// Copyright 2014 The Go Authors. All rights reserved.
|
// Use of this source code is governed by a BSD-style
|
// license that can be found in the LICENSE file.
|
|
package runtime
|
|
import (
|
"runtime/internal/atomic"
|
"runtime/internal/sys"
|
"unsafe"
|
)
|
|
const itabInitSize = 512
|
|
var (
|
itabLock mutex // lock for accessing itab table
|
itabTable = &itabTableInit // pointer to current table
|
itabTableInit = itabTableType{size: itabInitSize} // starter table
|
)
|
|
// Note: change the formula in the mallocgc call in itabAdd if you change these fields.
|
type itabTableType struct {
|
size uintptr // length of entries array. Always a power of 2.
|
count uintptr // current number of filled entries.
|
entries [itabInitSize]*itab // really [size] large
|
}
|
|
func itabHashFunc(inter *interfacetype, typ *_type) uintptr {
|
// compiler has provided some good hash codes for us.
|
return uintptr(inter.typ.hash ^ typ.hash)
|
}
|
|
func getitab(inter *interfacetype, typ *_type, canfail bool) *itab {
|
if len(inter.mhdr) == 0 {
|
throw("internal error - misuse of itab")
|
}
|
|
// easy case
|
if typ.tflag&tflagUncommon == 0 {
|
if canfail {
|
return nil
|
}
|
name := inter.typ.nameOff(inter.mhdr[0].name)
|
panic(&TypeAssertionError{nil, typ, &inter.typ, name.name()})
|
}
|
|
var m *itab
|
|
// First, look in the existing table to see if we can find the itab we need.
|
// This is by far the most common case, so do it without locks.
|
// Use atomic to ensure we see any previous writes done by the thread
|
// that updates the itabTable field (with atomic.Storep in itabAdd).
|
t := (*itabTableType)(atomic.Loadp(unsafe.Pointer(&itabTable)))
|
if m = t.find(inter, typ); m != nil {
|
goto finish
|
}
|
|
// Not found. Grab the lock and try again.
|
lock(&itabLock)
|
if m = itabTable.find(inter, typ); m != nil {
|
unlock(&itabLock)
|
goto finish
|
}
|
|
// Entry doesn't exist yet. Make a new entry & add it.
|
m = (*itab)(persistentalloc(unsafe.Sizeof(itab{})+uintptr(len(inter.mhdr)-1)*sys.PtrSize, 0, &memstats.other_sys))
|
m.inter = inter
|
m._type = typ
|
m.init()
|
itabAdd(m)
|
unlock(&itabLock)
|
finish:
|
if m.fun[0] != 0 {
|
return m
|
}
|
if canfail {
|
return nil
|
}
|
// this can only happen if the conversion
|
// was already done once using the , ok form
|
// and we have a cached negative result.
|
// The cached result doesn't record which
|
// interface function was missing, so initialize
|
// the itab again to get the missing function name.
|
panic(&TypeAssertionError{concrete: typ, asserted: &inter.typ, missingMethod: m.init()})
|
}
|
|
// find finds the given interface/type pair in t.
|
// Returns nil if the given interface/type pair isn't present.
|
func (t *itabTableType) find(inter *interfacetype, typ *_type) *itab {
|
// Implemented using quadratic probing.
|
// Probe sequence is h(i) = h0 + i*(i+1)/2 mod 2^k.
|
// We're guaranteed to hit all table entries using this probe sequence.
|
mask := t.size - 1
|
h := itabHashFunc(inter, typ) & mask
|
for i := uintptr(1); ; i++ {
|
p := (**itab)(add(unsafe.Pointer(&t.entries), h*sys.PtrSize))
|
// Use atomic read here so if we see m != nil, we also see
|
// the initializations of the fields of m.
|
// m := *p
|
m := (*itab)(atomic.Loadp(unsafe.Pointer(p)))
|
if m == nil {
|
return nil
|
}
|
if m.inter == inter && m._type == typ {
|
return m
|
}
|
h += i
|
h &= mask
|
}
|
}
|
|
// itabAdd adds the given itab to the itab hash table.
|
// itabLock must be held.
|
func itabAdd(m *itab) {
|
// Bugs can lead to calling this while mallocing is set,
|
// typically because this is called while panicing.
|
// Crash reliably, rather than only when we need to grow
|
// the hash table.
|
if getg().m.mallocing != 0 {
|
throw("malloc deadlock")
|
}
|
|
t := itabTable
|
if t.count >= 3*(t.size/4) { // 75% load factor
|
// Grow hash table.
