lin
2025-06-05 ed3dd9d3e7519a82bb871d5eedb24a2fa0c91f47
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
 
package math
 
// The original C code, the long comment, and the constants
// below were from http://netlib.sandia.gov/cephes/cmath/sin.c,
// available from http://www.netlib.org/cephes/cmath.tgz.
// The go code is a simplified version of the original C.
//      tanh.c
//
//      Hyperbolic tangent
//
// SYNOPSIS:
//
// double x, y, tanh();
//
// y = tanh( x );
//
// DESCRIPTION:
//
// Returns hyperbolic tangent of argument in the range MINLOG to MAXLOG.
//      MAXLOG = 8.8029691931113054295988e+01 = log(2**127)
//      MINLOG = -8.872283911167299960540e+01 = log(2**-128)
//
// A rational function is used for |x| < 0.625.  The form
// x + x**3 P(x)/Q(x) of Cody & Waite is employed.
// Otherwise,
//      tanh(x) = sinh(x)/cosh(x) = 1  -  2/(exp(2x) + 1).
//
// ACCURACY:
//
//                      Relative error:
// arithmetic   domain     # trials      peak         rms
//    IEEE      -2,2        30000       2.5e-16     5.8e-17
//
// Cephes Math Library Release 2.8:  June, 2000
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
//
// The readme file at http://netlib.sandia.gov/cephes/ says:
//    Some software in this archive may be from the book _Methods and
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
// International, 1989) or from the Cephes Mathematical Library, a
// commercial product. In either event, it is copyrighted by the author.
// What you see here may be used freely but it comes with no support or
// guarantee.
//
//   The two known misprints in the book are repaired here in the
// source listings for the gamma function and the incomplete beta
// integral.
//
//   Stephen L. Moshier
//   moshier@na-net.ornl.gov
//
 
var tanhP = [...]float64{
   -9.64399179425052238628E-1,
   -9.92877231001918586564E1,
   -1.61468768441708447952E3,
}
var tanhQ = [...]float64{
   1.12811678491632931402E2,
   2.23548839060100448583E3,
   4.84406305325125486048E3,
}
 
// Tanh returns the hyperbolic tangent of x.
//
// Special cases are:
//    Tanh(±0) = ±0
//    Tanh(±Inf) = ±1
//    Tanh(NaN) = NaN
func Tanh(x float64) float64
 
func tanh(x float64) float64 {
   const MAXLOG = 8.8029691931113054295988e+01 // log(2**127)
   z := Abs(x)
   switch {
   case z > 0.5*MAXLOG:
       if x < 0 {
           return -1
       }
       return 1
   case z >= 0.625:
       s := Exp(2 * z)
       z = 1 - 2/(s+1)
       if x < 0 {
           z = -z
       }
   default:
       if x == 0 {
           return x
       }
       s := x * x
       z = x + x*s*((tanhP[0]*s+tanhP[1])*s+tanhP[2])/(((s+tanhQ[0])*s+tanhQ[1])*s+tanhQ[2])
   }
   return z
}