashParameters(SkScalar phase, const SkScalar intervals[], int32_t count,
|
SkScalar* initialDashLength, int32_t* initialDashIndex,
|
SkScalar* intervalLength, SkScalar* adjustedPhase) {
|
SkScalar len = 0;
|
for (int i = 0; i < count; i++) {
|
len += intervals[i];
|
}
|
*intervalLength = len;
|
// Adjust phase to be between 0 and len, "flipping" phase if negative.
|
// e.g., if len is 100, then phase of -20 (or -120) is equivalent to 80
|
if (adjustedPhase) {
|
if (phase < 0) {
|
phase = -phase;
|
if (phase > len) {
|
phase = SkScalarMod(phase, len);
|
}
|
phase = len - phase;
|
|
// Due to finite precision, it's possible that phase == len,
|
// even after the subtract (if len >>> phase), so fix that here.
|
// This fixes http://crbug.com/124652 .
|
SkASSERT(phase <= len);
|
if (phase == len) {
|
phase = 0;
|
}
|
} else if (phase >= len) {
|
phase = SkScalarMod(phase, len);
|
}
|
*adjustedPhase = phase;
|
}
|
SkASSERT(phase >= 0 && phase < len);
|
|
*initialDashLength = find_first_interval(intervals, phase,
|
initialDashIndex, count);
|
|
SkASSERT(*initialDashLength >= 0);
|
SkASSERT(*initialDashIndex >= 0 && *initialDashIndex < count);
|
}
|
|
static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) {
|
SkScalar radius = SkScalarHalf(rec.getWidth());
|
if (0 == radius) {
|
radius = SK_Scalar1; // hairlines
|
}
|
if (SkPaint::kMiter_Join == rec.getJoin()) {
|
radius *= rec.getMiter();
|
}
|
rect->outset(radius, radius);
|
}
|
|
// If line is zero-length, bump out the end by a tiny amount
|
// to draw endcaps. The bump factor is sized so that
|
// SkPoint::Distance() computes a non-zero length.
|
// Offsets SK_ScalarNearlyZero or smaller create empty paths when Iter measures length.
|
// Large values are scaled by SK_ScalarNearlyZero so significant bits change.
|
static void adjust_zero_length_line(SkPoint pts[2]) {
|
SkASSERT(pts[0] == pts[1]);
|
pts[1].fX += SkTMax(1.001f, pts[1].fX) * SK_ScalarNearlyZero;
|
}
|
|
static bool clip_line(SkPoint pts[2], const SkRect& bounds, SkScalar intervalLength,
|
SkScalar priorPhase) {
|
SkVector dxy = pts[1] - pts[0];
|
|
// only horizontal or vertical lines
|
if (dxy.fX && dxy.fY) {
|
return false;
|
}
|
int xyOffset = SkToBool(dxy.fY); // 0 to adjust horizontal, 1 to adjust vertical
|
|
SkScalar minXY = (&pts[0].fX)[xyOffset];
|
SkScalar maxXY = (&pts[1].fX)[xyOffset];
|
bool swapped = maxXY < minXY;
|
if (swapped) {
|
using std::swap;
|
swap(minXY, maxXY);
|
}
|
|
SkASSERT(minXY <= maxXY);
|
SkScalar leftTop = (&bounds.fLeft)[xyOffset];
|
SkScalar rightBottom = (&bounds.fRight)[xyOffset];
|
if (maxXY < leftTop || minXY > rightBottom) {
|
return false;
|
}
|
|
// Now we actually perform the chop, removing the excess to the left/top and
|
// right/bottom of the bounds (keeping our new line "in phase" with the dash,
|
// hence the (mod intervalLength).
|
|
if (minXY < leftTop) {
|
minXY = leftTop - SkScalarMod(leftTop - minXY, intervalLength);
|
if (!swapped) {
|
minXY -= priorPhase; // for rectangles, adjust by prior phase
|
}
|
}
|
if (maxXY > rightBottom) {
|
maxXY = rightBottom + SkScalarMod(maxXY - rightBottom, intervalLength);
|
if (swapped) {
|
maxXY += priorPhase; // for rectangles, adjust by prior phase
|
}
|
}
|
|
SkASSERT(maxXY >= minXY);
|
if (swapped) {
|
using std::swap;
|
swap(minXY, maxXY);
|
}
|
(&pts[0].fX)[xyOffset] = minXY;
|
(&pts[1].fX)[xyOffset] = maxXY;
|
|
if (minXY == maxXY) {
|
adjust_zero_length_line(pts);
|
}
|
return true;
|
}
|
|
static bool contains_inclusive(const SkRect& rect, const SkPoint& pt) {
|
return rect.fLeft <= pt.fX && pt.fX <= rect.fRight &&
|
rect.fTop <= pt.fY && pt.fY <= rect.fBottom;
|
}
|
|
// Returns true is b is between a and c, that is: a <= b <= c, or a >= b >= c.
