// Copyright 2009 The Go Authors. All rights reserved.
|
// Use of this source code is governed by a BSD-style
|
// license that can be found in the LICENSE file.
|
|
package runtime
|
|
import (
|
"runtime/internal/sys"
|
"unsafe"
|
)
|
|
type mOS struct{}
|
|
//go:noescape
|
func futex(addr unsafe.Pointer, op int32, val uint32, ts, addr2 unsafe.Pointer, val3 uint32) int32
|
|
// Linux futex.
|
//
|
// futexsleep(uint32 *addr, uint32 val)
|
// futexwakeup(uint32 *addr)
|
//
|
// Futexsleep atomically checks if *addr == val and if so, sleeps on addr.
|
// Futexwakeup wakes up threads sleeping on addr.
|
// Futexsleep is allowed to wake up spuriously.
|
|
const (
|
_FUTEX_PRIVATE_FLAG = 128
|
_FUTEX_WAIT_PRIVATE = 0 | _FUTEX_PRIVATE_FLAG
|
_FUTEX_WAKE_PRIVATE = 1 | _FUTEX_PRIVATE_FLAG
|
)
|
|
// Atomically,
|
// if(*addr == val) sleep
|
// Might be woken up spuriously; that's allowed.
|
// Don't sleep longer than ns; ns < 0 means forever.
|
//go:nosplit
|
func futexsleep(addr *uint32, val uint32, ns int64) {
|
var ts timespec
|
|
// Some Linux kernels have a bug where futex of
|
// FUTEX_WAIT returns an internal error code
|
// as an errno. Libpthread ignores the return value
|
// here, and so can we: as it says a few lines up,
|
// spurious wakeups are allowed.
|
if ns < 0 {
|
futex(unsafe.Pointer(addr), _FUTEX_WAIT_PRIVATE, val, nil, nil, 0)
|
return
|
}
|
|
// It's difficult to live within the no-split stack limits here.
|
// On ARM and 386, a 64-bit divide invokes a general software routine
|
// that needs more stack than we can afford. So we use timediv instead.
|
// But on real 64-bit systems, where words are larger but the stack limit
|
// is not, even timediv is too heavy, and we really need to use just an
|
// ordinary machine instruction.
|
if sys.PtrSize == 8 {
|
ts.set_sec(ns / 1000000000)
|
ts.set_nsec(int32(ns % 1000000000))
|
} else {
|
ts.tv_nsec = 0
|
ts.set_sec(int64(timediv(ns, 1000000000, (*int32)(unsafe.Pointer(&ts.tv_nsec)))))
|
}
|
futex(unsafe.Pointer(addr), _FUTEX_WAIT_PRIVATE, val, unsafe.Pointer(&ts), nil, 0)
|
}
|
|
// If any procs are sleeping on addr, wake up at most cnt.
|
//go:nosplit
|
func futexwakeup(addr *uint32, cnt uint32) {
|
ret := futex(unsafe.Pointer(addr), _FUTEX_WAKE_PRIVATE, cnt, nil, nil, 0)
|
if ret >= 0 {
|
return
|
}
|
|
// I don't know that futex wakeup can return
|
// EAGAIN or EINTR, but if it does, it would be
|
// safe to loop and call futex again.
|
systemstack(func() {
|
print("futexwakeup addr=", addr, " returned ", ret, "\n")
|
})
|
|
*(*int32)(unsafe.Pointer(uintptr(0x1006))) = 0x1006
|
}
|
|
func getproccount() int32 {
|
// This buffer is huge (8 kB) but we are on the system stack
|
// and there should be plenty of space (64 kB).
|
// Also this is a leaf, so we're not holding up the memory for long.
|
// See golang.org/issue/11823.
|
// The suggested behavior here is to keep trying with ever-larger
|
// buffers, but we don't have a dynamic memory allocator at the
|
// moment, so that's a bit tricky and seems like overkill.
