// Copyright 2014 The Go Authors. All rights reserved.
|
// Use of this source code is governed by a BSD-style
|
// license that can be found in the LICENSE file.
|
|
package runtime
|
|
import (
|
"runtime/internal/atomic"
|
"runtime/internal/sys"
|
"unsafe"
|
)
|
|
// Frames may be used to get function/file/line information for a
|
// slice of PC values returned by Callers.
|
type Frames struct {
|
// callers is a slice of PCs that have not yet been expanded to frames.
|
callers []uintptr
|
|
// frames is a slice of Frames that have yet to be returned.
|
frames []Frame
|
frameStore [2]Frame
|
}
|
|
// Frame is the information returned by Frames for each call frame.
|
type Frame struct {
|
// PC is the program counter for the location in this frame.
|
// For a frame that calls another frame, this will be the
|
// program counter of a call instruction. Because of inlining,
|
// multiple frames may have the same PC value, but different
|
// symbolic information.
|
PC uintptr
|
|
// Func is the Func value of this call frame. This may be nil
|
// for non-Go code or fully inlined functions.
|
Func *Func
|
|
// Function is the package path-qualified function name of
|
// this call frame. If non-empty, this string uniquely
|
// identifies a single function in the program.
|
// This may be the empty string if not known.
|
// If Func is not nil then Function == Func.Name().
|
Function string
|
|
// File and Line are the file name and line number of the
|
// location in this frame. For non-leaf frames, this will be
|
// the location of a call. These may be the empty string and
|
// zero, respectively, if not known.
|
File string
|
Line int
|
|
// Entry point program counter for the function; may be zero
|
// if not known. If Func is not nil then Entry ==
|
// Func.Entry().
|
Entry uintptr
|
}
|
|
// CallersFrames takes a slice of PC values returned by Callers and
|
// prepares to return function/file/line information.
|
// Do not change the slice until you are done with the Frames.
|
func CallersFrames(callers []uintptr) *Frames {
|
f := &Frames{callers: callers}
|
f.frames = f.frameStore[:0]
|
return f
|
}
|
|
// Next returns frame information for the next caller.
|
// If more is false, there are no more callers (the Frame value is valid).
|
func (ci *Frames) Next() (frame Frame, more bool) {
|
for len(ci.frames) < 2 {
|
// Find the next frame.
|
// We need to look for 2 frames so we know what
|
// to return for the "more" result.
|
if len(ci.callers) == 0 {
|
break
|
}
|
pc := ci.callers[0]
|
ci.callers = ci.callers[1:]
|
funcInfo := findfunc(pc)
|
if !funcInfo.valid() {
|
if cgoSymbolizer != nil {
|
// Pre-expand cgo frames. We could do this
|
// incrementally, too, but there's no way to
|
// avoid allocation in this case anyway.
|
ci.frames = append(ci.frames, expandCgoFrames(pc)...)
|
}
|
continue
|
}
|
f := funcInfo._Func()
|
entry := f.Entry()
|
if pc > entry {
|
// We store the pc of the start of the instruction following
|
// the instruction in question (the call or the inline mark).
|
// This is done for historical reasons, and to make FuncForPC
|
// work correctly for entries in the result of runtime.Callers.
|
pc--
|
}
|
name := funcname(funcInfo)
|
file, line := funcline1(funcInfo, pc, false)
|
if inldata := funcdata(funcInfo, _FUNCDATA_InlTree); inldata != nil {
|
inltree := (*[1 << 20]inlinedCall)(inldata)
|
ix := pcdatavalue(funcInfo, _PCDATA_InlTreeIndex, pc, nil)
|
if ix >= 0 {
|
// Note: entry is not modified. It always refers to a real frame, not an inlined one.
|
f = nil
|
name = funcnameFromNameoff(funcInfo, inltree[ix].func_)
|
// File/line is already correct.
|
// TODO: remove file/line from InlinedCall?