|
// t2 = new(itabTableType) + some additional entries
|
// We lie and tell malloc we want pointer-free memory because
|
// all the pointed-to values are not in the heap.
|
t2 := (*itabTableType)(mallocgc((2+2*t.size)*sys.PtrSize, nil, true))
|
t2.size = t.size * 2
|
|
// Copy over entries.
|
// Note: while copying, other threads may look for an itab and
|
// fail to find it. That's ok, they will then try to get the itab lock
|
// and as a consequence wait until this copying is complete.
|
iterate_itabs(t2.add)
|
if t2.count != t.count {
|
throw("mismatched count during itab table copy")
|
}
|
// Publish new hash table. Use an atomic write: see comment in getitab.
|
atomicstorep(unsafe.Pointer(&itabTable), unsafe.Pointer(t2))
|
// Adopt the new table as our own.
|
t = itabTable
|
// Note: the old table can be GC'ed here.
|
}
|
t.add(m)
|
}
|
|
// add adds the given itab to itab table t.
|
// itabLock must be held.
|
func (t *itabTableType) add(m *itab) {
|
// See comment in find about the probe sequence.
|
// Insert new itab in the first empty spot in the probe sequence.
|
mask := t.size - 1
|
h := itabHashFunc(m.inter, m._type) & mask
|
for i := uintptr(1); ; i++ {
|
p := (**itab)(add(unsafe.Pointer(&t.entries), h*sys.PtrSize))
|
m2 := *p
|
if m2 == m {
|
// A given itab may be used in more than one module
|
// and thanks to the way global symbol resolution works, the
|
// pointed-to itab may already have been inserted into the
|
// global 'hash'.
|
return
|
}
|
if m2 == nil {
|
// Use atomic write here so if a reader sees m, it also
|
// sees the correctly initialized fields of m.
|
// NoWB is ok because m is not in heap memory.
|
// *p = m
|
atomic.StorepNoWB(unsafe.Pointer(p), unsafe.Pointer(m))
|
t.count++
|
return
|
}
|
h += i
|
h &= mask
|
}
|
}
|
|
// init fills in the m.fun array with all the code pointers for
|
// the m.inter/m._type pair. If the type does not implement the interface,
|
// it sets m.fun[0] to 0 and returns the name of an interface function that is missing.
|
// It is ok to call this multiple times on the same m, even concurrently.
|
func (m *itab) init() string {
|
inter := m.inter
|
typ := m._type
|
x := typ.uncommon()
|
|
// both inter and typ have method sorted by name,
|
// and interface names are unique,
|
// so can iterate over both in lock step;
|
// the loop is O(ni+nt) not O(ni*nt).
|
ni := len(inter.mhdr)
|
nt := int(x.mcount)
|
xmhdr := (*[1 << 16]method)(add(unsafe.Pointer(x), uintptr(x.moff)))[:nt:nt]
|
j := 0
|
imethods:
|
for k := 0; k < ni; k++ {
|
i := &inter.mhdr[k]
|
itype := inter.typ.typeOff(i.ityp)
|
name := inter.typ.nameOff(i.name)
|
iname := name.name()
|
ipkg := name.pkgPath()
|
if ipkg == "" {
|
ipkg = inter.pkgpath.name()
|
}
|
for ; j < nt; j++ {
|
t := &xmhdr[j]
|
tname := typ.nameOff(t.name)
|
if typ.typeOff(t.mtyp) == itype && tname.name() == iname {
|
pkgPath := tname.pkgPath()
|
if pkgPath == "" {
|
pkgPath = typ.nameOff(x.pkgpath).name()
|
}
|
if tname.isExported() || pkgPath == ipkg {
|
if m != nil {
|
ifn := typ.textOff(t.ifn)
|
*(*unsafe.Pointer)(add(unsafe.Pointer(&m.fun[0]), uintptr(k)*sys.PtrSize)) = ifn
|
}
|
continue imethods
|
}
|
}
|
}
|
// didn't find method
|
m.fun[0] = 0
|
return iname
|
}
|
m.hash = typ.hash
|
return ""
|
}
|
|
func itabsinit() {
|
lock(&itabLock)
|
for _, md := range activeModules() {
|
for _, i := range md.itablinks {
|
itabAdd(i)
|
}
|
}
|
unlock(&itabLock)
|
}
|
|
// panicdottypeE is called when doing an e.(T) conversion and the conversion fails.
|
// have = the dynamic type we have.
|
// want = the static type we're trying to convert to.
|
// iface = the static type we're converting from.
