/* -----------------------------------------------------------------------------
|
Software License for The Fraunhofer FDK AAC Codec Library for Android
|
|
© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
|
Forschung e.V. All rights reserved.
|
|
1. INTRODUCTION
|
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
|
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
|
scheme for digital audio. This FDK AAC Codec software is intended to be used on
|
a wide variety of Android devices.
|
|
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
|
general perceptual audio codecs. AAC-ELD is considered the best-performing
|
full-bandwidth communications codec by independent studies and is widely
|
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
|
specifications.
|
|
Patent licenses for necessary patent claims for the FDK AAC Codec (including
|
those of Fraunhofer) may be obtained through Via Licensing
|
(www.vialicensing.com) or through the respective patent owners individually for
|
the purpose of encoding or decoding bit streams in products that are compliant
|
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
|
Android devices already license these patent claims through Via Licensing or
|
directly from the patent owners, and therefore FDK AAC Codec software may
|
already be covered under those patent licenses when it is used for those
|
licensed purposes only.
|
|
Commercially-licensed AAC software libraries, including floating-point versions
|
with enhanced sound quality, are also available from Fraunhofer. Users are
|
encouraged to check the Fraunhofer website for additional applications
|
information and documentation.
|
|
2. COPYRIGHT LICENSE
|
|
Redistribution and use in source and binary forms, with or without modification,
|
are permitted without payment of copyright license fees provided that you
|
satisfy the following conditions:
|
|
You must retain the complete text of this software license in redistributions of
|
the FDK AAC Codec or your modifications thereto in source code form.
|
|
You must retain the complete text of this software license in the documentation
|
and/or other materials provided with redistributions of the FDK AAC Codec or
|
your modifications thereto in binary form. You must make available free of
|
charge copies of the complete source code of the FDK AAC Codec and your
|
modifications thereto to recipients of copies in binary form.
|
|
The name of Fraunhofer may not be used to endorse or promote products derived
|
from this library without prior written permission.
|
|
You may not charge copyright license fees for anyone to use, copy or distribute
|
the FDK AAC Codec software or your modifications thereto.
|
|
Your modified versions of the FDK AAC Codec must carry prominent notices stating
|
that you changed the software and the date of any change. For modified versions
|
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
|
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
|
AAC Codec Library for Android."
|
|
3. NO PATENT LICENSE
|
|
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
|
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
|
Fraunhofer provides no warranty of patent non-infringement with respect to this
|
software.
|
|
You may use this FDK AAC Codec software or modifications thereto only for
|
purposes that are authorized by appropriate patent licenses.
|
|
4. DISCLAIMER
|
|
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
|
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
|
including but not limited to the implied warranties of merchantability and
|
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
|
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
|
or consequential damages, including but not limited to procurement of substitute
|
goods or services; loss of use, data, or profits, or business interruption,
|
however caused and on any theory of liability, whether in contract, strict
|
liability, or tort (including negligence), arising in any way out of the use of
|
this software, even if advised of the possibility of such damage.
|
|
5. CONTACT INFORMATION
|
|
Fraunhofer Institute for Integrated Circuits IIS
|
Attention: Audio and Multimedia Departments - FDK AAC LL
|
Am Wolfsmantel 33
|
91058 Erlangen, Germany
|
|
www.iis.fraunhofer.de/amm
|
amm-info@iis.fraunhofer.de
|
----------------------------------------------------------------------------- */
|
|
/******************* Library for basic calculation routines ********************
|
|
Author(s): M. Lohwasser
|
|
Description: auto-correlation functions
|
|
*******************************************************************************/
|
|
#include "autocorr2nd.h"
|
|
/* If the accumulator does not provide enough overflow bits,
|
products have to be shifted down in the autocorrelation below. */
|
#define SHIFT_FACTOR (5)
|
#define SHIFT >> (SHIFT_FACTOR)
|
|
/*!