|
}
|
}
|
ci.frames = append(ci.frames, Frame{
|
PC: pc,
|
Func: f,
|
Function: name,
|
File: file,
|
Line: int(line),
|
Entry: entry,
|
})
|
}
|
|
// Pop one frame from the frame list. Keep the rest.
|
// Avoid allocation in the common case, which is 1 or 2 frames.
|
switch len(ci.frames) {
|
case 0: // In the rare case when there are no frames at all, we return Frame{}.
|
case 1:
|
frame = ci.frames[0]
|
ci.frames = ci.frameStore[:0]
|
case 2:
|
frame = ci.frames[0]
|
ci.frameStore[0] = ci.frames[1]
|
ci.frames = ci.frameStore[:1]
|
default:
|
frame = ci.frames[0]
|
ci.frames = ci.frames[1:]
|
}
|
more = len(ci.frames) > 0
|
return
|
}
|
|
// expandCgoFrames expands frame information for pc, known to be
|
// a non-Go function, using the cgoSymbolizer hook. expandCgoFrames
|
// returns nil if pc could not be expanded.
|
func expandCgoFrames(pc uintptr) []Frame {
|
arg := cgoSymbolizerArg{pc: pc}
|
callCgoSymbolizer(&arg)
|
|
if arg.file == nil && arg.funcName == nil {
|
// No useful information from symbolizer.
|
return nil
|
}
|
|
var frames []Frame
|
for {
|
frames = append(frames, Frame{
|
PC: pc,
|
Func: nil,
|
Function: gostring(arg.funcName),
|
File: gostring(arg.file),
|
Line: int(arg.lineno),
|
Entry: arg.entry,
|
})
|
if arg.more == 0 {
|
break
|
}
|
callCgoSymbolizer(&arg)
|
}
|
|
// No more frames for this PC. Tell the symbolizer we are done.
|
// We don't try to maintain a single cgoSymbolizerArg for the
|
// whole use of Frames, because there would be no good way to tell
|
// the symbolizer when we are done.
|
arg.pc = 0
|
callCgoSymbolizer(&arg)
|
|
return frames
|
}
|
|
// NOTE: Func does not expose the actual unexported fields, because we return *Func
|
// values to users, and we want to keep them from being able to overwrite the data
|
// with (say) *f = Func{}.
|
// All code operating on a *Func must call raw() to get the *_func
|
// or funcInfo() to get the funcInfo instead.
|
|
// A Func represents a Go function in the running binary.
|
type Func struct {
|
opaque struct{} // unexported field to disallow conversions
|
}
|
|
func (f *Func) raw() *_func {
|
return (*_func)(unsafe.Pointer(f))
|
}
|
|
func (f *Func) funcInfo() funcInfo {
|
fn := f.raw()
|
return funcInfo{fn, findmoduledatap(fn.entry)}
|
}
|
|
// PCDATA and FUNCDATA table indexes.
|
//
|
// See funcdata.h and ../cmd/internal/objabi/funcdata.go.
|
const (
|
_PCDATA_StackMapIndex = 0
|
_PCDATA_InlTreeIndex = 1
|
_PCDATA_RegMapIndex = 2
|
_FUNCDATA_ArgsPointerMaps = 0
|
_FUNCDATA_LocalsPointerMaps = 1
|
_FUNCDATA_InlTree = 2
|
_FUNCDATA_RegPointerMaps = 3
|
_FUNCDATA_StackObjects = 4
|
_ArgsSizeUnknown = -0x80000000
|
)
|
|
// A FuncID identifies particular functions that need to be treated
|
// specially by the runtime.
|
// Note that in some situations involving plugins, there may be multiple
|
// copies of a particular special runtime function.
|
// Note: this list must match the list in cmd/internal/objabi/funcid.go.