|
func panicdottypeE(have, want, iface *_type) {
|
panic(&TypeAssertionError{iface, have, want, ""})
|
}
|
|
// panicdottypeI is called when doing an i.(T) conversion and the conversion fails.
|
// Same args as panicdottypeE, but "have" is the dynamic itab we have.
|
func panicdottypeI(have *itab, want, iface *_type) {
|
var t *_type
|
if have != nil {
|
t = have._type
|
}
|
panicdottypeE(t, want, iface)
|
}
|
|
// panicnildottype is called when doing a i.(T) conversion and the interface i is nil.
|
// want = the static type we're trying to convert to.
|
func panicnildottype(want *_type) {
|
panic(&TypeAssertionError{nil, nil, want, ""})
|
// TODO: Add the static type we're converting from as well.
|
// It might generate a better error message.
|
// Just to match other nil conversion errors, we don't for now.
|
}
|
|
// The specialized convTx routines need a type descriptor to use when calling mallocgc.
|
// We don't need the type to be exact, just to have the correct size, alignment, and pointer-ness.
|
// However, when debugging, it'd be nice to have some indication in mallocgc where the types came from,
|
// so we use named types here.
|
// We then construct interface values of these types,
|
// and then extract the type word to use as needed.
|
type (
|
uint16InterfacePtr uint16
|
uint32InterfacePtr uint32
|
uint64InterfacePtr uint64
|
stringInterfacePtr string
|
sliceInterfacePtr []byte
|
)
|
|
var (
|
uint16Eface interface{} = uint16InterfacePtr(0)
|
uint32Eface interface{} = uint32InterfacePtr(0)
|
uint64Eface interface{} = uint64InterfacePtr(0)
|
stringEface interface{} = stringInterfacePtr("")
|
sliceEface interface{} = sliceInterfacePtr(nil)
|
|
uint16Type *_type = (*eface)(unsafe.Pointer(&uint16Eface))._type
|
uint32Type *_type = (*eface)(unsafe.Pointer(&uint32Eface))._type
|
uint64Type *_type = (*eface)(unsafe.Pointer(&uint64Eface))._type
|
stringType *_type = (*eface)(unsafe.Pointer(&stringEface))._type
|
sliceType *_type = (*eface)(unsafe.Pointer(&sliceEface))._type
|
)
|
|
// The conv and assert functions below do very similar things.
|
// The convXXX functions are guaranteed by the compiler to succeed.
|
// The assertXXX functions may fail (either panicking or returning false,
|
// depending on whether they are 1-result or 2-result).
|
// The convXXX functions succeed on a nil input, whereas the assertXXX
|
// functions fail on a nil input.
|
|
func convT2E(t *_type, elem unsafe.Pointer) (e eface) {
|
if raceenabled {
|
raceReadObjectPC(t, elem, getcallerpc(), funcPC(convT2E))
|
}
|
if msanenabled {
|
msanread(elem, t.size)
|
}
|
x := mallocgc(t.size, t, true)
|
// TODO: We allocate a zeroed object only to overwrite it with actual data.
|
// Figure out how to avoid zeroing. Also below in convT2Eslice, convT2I, convT2Islice.
|
typedmemmove(t, x, elem)
|
e._type = t
|
e.data = x
|
return
|
}
|
|
func convT16(val uint16) (x unsafe.Pointer) {
|
if val == 0 {
|
x = unsafe.Pointer(&zeroVal[0])
|
} else {
|
x = mallocgc(2, uint16Type, false)
|
*(*uint16)(x) = val
|
}
|
return
|
}
|
|
func convT32(val uint32) (x unsafe.Pointer) {
|
if val == 0 {
|
x = unsafe.Pointer(&zeroVal[0])
|
} else {
|
x = mallocgc(4, uint32Type, false)
|
*(*uint32)(x) = val
|
}
|
return
|
}
|
|
func convT64(val uint64) (x unsafe.Pointer) {
|
if val == 0 {
|
x = unsafe.Pointer(&zeroVal[0])
|
} else {
|
x = mallocgc(8, uint64Type, false)
|
*(*uint64)(x) = val
|
}
|
return
|
}
|
|
func convTstring(val string) (x unsafe.Pointer) {
|
if val == "" {
|
x = unsafe.Pointer(&zeroVal[0])
|
} else {
|
x = mallocgc(unsafe.Sizeof(val), stringType, true)
|
*(*string)(x) = val
|
}
|
return
|
}
|
|
func convTslice(val []byte) (x unsafe.Pointer) {
|
// Note: this must work for any element type, not just byte.