|
*
|
* \brief Calculate second order autocorrelation using 2 accumulators
|
*
|
*/
|
#if !defined(FUNCTION_autoCorr2nd_real)
|
INT autoCorr2nd_real(
|
ACORR_COEFS *ac, /*!< Pointer to autocorrelation coeffs */
|
const FIXP_DBL *reBuffer, /*!< Pointer to to real part of input samples */
|
const int len /*!< Number input samples */
|
) {
|
int j, autoCorrScaling, mScale;
|
|
FIXP_DBL accu1, accu2, accu3, accu4, accu5;
|
|
const FIXP_DBL *pReBuf;
|
|
const FIXP_DBL *realBuf = reBuffer;
|
|
/*
|
r11r,r22r
|
r01r,r12r
|
r02r
|
*/
|
pReBuf = realBuf - 2;
|
accu5 = ((fMultDiv2(pReBuf[0], pReBuf[2]) + fMultDiv2(pReBuf[1], pReBuf[3]))
|
SHIFT);
|
pReBuf++;
|
|
/* len must be even */
|
accu1 = fPow2Div2(pReBuf[0]) SHIFT;
|
accu3 = fMultDiv2(pReBuf[0], pReBuf[1]) SHIFT;
|
pReBuf++;
|
|
for (j = (len - 2) >> 1; j != 0; j--, pReBuf += 2) {
|
accu1 += ((fPow2Div2(pReBuf[0]) + fPow2Div2(pReBuf[1])) SHIFT);
|
|
accu3 += ((fMultDiv2(pReBuf[0], pReBuf[1]) +
|
fMultDiv2(pReBuf[1], pReBuf[2])) SHIFT);
|
|
accu5 += ((fMultDiv2(pReBuf[0], pReBuf[2]) +
|
fMultDiv2(pReBuf[1], pReBuf[3])) SHIFT);
|
}
|
|
accu2 = (fPow2Div2(realBuf[-2]) SHIFT);
|
accu2 += accu1;
|
|
accu1 += (fPow2Div2(realBuf[len - 2]) SHIFT);
|
|
accu4 = (fMultDiv2(realBuf[-1], realBuf[-2]) SHIFT);
|
accu4 += accu3;
|
|
accu3 += (fMultDiv2(realBuf[len - 1], realBuf[len - 2]) SHIFT);
|
|
mScale = CntLeadingZeros(
|
(accu1 | accu2 | fAbs(accu3) | fAbs(accu4) | fAbs(accu5))) -
|
1;
|
autoCorrScaling = mScale - 1 - SHIFT_FACTOR; /* -1 because of fMultDiv2*/
|
|
/* Scale to common scale factor */
|
ac->r11r = accu1 << mScale;
|
ac->r22r = accu2 << mScale;
|
ac->r01r = accu3 << mScale;
|
ac->r12r = accu4 << mScale;
|
ac->r02r = accu5 << mScale;
|
|
ac->det = (fMultDiv2(ac->r11r, ac->r22r) - fMultDiv2(ac->r12r, ac->r12r));
|
mScale = CountLeadingBits(fAbs(ac->det));
|
|
ac->det <<= mScale;
|
ac->det_scale = mScale - 1;
|
|
return autoCorrScaling;
|
}
|
#endif
|
|
#if !defined(FUNCTION_autoCorr2nd_cplx)
|
INT autoCorr2nd_cplx(
|
ACORR_COEFS *ac, /*!< Pointer to autocorrelation coeffs */
|
const FIXP_DBL *reBuffer, /*!< Pointer to real part of input samples */
|
const FIXP_DBL *imBuffer, /*!< Pointer to imag part of input samples */
|
const int len /*!< Number of input samples (should be smaller than 128) */
|
) {
|
int j, autoCorrScaling, mScale, len_scale;
|
|
FIXP_DBL accu0, accu1, accu2, accu3, accu4, accu5, accu6, accu7, accu8;
|
|
const FIXP_DBL *pReBuf, *pImBuf;
|
|
const FIXP_DBL *realBuf = reBuffer;
|
const FIXP_DBL *imagBuf = imBuffer;
|
|
(len > 64) ? (len_scale = 6) : (len_scale = 5);
|
/*
|
r00r,
|
r11r,r22r
|
r01r,r12r
|
r01i,r12i
|
r02r,r02i
|
*/
|