|
const maxCPUs = 64 * 1024
|
var buf [maxCPUs / 8]byte
|
r := sched_getaffinity(0, unsafe.Sizeof(buf), &buf[0])
|
if r < 0 {
|
return 1
|
}
|
n := int32(0)
|
for _, v := range buf[:r] {
|
for v != 0 {
|
n += int32(v & 1)
|
v >>= 1
|
}
|
}
|
if n == 0 {
|
n = 1
|
}
|
return n
|
}
|
|
// Clone, the Linux rfork.
|
const (
|
_CLONE_VM = 0x100
|
_CLONE_FS = 0x200
|
_CLONE_FILES = 0x400
|
_CLONE_SIGHAND = 0x800
|
_CLONE_PTRACE = 0x2000
|
_CLONE_VFORK = 0x4000
|
_CLONE_PARENT = 0x8000
|
_CLONE_THREAD = 0x10000
|
_CLONE_NEWNS = 0x20000
|
_CLONE_SYSVSEM = 0x40000
|
_CLONE_SETTLS = 0x80000
|
_CLONE_PARENT_SETTID = 0x100000
|
_CLONE_CHILD_CLEARTID = 0x200000
|
_CLONE_UNTRACED = 0x800000
|
_CLONE_CHILD_SETTID = 0x1000000
|
_CLONE_STOPPED = 0x2000000
|
_CLONE_NEWUTS = 0x4000000
|
_CLONE_NEWIPC = 0x8000000
|
|
cloneFlags = _CLONE_VM | /* share memory */
|
_CLONE_FS | /* share cwd, etc */
|
_CLONE_FILES | /* share fd table */
|
_CLONE_SIGHAND | /* share sig handler table */
|
_CLONE_SYSVSEM | /* share SysV semaphore undo lists (see issue #20763) */
|
_CLONE_THREAD /* revisit - okay for now */
|
)
|
|
//go:noescape
|
func clone(flags int32, stk, mp, gp, fn unsafe.Pointer) int32
|
|
// May run with m.p==nil, so write barriers are not allowed.
|
//go:nowritebarrier
|
func newosproc(mp *m) {
|
stk := unsafe.Pointer(mp.g0.stack.hi)
|
/*
|
* note: strace gets confused if we use CLONE_PTRACE here.
|
*/
|
if false {
|
print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " clone=", funcPC(clone), " id=", mp.id, " ostk=", &mp, "\n")
|
}
|
|
// Disable signals during clone, so that the new thread starts
|
// with signals disabled. It will enable them in minit.
|
var oset sigset
|
sigprocmask(_SIG_SETMASK, &sigset_all, &oset)
|
ret := clone(cloneFlags, stk, unsafe.Pointer(mp), unsafe.Pointer(mp.g0), unsafe.Pointer(funcPC(mstart)))
|
sigprocmask(_SIG_SETMASK, &oset, nil)
|
|
if ret < 0 {
|
print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", -ret, ")\n")
|
if ret == -_EAGAIN {
|
println("runtime: may need to increase max user processes (ulimit -u)")
|
}
|
throw("newosproc")
|
}
|
}
|
|
// Version of newosproc that doesn't require a valid G.
|
//go:nosplit
|
func newosproc0(stacksize uintptr, fn unsafe.Pointer) {
|
stack := sysAlloc(stacksize, &memstats.stacks_sys)
|
if stack == nil {
|
write(2, unsafe.Pointer(&failallocatestack[0]), int32(len(failallocatestack)))
|
exit(1)
|
}
|
ret := clone(cloneFlags, unsafe.Pointer(uintptr(stack)+stacksize), nil, nil, fn)
|
if ret < 0 {
|
write(2, unsafe.Pointer(&failthreadcreate[0]), int32(len(failthreadcreate)))
|
exit(1)
|
}
|
}
|
|
var failallocatestack = []byte("runtime: failed to allocate stack for the new OS thread\n")
|
var failthreadcreate = []byte("runtime: failed to create new OS thread\n")
|
|
const (
|
_AT_NULL = 0 // End of vector
|
_AT_PAGESZ = 6 // System physical page size
|
_AT_HWCAP = 16 // hardware capability bit vector
|
_AT_RANDOM = 25 // introduced in 2.6.29
|
_AT_HWCAP2 = 26 // hardware capability bit vector 2
|
)
|
|
var procAuxv = []byte("/proc/self/auxv\x00")
|
|
var addrspace_vec [1]byte
|
|
func mincore(addr unsafe.Pointer, n uintptr, dst *byte) int32
|
|
func sysargs(argc int32, argv **byte) {
|
n := argc + 1
|
|
// skip over argv, envp to get to auxv
|
for argv_index(argv, n) != nil {
|
n++
|
}
|
|
// skip NULL separator
|
n++
|
|
// now argv+n is auxv
|
auxv := (*[1 << 28]uintptr)(add(unsafe.Pointer(argv), uintptr(n)*sys.PtrSize))
|
if sysauxv(auxv[:]) != 0 {
|
return
|
}
|
// In some situations we don't get a loader-provided
|
// auxv, such as when loaded as a library on Android.