|
type funcID uint8
|
|
const (
|
funcID_normal funcID = iota // not a special function
|
funcID_runtime_main
|
funcID_goexit
|
funcID_jmpdefer
|
funcID_mcall
|
funcID_morestack
|
funcID_mstart
|
funcID_rt0_go
|
funcID_asmcgocall
|
funcID_sigpanic
|
funcID_runfinq
|
funcID_gcBgMarkWorker
|
funcID_systemstack_switch
|
funcID_systemstack
|
funcID_cgocallback_gofunc
|
funcID_gogo
|
funcID_externalthreadhandler
|
funcID_debugCallV1
|
funcID_gopanic
|
funcID_panicwrap
|
funcID_wrapper // any autogenerated code (hash/eq algorithms, method wrappers, etc.)
|
)
|
|
// moduledata records information about the layout of the executable
|
// image. It is written by the linker. Any changes here must be
|
// matched changes to the code in cmd/internal/ld/symtab.go:symtab.
|
// moduledata is stored in statically allocated non-pointer memory;
|
// none of the pointers here are visible to the garbage collector.
|
type moduledata struct {
|
pclntable []byte
|
ftab []functab
|
filetab []uint32
|
findfunctab uintptr
|
minpc, maxpc uintptr
|
|
text, etext uintptr
|
noptrdata, enoptrdata uintptr
|
data, edata uintptr
|
bss, ebss uintptr
|
noptrbss, enoptrbss uintptr
|
end, gcdata, gcbss uintptr
|
types, etypes uintptr
|
|
textsectmap []textsect
|
typelinks []int32 // offsets from types
|
itablinks []*itab
|
|
ptab []ptabEntry
|
|
pluginpath string
|
pkghashes []modulehash
|
|
modulename string
|
modulehashes []modulehash
|
|
hasmain uint8 // 1 if module contains the main function, 0 otherwise
|
|
gcdatamask, gcbssmask bitvector
|
|
typemap map[typeOff]*_type // offset to *_rtype in previous module
|
|
bad bool // module failed to load and should be ignored
|
|
next *moduledata
|
}
|
|
// A modulehash is used to compare the ABI of a new module or a
|
// package in a new module with the loaded program.
|
//
|
// For each shared library a module links against, the linker creates an entry in the
|
// moduledata.modulehashes slice containing the name of the module, the abi hash seen
|
// at link time and a pointer to the runtime abi hash. These are checked in
|
// moduledataverify1 below.
|
//
|
// For each loaded plugin, the pkghashes slice has a modulehash of the
|
// newly loaded package that can be used to check the plugin's version of
|
// a package against any previously loaded version of the package.
|
// This is done in plugin.lastmoduleinit.
|
type modulehash struct {
|
modulename string
|
linktimehash string
|
runtimehash *string
|
}
|
|
// pinnedTypemaps are the map[typeOff]*_type from the moduledata objects.
|
//
|
// These typemap objects are allocated at run time on the heap, but the
|
// only direct reference to them is in the moduledata, created by the
|
// linker and marked SNOPTRDATA so it is ignored by the GC.
|
//
|
// To make sure the map isn't collected, we keep a second reference here.
|
var pinnedTypemaps []map[typeOff]*_type
|
|
var firstmoduledata moduledata // linker symbol
|
var lastmoduledatap *moduledata // linker symbol
|
var modulesSlice *[]*moduledata // see activeModules
|
|
// activeModules returns a slice of active modules.
|
//
|
// A module is active once its gcdatamask and gcbssmask have been
|
// assembled and it is usable by the GC.
|
//
|
// This is nosplit/nowritebarrier because it is called by the
|
// cgo pointer checking code.
|
//go:nosplit
|
//go:nowritebarrier
|
func activeModules() []*moduledata {
|
p := (*[]*moduledata)(atomic.Loadp(unsafe.Pointer(&modulesSlice)))
|
if p == nil {
|
return nil
|
}
|
return *p
|
}
|
|
// modulesinit creates the active modules slice out of all loaded modules.
|
//
|
// When a module is first loaded by the dynamic linker, an .init_array
|
// function (written by cmd/link) is invoked to call addmoduledata,
|
// appending to the module to the linked list that starts with
|
// firstmoduledata.