|
// Can perform this test with one branch by observing that, relative to b,
|
// the condition is true only if one side is positive and one side is negative.
|
// If the numbers are very small, the optimization may return the wrong result
|
// because the multiply may generate a zero where the simple compare does not.
|
// For this reason the assert does not fire when all three numbers are near zero.
|
static bool between(SkScalar a, SkScalar b, SkScalar c) {
|
SkASSERT(((a <= b && b <= c) || (a >= b && b >= c)) == ((a - b) * (c - b) <= 0)
|
|| (SkScalarNearlyZero(a) && SkScalarNearlyZero(b) && SkScalarNearlyZero(c)));
|
return (a - b) * (c - b) <= 0;
|
}
|
|
// Only handles lines for now. If returns true, dstPath is the new (smaller)
|
// path. If returns false, then dstPath parameter is ignored.
|
static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec,
|
const SkRect* cullRect, SkScalar intervalLength,
|
SkPath* dstPath) {
|
SkPoint pts[4];
|
if (nullptr == cullRect) {
|
if (srcPath.isLine(pts) && pts[0] == pts[1]) {
|
adjust_zero_length_line(pts);
|
} else {
|
return false;
|
}
|
} else {
|
SkRect bounds;
|
bool isLine = srcPath.isLine(pts);
|
bool isRect = !isLine && srcPath.isRect(nullptr);
|
if (!isLine && !isRect) {
|
return false;
|
}
|
bounds = *cullRect;
|
outset_for_stroke(&bounds, rec);
|
if (isRect) {
|
// break rect into four lines, and call each one separately
|
SkPath::Iter iter(srcPath, false);
|
SkAssertResult(SkPath::kMove_Verb == iter.next(pts));
|
SkScalar priorLength = 0;
|
while (SkPath::kLine_Verb == iter.next(pts)) {
|
SkVector v = pts[1] - pts[0];
|
// if line is entirely outside clip rect, skip it
|
if (v.fX ? between(bounds.fTop, pts[0].fY, bounds.fBottom) :
|
between(bounds.fLeft, pts[0].fX, bounds.fRight)) {
|
bool skipMoveTo = contains_inclusive(bounds, pts[0]);
|
if (clip_line(pts, bounds, intervalLength,
|
SkScalarMod(priorLength, intervalLength))) {
|
if (0 == priorLength || !skipMoveTo) {
|
dstPath->moveTo(pts[0]);
|
}
|
dstPath->lineTo(pts[1]);
|
}
|
}
|
// keep track of all prior lengths to set phase of next line
|
priorLength += SkScalarAbs(v.fX ? v.fX : v.fY);
|
}
|
return !dstPath->isEmpty();
|
}
|
SkASSERT(isLine);
|
if (!clip_line(pts, bounds, intervalLength, 0)) {
|
return false;
|
}
|
}
|
dstPath->moveTo(pts[0]);
|
dstPath->lineTo(pts[1]);
|
return true;
|
}
|
|
class SpecialLineRec {
|
public:
|
bool init(const SkPath& src, SkPath* dst, SkStrokeRec* rec,
|
int intervalCount, SkScalar intervalLength) {
|
if (rec->isHairlineStyle() || !src.isLine(fPts)) {
|
return false;
|
}
|
|
// can relax this in the future, if we handle square and round caps
|
if (SkPaint::kButt_Cap != rec->getCap()) {
|
return false;
|
}
|
|
SkScalar pathLength = SkPoint::Distance(fPts[0], fPts[1]);
|
|
fTangent = fPts[1] - fPts[0];
|
if (fTangent.isZero()) {
|
return false;
|
}
|
|
fPathLength = pathLength;
|