|
// Fall back to /proc/self/auxv.
|
fd := open(&procAuxv[0], 0 /* O_RDONLY */, 0)
|
if fd < 0 {
|
// On Android, /proc/self/auxv might be unreadable (issue 9229), so we fallback to
|
// try using mincore to detect the physical page size.
|
// mincore should return EINVAL when address is not a multiple of system page size.
|
const size = 256 << 10 // size of memory region to allocate
|
p, err := mmap(nil, size, _PROT_READ|_PROT_WRITE, _MAP_ANON|_MAP_PRIVATE, -1, 0)
|
if err != 0 {
|
return
|
}
|
var n uintptr
|
for n = 4 << 10; n < size; n <<= 1 {
|
err := mincore(unsafe.Pointer(uintptr(p)+n), 1, &addrspace_vec[0])
|
if err == 0 {
|
physPageSize = n
|
break
|
}
|
}
|
if physPageSize == 0 {
|
physPageSize = size
|
}
|
munmap(p, size)
|
return
|
}
|
var buf [128]uintptr
|
n = read(fd, noescape(unsafe.Pointer(&buf[0])), int32(unsafe.Sizeof(buf)))
|
closefd(fd)
|
if n < 0 {
|
return
|
}
|
// Make sure buf is terminated, even if we didn't read
|
// the whole file.
|
buf[len(buf)-2] = _AT_NULL
|
sysauxv(buf[:])
|
}
|
|
func sysauxv(auxv []uintptr) int {
|
var i int
|
for ; auxv[i] != _AT_NULL; i += 2 {
|
tag, val := auxv[i], auxv[i+1]
|
switch tag {
|
case _AT_RANDOM:
|
// The kernel provides a pointer to 16-bytes
|
// worth of random data.
|
startupRandomData = (*[16]byte)(unsafe.Pointer(val))[:]
|
|
case _AT_PAGESZ:
|
physPageSize = val
|
}
|
|
archauxv(tag, val)
|
vdsoauxv(tag, val)
|
}
|
return i / 2
|
}
|
|
func osinit() {
|
ncpu = getproccount()
|
}
|
|
var urandom_dev = []byte("/dev/urandom\x00")
|
|
func getRandomData(r []byte) {
|
if startupRandomData != nil {
|
n := copy(r, startupRandomData)
|
extendRandom(r, n)
|
return
|
}
|
fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0)
|
n := read(fd, unsafe.Pointer(&r[0]), int32(len(r)))
|
closefd(fd)
|
extendRandom(r, int(n))
|
}
|
|
func goenvs() {
|
goenvs_unix()
|
}
|
|
// Called to do synchronous initialization of Go code built with
|
// -buildmode=c-archive or -buildmode=c-shared.
|
// None of the Go runtime is initialized.
|
//go:nosplit
|
//go:nowritebarrierrec
|
func libpreinit() {
|
initsig(true)
|
}
|
|
// Called to initialize a new m (including the bootstrap m).
|
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
|
func mpreinit(mp *m) {
|
mp.gsignal = malg(32 * 1024) // Linux wants >= 2K
|
mp.gsignal.m = mp
|
}
|
|
func gettid() uint32
|
|
// Called to initialize a new m (including the bootstrap m).
|
// Called on the new thread, cannot allocate memory.