|
//
|
// There are two times this can happen in the lifecycle of a Go
|
// program. First, if compiled with -linkshared, a number of modules
|
// built with -buildmode=shared can be loaded at program initialization.
|
// Second, a Go program can load a module while running that was built
|
// with -buildmode=plugin.
|
//
|
// After loading, this function is called which initializes the
|
// moduledata so it is usable by the GC and creates a new activeModules
|
// list.
|
//
|
// Only one goroutine may call modulesinit at a time.
|
func modulesinit() {
|
modules := new([]*moduledata)
|
for md := &firstmoduledata; md != nil; md = md.next {
|
if md.bad {
|
continue
|
}
|
*modules = append(*modules, md)
|
if md.gcdatamask == (bitvector{}) {
|
md.gcdatamask = progToPointerMask((*byte)(unsafe.Pointer(md.gcdata)), md.edata-md.data)
|
md.gcbssmask = progToPointerMask((*byte)(unsafe.Pointer(md.gcbss)), md.ebss-md.bss)
|
}
|
}
|
|
// Modules appear in the moduledata linked list in the order they are
|
// loaded by the dynamic loader, with one exception: the
|
// firstmoduledata itself the module that contains the runtime. This
|
// is not always the first module (when using -buildmode=shared, it
|
// is typically libstd.so, the second module). The order matters for
|
// typelinksinit, so we swap the first module with whatever module
|
// contains the main function.
|
//
|
// See Issue #18729.
|
for i, md := range *modules {
|
if md.hasmain != 0 {
|
(*modules)[0] = md
|
(*modules)[i] = &firstmoduledata
|
break
|
}
|
}
|
|
atomicstorep(unsafe.Pointer(&modulesSlice), unsafe.Pointer(modules))
|
}
|
|
type functab struct {
|
entry uintptr
|
funcoff uintptr
|
}
|
|
// Mapping information for secondary text sections
|
|
type textsect struct {
|
vaddr uintptr // prelinked section vaddr
|
length uintptr // section length
|
baseaddr uintptr // relocated section address
|
}
|
|
const minfunc = 16 // minimum function size
|
const pcbucketsize = 256 * minfunc // size of bucket in the pc->func lookup table
|
|
// findfunctab is an array of these structures.
|
// Each bucket represents 4096 bytes of the text segment.
|
// Each subbucket represents 256 bytes of the text segment.
|
// To find a function given a pc, locate the bucket and subbucket for
|
// that pc. Add together the idx and subbucket value to obtain a
|
// function index. Then scan the functab array starting at that
|
// index to find the target function.
|
// This table uses 20 bytes for every 4096 bytes of code, or ~0.5% overhead.
|
type findfuncbucket struct {
|
idx uint32
|
subbuckets [16]byte
|
}
|
|
func moduledataverify() {
|
for datap := &firstmoduledata; datap != nil; datap = datap.next {
|
moduledataverify1(datap)
|
}
|
}
|
|
const debugPcln = false
|
|
func moduledataverify1(datap *moduledata) {
|
// See golang.org/s/go12symtab for header: 0xfffffffb,
|
// two zero bytes, a byte giving the PC quantum,
|
// and a byte giving the pointer width in bytes.
|
pcln := *(**[8]byte)(unsafe.Pointer(&datap.pclntable))
|
pcln32 := *(**[2]uint32)(unsafe.Pointer(&datap.pclntable))
|
if pcln32[0] != 0xfffffffb || pcln[4] != 0 || pcln[5] != 0 || pcln[6] != sys.PCQuantum || pcln[7] != sys.PtrSize {
|
println("runtime: function symbol table header:", hex(pcln32[0]), hex(pcln[4]), hex(pcln[5]), hex(pcln[6]), hex(pcln[7]))
|
throw("invalid function symbol table\n")
|
}
|
|
// ftab is lookup table for function by program counter.