fTangent.scale(SkScalarInvert(pathLength));
|
SkPointPriv::RotateCCW(fTangent, &fNormal);
|
fNormal.scale(SkScalarHalf(rec->getWidth()));
|
|
// now estimate how many quads will be added to the path
|
// resulting segments = pathLen * intervalCount / intervalLen
|
// resulting points = 4 * segments
|
|
SkScalar ptCount = pathLength * intervalCount / (float)intervalLength;
|
ptCount = SkTMin(ptCount, SkDashPath::kMaxDashCount);
|
int n = SkScalarCeilToInt(ptCount) << 2;
|
dst->incReserve(n);
|
|
// we will take care of the stroking
|
rec->setFillStyle();
|
return true;
|
}
|
|
void addSegment(SkScalar d0, SkScalar d1, SkPath* path) const {
|
SkASSERT(d0 <= fPathLength);
|
// clamp the segment to our length
|
if (d1 > fPathLength) {
|
d1 = fPathLength;
|
}
|
|
SkScalar x0 = fPts[0].fX + fTangent.fX * d0;
|
SkScalar x1 = fPts[0].fX + fTangent.fX * d1;
|
SkScalar y0 = fPts[0].fY + fTangent.fY * d0;
|
SkScalar y1 = fPts[0].fY + fTangent.fY * d1;
|
|
SkPoint pts[4];
|
pts[0].set(x0 + fNormal.fX, y0 + fNormal.fY); // moveTo
|
pts[1].set(x1 + fNormal.fX, y1 + fNormal.fY); // lineTo
|
pts[2].set(x1 - fNormal.fX, y1 - fNormal.fY); // lineTo
|
pts[3].set(x0 - fNormal.fX, y0 - fNormal.fY); // lineTo
|
|
path->addPoly(pts, SK_ARRAY_COUNT(pts), false);
|
}
|
|
private:
|
SkPoint fPts[2];
|
SkVector fTangent;
|
SkVector fNormal;
|
SkScalar fPathLength;
|
};
|
|
|
bool SkDashPath::InternalFilter(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
|
const SkRect* cullRect, const SkScalar aIntervals[],
|
int32_t count, SkScalar initialDashLength, int32_t initialDashIndex,
|
SkScalar intervalLength,
|
StrokeRecApplication strokeRecApplication) {
|
// we must always have an even number of intervals
|
SkASSERT(is_even(count));
|
|
// we do nothing if the src wants to be filled
|
SkStrokeRec::Style style = rec->getStyle();
|
if (SkStrokeRec::kFill_Style == style || SkStrokeRec::kStrokeAndFill_Style == style) {
|
return false;
|
}
|
|
const SkScalar* intervals = aIntervals;
|
SkScalar dashCount = 0;
|
int segCount = 0;
|
|
SkPath cullPathStorage;
|
const SkPath* srcPtr = &src;
|
if (cull_path(src, *rec, cullRect, intervalLength, &cullPathStorage)) {
|
// if rect is closed, starts in a dash, and ends in a dash, add the initial join
|
// potentially a better fix is described here: bug.skia.org/7445
|
if (src.isRect(nullptr) && src.isLastContourClosed() && is_even(initialDashIndex)) {
|
SkScalar pathLength = SkPathMeasure(src, false, rec->getResScale()).getLength();
|
SkScalar endPhase = SkScalarMod(pathLength + initialDashLength, intervalLength);
|
int index = 0;
|
while (endPhase > intervals[index]) {
|
endPhase -= intervals[index++];
|
SkASSERT(index <= count);
|
if (index == count) {
|
// We have run out of intervals. endPhase "should" never get to this point,
|
// but it could if the subtracts underflowed. Hence we will pin it as if it
|
// perfectly ran through the intervals.