|
func minit() {
|
minitSignals()
|
|
// for debuggers, in case cgo created the thread
|
getg().m.procid = uint64(gettid())
|
}
|
|
// Called from dropm to undo the effect of an minit.
|
//go:nosplit
|
func unminit() {
|
unminitSignals()
|
}
|
|
//#ifdef GOARCH_386
|
//#define sa_handler k_sa_handler
|
//#endif
|
|
func sigreturn()
|
func sigtramp(sig uint32, info *siginfo, ctx unsafe.Pointer)
|
func cgoSigtramp()
|
|
//go:noescape
|
func sigaltstack(new, old *stackt)
|
|
//go:noescape
|
func setitimer(mode int32, new, old *itimerval)
|
|
//go:noescape
|
func rtsigprocmask(how int32, new, old *sigset, size int32)
|
|
//go:nosplit
|
//go:nowritebarrierrec
|
func sigprocmask(how int32, new, old *sigset) {
|
rtsigprocmask(how, new, old, int32(unsafe.Sizeof(*new)))
|
}
|
|
func raise(sig uint32)
|
func raiseproc(sig uint32)
|
|
//go:noescape
|
func sched_getaffinity(pid, len uintptr, buf *byte) int32
|
func osyield()
|
|
//go:nosplit
|
//go:nowritebarrierrec
|
func setsig(i uint32, fn uintptr) {
|
var sa sigactiont
|
sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK | _SA_RESTORER | _SA_RESTART
|
sigfillset(&sa.sa_mask)
|
// Although Linux manpage says "sa_restorer element is obsolete and
|
// should not be used". x86_64 kernel requires it. Only use it on
|
// x86.
|
if GOARCH == "386" || GOARCH == "amd64" {
|
sa.sa_restorer = funcPC(sigreturn)
|
}
|
if fn == funcPC(sighandler) {
|
if iscgo {
|
fn = funcPC(cgoSigtramp)
|
} else {
|
fn = funcPC(sigtramp)
|
}
|
}
|
sa.sa_handler = fn
|
sigaction(i, &sa, nil)
|
}
|
|
//go:nosplit
|
//go:nowritebarrierrec
|
func setsigstack(i uint32) {
|
var sa sigactiont
|
sigaction(i, nil, &sa)
|
if sa.sa_flags&_SA_ONSTACK != 0 {
|
return
|
}
|
sa.sa_flags |= _SA_ONSTACK
|
sigaction(i, &sa, nil)
|
}
|
|
//go:nosplit
|
//go:nowritebarrierrec
|
func getsig(i uint32) uintptr {
|
var sa sigactiont
|
sigaction(i, nil, &sa)
|
return sa.sa_handler
|
}
|
|
// setSignaltstackSP sets the ss_sp field of a stackt.
|
//go:nosplit
|
func setSignalstackSP(s *stackt, sp uintptr) {
|
*(*uintptr)(unsafe.Pointer(&s.ss_sp)) = sp
|
}
|
|
func (c *sigctxt) fixsigcode(sig uint32) {
|
}
|
|
// sysSigaction calls the rt_sigaction system call.
|
//go:nosplit
|
func sysSigaction(sig uint32, new, old *sigactiont) {
|
if rt_sigaction(uintptr(sig), new, old, unsafe.Sizeof(sigactiont{}.sa_mask)) != 0 {
|
// Workaround for bugs in QEMU user mode emulation.
|
//
|
// QEMU turns calls to the sigaction system call into
|
// calls to the C library sigaction call; the C
|
// library call rejects attempts to call sigaction for
|
// SIGCANCEL (32) or SIGSETXID (33).
|
//
|
// QEMU rejects calling sigaction on SIGRTMAX (64).
|
//
|
// Just ignore the error in these case. There isn't
|
// anything we can do about it anyhow.
|
if sig != 32 && sig != 33 && sig != 64 {
|
// Use system stack to avoid split stack overflow on ppc64/ppc64le.
|
systemstack(func() {
|
throw("sigaction failed")
|
})
|
}
|
}
|
}
|
|
// rt_sigaction is implemented in assembly.
|
//go:noescape
|
func rt_sigaction(sig uintptr, new, old *sigactiont, size uintptr) int32
|