|
nftab := len(datap.ftab) - 1
|
for i := 0; i < nftab; i++ {
|
// NOTE: ftab[nftab].entry is legal; it is the address beyond the final function.
|
if datap.ftab[i].entry > datap.ftab[i+1].entry {
|
f1 := funcInfo{(*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[i].funcoff])), datap}
|
f2 := funcInfo{(*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[i+1].funcoff])), datap}
|
f2name := "end"
|
if i+1 < nftab {
|
f2name = funcname(f2)
|
}
|
println("function symbol table not sorted by program counter:", hex(datap.ftab[i].entry), funcname(f1), ">", hex(datap.ftab[i+1].entry), f2name)
|
for j := 0; j <= i; j++ {
|
print("\t", hex(datap.ftab[j].entry), " ", funcname(funcInfo{(*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[j].funcoff])), datap}), "\n")
|
}
|
throw("invalid runtime symbol table")
|
}
|
}
|
|
if datap.minpc != datap.ftab[0].entry ||
|
datap.maxpc != datap.ftab[nftab].entry {
|
throw("minpc or maxpc invalid")
|
}
|
|
for _, modulehash := range datap.modulehashes {
|
if modulehash.linktimehash != *modulehash.runtimehash {
|
println("abi mismatch detected between", datap.modulename, "and", modulehash.modulename)
|
throw("abi mismatch")
|
}
|
}
|
}
|
|
// FuncForPC returns a *Func describing the function that contains the
|
// given program counter address, or else nil.
|
//
|
// If pc represents multiple functions because of inlining, it returns
|
// the a *Func describing the innermost function, but with an entry
|
// of the outermost function.
|
func FuncForPC(pc uintptr) *Func {
|
f := findfunc(pc)
|
if !f.valid() {
|
return nil
|
}
|
if inldata := funcdata(f, _FUNCDATA_InlTree); inldata != nil {
|
// Note: strict=false so bad PCs (those between functions) don't crash the runtime.
|
// We just report the preceeding function in that situation. See issue 29735.
|
// TODO: Perhaps we should report no function at all in that case.
|
// The runtime currently doesn't have function end info, alas.
|
if ix := pcdatavalue1(f, _PCDATA_InlTreeIndex, pc, nil, false); ix >= 0 {
|
inltree := (*[1 << 20]inlinedCall)(inldata)
|
name := funcnameFromNameoff(f, inltree[ix].func_)
|
file, line := funcline(f, pc)
|
fi := &funcinl{
|
entry: f.entry, // entry of the real (the outermost) function.
|
name: name,
|
file: file,
|
line: int(line),
|
}
|
return (*Func)(unsafe.Pointer(fi))
|
}
|
}
|
return f._Func()
|
}
|
|
// Name returns the name of the function.
|
func (f *Func) Name() string {
|
if f == nil {
|
return ""
|
}
|
fn := f.raw()
|
if fn.entry == 0 { // inlined version
|
fi := (*funcinl)(unsafe.Pointer(fn))
|
return fi.name
|
}
|
return funcname(f.funcInfo())
|
}
|
|
// Entry returns the entry address of the function.
|
func (f *Func) Entry() uintptr {
|
fn := f.raw()
|
if fn.entry == 0 { // inlined version
|
fi := (*funcinl)(unsafe.Pointer(fn))
|
return fi.entry
|
}
|
return fn.entry
|
}
|
|
// FileLine returns the file name and line number of the
|
// source code corresponding to the program counter pc.
|
// The result will not be accurate if pc is not a program
|
// counter within f.
|
func (f *Func) FileLine(pc uintptr) (file string, line int) {
|
fn := f.raw()
|
if fn.entry == 0 { // inlined version
|
fi := (*funcinl)(unsafe.Pointer(fn))
|
return fi.file, fi.line
|
}
|
// Pass strict=false here, because anyone can call this function,
|
// and they might just be wrong about targetpc belonging to f.