accu1 = accu3 = accu5 = accu7 = accu8 = FL2FXCONST_DBL(0.0f);
|
|
pReBuf = realBuf - 2, pImBuf = imagBuf - 2;
|
accu7 +=
|
((fMultDiv2(pReBuf[2], pReBuf[0]) + fMultDiv2(pImBuf[2], pImBuf[0])) >>
|
len_scale);
|
accu8 +=
|
((fMultDiv2(pImBuf[2], pReBuf[0]) - fMultDiv2(pReBuf[2], pImBuf[0])) >>
|
len_scale);
|
|
pReBuf = realBuf - 1, pImBuf = imagBuf - 1;
|
for (j = (len - 1); j != 0; j--, pReBuf++, pImBuf++) {
|
accu1 += ((fPow2Div2(pReBuf[0]) + fPow2Div2(pImBuf[0])) >> len_scale);
|
accu3 +=
|
((fMultDiv2(pReBuf[0], pReBuf[1]) + fMultDiv2(pImBuf[0], pImBuf[1])) >>
|
len_scale);
|
accu5 +=
|
((fMultDiv2(pImBuf[1], pReBuf[0]) - fMultDiv2(pReBuf[1], pImBuf[0])) >>
|
len_scale);
|
accu7 +=
|
((fMultDiv2(pReBuf[2], pReBuf[0]) + fMultDiv2(pImBuf[2], pImBuf[0])) >>
|
len_scale);
|
accu8 +=
|
((fMultDiv2(pImBuf[2], pReBuf[0]) - fMultDiv2(pReBuf[2], pImBuf[0])) >>
|
len_scale);
|
}
|
|
accu2 = ((fPow2Div2(realBuf[-2]) + fPow2Div2(imagBuf[-2])) >> len_scale);
|
accu2 += accu1;
|
|
accu1 += ((fPow2Div2(realBuf[len - 2]) + fPow2Div2(imagBuf[len - 2])) >>
|
len_scale);
|
accu0 = ((fPow2Div2(realBuf[len - 1]) + fPow2Div2(imagBuf[len - 1])) >>
|
len_scale) -
|
((fPow2Div2(realBuf[-1]) + fPow2Div2(imagBuf[-1])) >> len_scale);
|
accu0 += accu1;
|
|
accu4 = ((fMultDiv2(realBuf[-1], realBuf[-2]) +
|
fMultDiv2(imagBuf[-1], imagBuf[-2])) >>
|
len_scale);
|
accu4 += accu3;
|
|
accu3 += ((fMultDiv2(realBuf[len - 1], realBuf[len - 2]) +
|
fMultDiv2(imagBuf[len - 1], imagBuf[len - 2])) >>
|
len_scale);
|
|
accu6 = ((fMultDiv2(imagBuf[-1], realBuf[-2]) -
|
fMultDiv2(realBuf[-1], imagBuf[-2])) >>
|
len_scale);
|
accu6 += accu5;
|
|
accu5 += ((fMultDiv2(imagBuf[len - 1], realBuf[len - 2]) -
|
fMultDiv2(realBuf[len - 1], imagBuf[len - 2])) >>
|
len_scale);
|
|
mScale =
|
CntLeadingZeros((accu0 | accu1 | accu2 | fAbs(accu3) | fAbs(accu4) |
|
fAbs(accu5) | fAbs(accu6) | fAbs(accu7) | fAbs(accu8))) -
|
1;
|
autoCorrScaling = mScale - 1 - len_scale; /* -1 because of fMultDiv2*/
|
|
/* Scale to common scale factor */
|
ac->r00r = (FIXP_DBL)accu0 << mScale;
|
ac->r11r = (FIXP_DBL)accu1 << mScale;
|
ac->r22r = (FIXP_DBL)accu2 << mScale;
|
ac->r01r = (FIXP_DBL)accu3 << mScale;
|
ac->r12r = (FIXP_DBL)accu4 << mScale;
|
ac->r01i = (FIXP_DBL)accu5 << mScale;
|
ac->r12i = (FIXP_DBL)accu6 << mScale;
|
ac->r02r = (FIXP_DBL)accu7 << mScale;
|
ac->r02i = (FIXP_DBL)accu8 << mScale;
|
|
ac->det =
|
(fMultDiv2(ac->r11r, ac->r22r) >> 1) -
|
((fMultDiv2(ac->r12r, ac->r12r) + fMultDiv2(ac->r12i, ac->r12i)) >> 1);
|
mScale = CntLeadingZeros(fAbs(ac->det)) - 1;
|
|
ac->det <<= mScale;
|
ac->det_scale = mScale - 2;
|
|
return autoCorrScaling;
|
}
|
|
#endif /* FUNCTION_autoCorr2nd_cplx */
|