|
// See crbug.com/875494 (and skbug.com/8274)
|
endPhase = 0;
|
break;
|
}
|
}
|
// if dash ends inside "on", or ends at beginning of "off"
|
if (is_even(index) == (endPhase > 0)) {
|
SkPoint midPoint = src.getPoint(0);
|
// get vector at end of rect
|
int last = src.countPoints() - 1;
|
while (midPoint == src.getPoint(last)) {
|
--last;
|
SkASSERT(last >= 0);
|
}
|
// get vector at start of rect
|
int next = 1;
|
while (midPoint == src.getPoint(next)) {
|
++next;
|
SkASSERT(next < last);
|
}
|
SkVector v = midPoint - src.getPoint(last);
|
const SkScalar kTinyOffset = SK_ScalarNearlyZero;
|
// scale vector to make start of tiny right angle
|
v *= kTinyOffset;
|
cullPathStorage.moveTo(midPoint - v);
|
cullPathStorage.lineTo(midPoint);
|
v = midPoint - src.getPoint(next);
|
// scale vector to make end of tiny right angle
|
v *= kTinyOffset;
|
cullPathStorage.lineTo(midPoint - v);
|
}
|
}
|
srcPtr = &cullPathStorage;
|
}
|
|
SpecialLineRec lineRec;
|
bool specialLine = (StrokeRecApplication::kAllow == strokeRecApplication) &&
|
lineRec.init(*srcPtr, dst, rec, count >> 1, intervalLength);
|
|
SkPathMeasure meas(*srcPtr, false, rec->getResScale());
|
|
do {
|
bool skipFirstSegment = meas.isClosed();
|
bool addedSegment = false;
|
SkScalar length = meas.getLength();
|
int index = initialDashIndex;
|
|
// Since the path length / dash length ratio may be arbitrarily large, we can exert
|
// significant memory pressure while attempting to build the filtered path. To avoid this,
|
// we simply give up dashing beyond a certain threshold.
|
//
|
// The original bug report (http://crbug.com/165432) is based on a path yielding more than
|
// 90 million dash segments and crashing the memory allocator. A limit of 1 million
|
// segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the
|
// maximum dash memory overhead at roughly 17MB per path.
|
dashCount += length * (count >> 1) / intervalLength;
|
if (dashCount > kMaxDashCount) {
|
dst->reset();
|
return false;
|
}
|
|
// Using double precision to avoid looping indefinitely due to single precision rounding
|
// (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest.
|
double distance = 0;
|
double dlen = initialDashLength;
|
|
while (distance < length) {
|
SkASSERT(dlen >= 0);
|
addedSegment = false;
|
if (is_even(index) && !skipFirstSegment) {
|
addedSegment = true;
|
++segCount;
|
|
if (specialLine) {
|
lineRec.addSegment(SkDoubleToScalar(distance),
|
SkDoubleToScalar(distance + dlen),
|
dst);
|
} else {
|
meas.getSegment(SkDoubleToScalar(distance),
|
SkDoubleToScalar(distance + dlen),
|
dst, true);
|
}
|
}
|
distance += dlen;
|
|
// clear this so we only respect it the first time around
|
skipFirstSegment = false;
|
|
// wrap around our intervals array if necessary
|
index += 1;
|
SkASSERT(index <= count);
|
if (index == count) {
|
index = 0;
|
}
|
|
// fetch our next dlen
|
dlen = intervals[index];
|
}
|
|
// extend if we ended on a segment and we need to join up with the (skipped) initial segment
|
if (meas.isClosed() && is_even(initialDashIndex) &&
|
initialDashLength >= 0) {
|
meas.getSegment(0, initialDashLength, dst, !addedSegment);
|
++segCount;
|
}
|
} while (meas.nextContour());
|
|
if (segCount > 1) {
|
dst->setConvexity(SkPath::kConcave_Convexity);
|
}
|
|
return true;
|
}
|
|
bool SkDashPath::FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
|
const SkRect* cullRect, const SkPathEffect::DashInfo& info) {
|
if (!ValidDashPath(info.fPhase, info.fIntervals, info.fCount)) {
|
return false;
|
}
|
SkScalar initialDashLength = 0;
|
int32_t initialDashIndex = 0;
|
SkScalar intervalLength = 0;
|
CalcDashParameters(info.fPhase, info.fIntervals, info.fCount,
|
&initialDashLength, &initialDashIndex, &intervalLength);
|
return InternalFilter(dst, src, rec, cullRect, info.fIntervals, info.fCount, initialDashLength,
|
initialDashIndex, intervalLength);
|
}
|
|
bool SkDashPath::ValidDashPath(SkScalar phase, const SkScalar intervals[], int32_t count) {
|
if (count < 2 || !SkIsAlign2(count)) {
|
return false;
|
}
|
SkScalar length = 0;
|
for (int i = 0; i < count; i++) {
|
if (intervals[i] < 0) {
|
return false;
|
}
|
length += intervals[i];
|
}
|
// watch out for values that might make us go out of bounds
|
return length > 0 && SkScalarIsFinite(phase) && SkScalarIsFinite(length);
|
}
|