|
file, line32 := funcline1(f.funcInfo(), pc, false)
|
return file, int(line32)
|
}
|
|
func findmoduledatap(pc uintptr) *moduledata {
|
for datap := &firstmoduledata; datap != nil; datap = datap.next {
|
if datap.minpc <= pc && pc < datap.maxpc {
|
return datap
|
}
|
}
|
return nil
|
}
|
|
type funcInfo struct {
|
*_func
|
datap *moduledata
|
}
|
|
func (f funcInfo) valid() bool {
|
return f._func != nil
|
}
|
|
func (f funcInfo) _Func() *Func {
|
return (*Func)(unsafe.Pointer(f._func))
|
}
|
|
func findfunc(pc uintptr) funcInfo {
|
datap := findmoduledatap(pc)
|
if datap == nil {
|
return funcInfo{}
|
}
|
const nsub = uintptr(len(findfuncbucket{}.subbuckets))
|
|
x := pc - datap.minpc
|
b := x / pcbucketsize
|
i := x % pcbucketsize / (pcbucketsize / nsub)
|
|
ffb := (*findfuncbucket)(add(unsafe.Pointer(datap.findfunctab), b*unsafe.Sizeof(findfuncbucket{})))
|
idx := ffb.idx + uint32(ffb.subbuckets[i])
|
|
// If the idx is beyond the end of the ftab, set it to the end of the table and search backward.
|
// This situation can occur if multiple text sections are generated to handle large text sections
|
// and the linker has inserted jump tables between them.
|
|
if idx >= uint32(len(datap.ftab)) {
|
idx = uint32(len(datap.ftab) - 1)
|
}
|
if pc < datap.ftab[idx].entry {
|
// With multiple text sections, the idx might reference a function address that
|
// is higher than the pc being searched, so search backward until the matching address is found.
|
|
for datap.ftab[idx].entry > pc && idx > 0 {
|
idx--
|
}
|
if idx == 0 {
|
throw("findfunc: bad findfunctab entry idx")
|
}
|
} else {
|
// linear search to find func with pc >= entry.
|
for datap.ftab[idx+1].entry <= pc {
|
idx++
|
}
|
}
|
return funcInfo{(*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[idx].funcoff])), datap}
|
}
|
|
type pcvalueCache struct {
|
entries [2][8]pcvalueCacheEnt
|
}
|
|
type pcvalueCacheEnt struct {
|
// targetpc and off together are the key of this cache entry.
|
targetpc uintptr
|
off int32
|
// val is the value of this cached pcvalue entry.
|
val int32
|
}
|
|
// pcvalueCacheKey returns the outermost index in a pcvalueCache to use for targetpc.
|
// It must be very cheap to calculate.
|
// For now, align to sys.PtrSize and reduce mod the number of entries.
|
// In practice, this appears to be fairly randomly and evenly distributed.
|
func pcvalueCacheKey(targetpc uintptr) uintptr {
|
return (targetpc / sys.PtrSize) % uintptr(len(pcvalueCache{}.entries))
|
}
|
|
func pcvalue(f funcInfo, off int32, targetpc uintptr, cache *pcvalueCache, strict bool) int32 {
|
if off == 0 {
|
return -1
|
}
|
|
// Check the cache. This speeds up walks of deep stacks, which
|
// tend to have the same recursive functions over and over.
|
//
|
// This cache is small enough that full associativity is
|
// cheaper than doing the hashing for a less associative
|
// cache.
|
if cache != nil {
|
x := pcvalueCacheKey(targetpc)
|
for i := range cache.entries[x] {
|
// We check off first because we're more
|
// likely to have multiple entries with
|
// different offsets for the same targetpc
|
// than the other way around, so we'll usually
|
// fail in the first clause.