|
if (*slice)(unsafe.Pointer(&val)).array == nil {
|
x = unsafe.Pointer(&zeroVal[0])
|
} else {
|
x = mallocgc(unsafe.Sizeof(val), sliceType, true)
|
*(*[]byte)(x) = val
|
}
|
return
|
}
|
|
func convT2Enoptr(t *_type, elem unsafe.Pointer) (e eface) {
|
if raceenabled {
|
raceReadObjectPC(t, elem, getcallerpc(), funcPC(convT2Enoptr))
|
}
|
if msanenabled {
|
msanread(elem, t.size)
|
}
|
x := mallocgc(t.size, t, false)
|
memmove(x, elem, t.size)
|
e._type = t
|
e.data = x
|
return
|
}
|
|
func convT2I(tab *itab, elem unsafe.Pointer) (i iface) {
|
t := tab._type
|
if raceenabled {
|
raceReadObjectPC(t, elem, getcallerpc(), funcPC(convT2I))
|
}
|
if msanenabled {
|
msanread(elem, t.size)
|
}
|
x := mallocgc(t.size, t, true)
|
typedmemmove(t, x, elem)
|
i.tab = tab
|
i.data = x
|
return
|
}
|
|
func convT2Inoptr(tab *itab, elem unsafe.Pointer) (i iface) {
|
t := tab._type
|
if raceenabled {
|
raceReadObjectPC(t, elem, getcallerpc(), funcPC(convT2Inoptr))
|
}
|
if msanenabled {
|
msanread(elem, t.size)
|
}
|
x := mallocgc(t.size, t, false)
|
memmove(x, elem, t.size)
|
i.tab = tab
|
i.data = x
|
return
|
}
|
|
func convI2I(inter *interfacetype, i iface) (r iface) {
|
tab := i.tab
|
if tab == nil {
|
return
|
}
|
if tab.inter == inter {
|
r.tab = tab
|
r.data = i.data
|
return
|
}
|
r.tab = getitab(inter, tab._type, false)
|
r.data = i.data
|
return
|
}
|
|
func assertI2I(inter *interfacetype, i iface) (r iface) {
|
tab := i.tab
|
if tab == nil {
|
// explicit conversions require non-nil interface value.
|
panic(&TypeAssertionError{nil, nil, &inter.typ, ""})
|
}
|
if tab.inter == inter {
|
r.tab = tab
|
r.data = i.data
|
return
|
}
|
r.tab = getitab(inter, tab._type, false)
|
r.data = i.data
|
return
|
}
|
|
func assertI2I2(inter *interfacetype, i iface) (r iface, b bool) {
|
tab := i.tab
|
if tab == nil {
|
return
|
}
|
if tab.inter != inter {
|
tab = getitab(inter, tab._type, true)
|
if tab == nil {
|
return
|
}
|
}
|
r.tab = tab
|
r.data = i.data
|
b = true
|
return
|
}
|
|
func assertE2I(inter *interfacetype, e eface) (r iface) {
|
t := e._type
|
if t == nil {
|
// explicit conversions require non-nil interface value.
|
panic(&TypeAssertionError{nil, nil, &inter.typ, ""})
|
}
|
r.tab = getitab(inter, t, false)
|
r.data = e.data
|
return
|
}
|
|
func assertE2I2(inter *interfacetype, e eface) (r iface, b bool) {
|
t := e._type
|
if t == nil {
|
return
|
}
|
tab := getitab(inter, t, true)
|
if tab == nil {
|
return
|
}
|
r.tab = tab
|
r.data = e.data
|
b = true
|
return
|
}
|
|
//go:linkname reflect_ifaceE2I reflect.ifaceE2I
|
func reflect_ifaceE2I(inter *interfacetype, e eface, dst *iface) {
|
*dst = assertE2I(inter, e)
|
}
|
|
func iterate_itabs(fn func(*itab)) {
|
// Note: only runs during stop the world or with itabLock held,
|
// so no other locks/atomics needed.
|
t := itabTable
|
for i := uintptr(0); i < t.size; i++ {
|
m := *(**itab)(add(unsafe.Pointer(&t.entries), i*sys.PtrSize))
|
if m != nil {
|
fn(m)
|
}
|
}
|
}
|
|
// staticbytes is used to avoid convT2E for byte-sized values.
|
var staticbytes = [...]byte{
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
|
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
|
0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
|
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
|
0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
|
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
|
0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
|
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
|
0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
|
0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
|
0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
|
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
|
0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
|
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
|
0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
|
0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
|
0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
|
0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
|
0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
|
0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
|
0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
|
0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
|
0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
|
0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
|
0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
|
0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
|
0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
|
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
|
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
|
}
|