|
ent := &cache.entries[x][i]
|
if ent.off == off && ent.targetpc == targetpc {
|
return ent.val
|
}
|
}
|
}
|
|
if !f.valid() {
|
if strict && panicking == 0 {
|
print("runtime: no module data for ", hex(f.entry), "\n")
|
throw("no module data")
|
}
|
return -1
|
}
|
datap := f.datap
|
p := datap.pclntable[off:]
|
pc := f.entry
|
val := int32(-1)
|
for {
|
var ok bool
|
p, ok = step(p, &pc, &val, pc == f.entry)
|
if !ok {
|
break
|
}
|
if targetpc < pc {
|
// Replace a random entry in the cache. Random
|
// replacement prevents a performance cliff if
|
// a recursive stack's cycle is slightly
|
// larger than the cache.
|
// Put the new element at the beginning,
|
// since it is the most likely to be newly used.
|
if cache != nil {
|
x := pcvalueCacheKey(targetpc)
|
e := &cache.entries[x]
|
ci := fastrand() % uint32(len(cache.entries[x]))
|
e[ci] = e[0]
|
e[0] = pcvalueCacheEnt{
|
targetpc: targetpc,
|
off: off,
|
val: val,
|
}
|
}
|
|
return val
|
}
|
}
|
|
// If there was a table, it should have covered all program counters.
|
// If not, something is wrong.
|
if panicking != 0 || !strict {
|
return -1
|
}
|
|
print("runtime: invalid pc-encoded table f=", funcname(f), " pc=", hex(pc), " targetpc=", hex(targetpc), " tab=", p, "\n")
|
|
p = datap.pclntable[off:]
|
pc = f.entry
|
val = -1
|
for {
|
var ok bool
|
p, ok = step(p, &pc, &val, pc == f.entry)
|
if !ok {
|
break
|
}
|
print("\tvalue=", val, " until pc=", hex(pc), "\n")
|
}
|
|
throw("invalid runtime symbol table")
|
return -1
|
}
|
|
func cfuncname(f funcInfo) *byte {
|
if !f.valid() || f.nameoff == 0 {
|
return nil
|
}
|
return &f.datap.pclntable[f.nameoff]
|
}
|
|
func funcname(f funcInfo) string {
|
return gostringnocopy(cfuncname(f))
|
}
|
|
func funcnameFromNameoff(f funcInfo, nameoff int32) string {
|
datap := f.datap
|
if !f.valid() {
|
return ""
|
}
|
cstr := &datap.pclntable[nameoff]
|
return gostringnocopy(cstr)
|
}
|
|
func funcfile(f funcInfo, fileno int32) string {
|
datap := f.datap
|
if !f.valid() {
|
return "?"
|
}
|
return gostringnocopy(&datap.pclntable[datap.filetab[fileno]])
|
}
|
|
func funcline1(f funcInfo, targetpc uintptr, strict bool) (file string, line int32) {
|
datap := f.datap
|
if !f.valid() {
|
return "?", 0
|
}
|
fileno := int(pcvalue(f, f.pcfile, targetpc, nil, strict))
|
line = pcvalue(f, f.pcln, targetpc, nil, strict)
|
if fileno == -1 || line == -1 || fileno >= len(datap.filetab) {
|
// print("looking for ", hex(targetpc), " in ", funcname(f), " got file=", fileno, " line=", lineno, "\n")
|
return "?", 0
|
}
|
file = gostringnocopy(&datap.pclntable[datap.filetab[fileno]])
|
return
|
}
|
|
func funcline(f funcInfo, targetpc uintptr) (file string, line int32) {
|
return funcline1(f, targetpc, true)
|
}
|
|
func funcspdelta(f funcInfo, targetpc uintptr, cache *pcvalueCache) int32 {
|
x := pcvalue(f, f.pcsp, targetpc, cache, true)
|
if x&(sys.PtrSize-1) != 0 {
|
print("invalid spdelta ", funcname(f), " ", hex(f.entry), " ", hex(targetpc), " ", hex(f.pcsp), " ", x, "\n")
|
}
|
return x
|
}
|
|
func pcdatastart(f funcInfo, table int32) int32 {
|
return *(*int32)(add(unsafe.Pointer(&f.nfuncdata), unsafe.Sizeof(f.nfuncdata)+uintptr(table)*4))
|
}
|
|
func pcdatavalue(f funcInfo, table int32, targetpc uintptr, cache *pcvalueCache) int32 {
|
if table < 0 || table >= f.npcdata {
|
return -1
|
}
|
return pcvalue(f, pcdatastart(f, table), targetpc, cache, true)
|
}
|
|
func pcdatavalue1(f funcInfo, table int32, targetpc uintptr, cache *pcvalueCache, strict bool) int32 {
|
if table < 0 || table >= f.npcdata {
|
return -1
|
}
|
return pcvalue(f, pcdatastart(f, table), targetpc, cache, strict)
|
}
|
|
func funcdata(f funcInfo, i uint8) unsafe.Pointer {
|
if i < 0 || i >= f.nfuncdata {
|
return nil
|
}
|
p := add(unsafe.Pointer(&f.nfuncdata), unsafe.Sizeof(f.nfuncdata)+uintptr(f.npcdata)*4)
|
if sys.PtrSize == 8 && uintptr(p)&4 != 0 {
|
if uintptr(unsafe.Pointer(f._func))&4 != 0 {
|
println("runtime: misaligned func", f._func)
|
}
|
p = add(p, 4)
|
}
|
return *(*unsafe.Pointer)(add(p, uintptr(i)*sys.PtrSize))
|
}
|
|
// step advances to the next pc, value pair in the encoded table.
|
func step(p []byte, pc *uintptr, val *int32, first bool) (newp []byte, ok bool) {
|
// For both uvdelta and pcdelta, the common case (~70%)
|
// is that they are a single byte. If so, avoid calling readvarint.
|
uvdelta := uint32(p[0])
|
if uvdelta == 0 && !first {
|
return nil, false
|
}
|
n := uint32(1)
|
if uvdelta&0x80 != 0 {
|
n, uvdelta = readvarint(p)
|
}
|
*val += int32(-(uvdelta & 1) ^ (uvdelta >> 1))
|
p = p[n:]
|
|
pcdelta := uint32(p[0])
|
n = 1
|
if pcdelta&0x80 != 0 {
|
n, pcdelta = readvarint(p)
|
}
|
p = p[n:]
|
*pc += uintptr(pcdelta * sys.PCQuantum)
|
return p, true
|
}
|
|
// readvarint reads a varint from p.
|
func readvarint(p []byte) (read uint32, val uint32) {
|
var v, shift, n uint32
|
for {
|
b := p[n]
|
n++
|
v |= uint32(b&0x7F) << (shift & 31)
|
if b&0x80 == 0 {
|
break
|
}
|
shift += 7
|
}
|
return n, v
|
}
|
|
type stackmap struct {
|
n int32 // number of bitmaps
|
nbit int32 // number of bits in each bitmap
|
bytedata [1]byte // bitmaps, each starting on a byte boundary
|
}
|
|
//go:nowritebarrier
|
func stackmapdata(stkmap *stackmap, n int32) bitvector {
|
// Check this invariant only when stackDebug is on at all.
|
// The invariant is already checked by many of stackmapdata's callers,
|
// and disabling it by default allows stackmapdata to be inlined.
|
if stackDebug > 0 && (n < 0 || n >= stkmap.n) {
|
throw("stackmapdata: index out of range")
|
}
|
return bitvector{stkmap.nbit, addb(&stkmap.bytedata[0], uintptr(n*((stkmap.nbit+7)>>3)))}
|
}
|
|
// inlinedCall is the encoding of entries in the FUNCDATA_InlTree table.
|
type inlinedCall struct {
|
parent int16 // index of parent in the inltree, or < 0
|
funcID funcID // type of the called function
|
_ byte
|
file int32 // fileno index into filetab
|
line int32 // line number of the call site
|
func_ int32 // offset into pclntab for name of called function
|
parentPc int32 // position of an instruction whose source position is the call site (offset from entry)
|
}
|