// Copyright 2014, VIXL authors
|
// All rights reserved.
|
//
|
// Redistribution and use in source and binary forms, with or without
|
// modification, are permitted provided that the following conditions are met:
|
//
|
// * Redistributions of source code must retain the above copyright notice,
|
// this list of conditions and the following disclaimer.
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
// this list of conditions and the following disclaimer in the documentation
|
// and/or other materials provided with the distribution.
|
// * Neither the name of ARM Limited nor the names of its contributors may be
|
// used to endorse or promote products derived from this software without
|
// specific prior written permission.
|
//
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
|
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
#include <cmath>
|
|
#include "test-runner.h"
|
#include "test-utils-aarch64.h"
|
|
#include "aarch64/cpu-aarch64.h"
|
#include "aarch64/disasm-aarch64.h"
|
#include "aarch64/macro-assembler-aarch64.h"
|
#include "aarch64/simulator-aarch64.h"
|
|
#define __ masm->
|
|
namespace vixl {
|
namespace aarch64 {
|
|
|
// This value is a signalling NaN as both a double and as a float (taking the
|
// least-significant word).
|
const double kFP64SignallingNaN = RawbitsToDouble(UINT64_C(0x7ff000007f800001));
|
const float kFP32SignallingNaN = RawbitsToFloat(0x7f800001);
|
const Float16 kFP16SignallingNaN = RawbitsToFloat16(0x7c01);
|
|
// A similar value, but as a quiet NaN.
|
const double kFP64QuietNaN = RawbitsToDouble(UINT64_C(0x7ff800007fc00001));
|
const float kFP32QuietNaN = RawbitsToFloat(0x7fc00001);
|
const Float16 kFP16QuietNaN = RawbitsToFloat16(0x7e01);
|
|
|
bool Equal32(uint32_t expected, const RegisterDump*, uint32_t result) {
|
if (result != expected) {
|
printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
|
expected,
|
result);
|
}
|
|
return expected == result;
|
}
|
|
|
bool Equal64(uint64_t expected, const RegisterDump*, uint64_t result) {
|
if (result != expected) {
|
printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
|
expected,
|
result);
|
}
|
|
return expected == result;
|
}
|
|
|
bool Equal128(vec128_t expected, const RegisterDump*, vec128_t result) {
|
if ((result.h != expected.h) || (result.l != expected.l)) {
|
printf("Expected 0x%016" PRIx64 "%016" PRIx64
|
"\t "
|
"Found 0x%016" PRIx64 "%016" PRIx64 "\n",
|
expected.h,
|
expected.l,
|
result.h,
|
result.l);
|
}
|
|
return ((expected.h == result.h) && (expected.l == result.l));
|
}
|
|
|
bool EqualFP16(Float16 expected, const RegisterDump*, Float16 result) {
|
uint16_t e_rawbits = Float16ToRawbits(expected);
|
uint16_t r_rawbits = Float16ToRawbits(result);
|
if (e_rawbits == r_rawbits) {
|
return true;
|
} else {
|
if (IsNaN(expected) || IsZero(expected)) {
|
printf("Expected 0x%04" PRIx16 "\t Found 0x%04" PRIx16 "\n",
|
e_rawbits,
|
r_rawbits);
|
} else {
|
printf("Expected %.6f (16 bit): (0x%04" PRIx16
|
")\t "
|
"Found %.6f (0x%04" PRIx16 ")\n",
|
FPToFloat(expected, kIgnoreDefaultNaN),
|
e_rawbits,
|
FPToFloat(result, kIgnoreDefaultNaN),
|
r_rawbits);
|
}
|
return false;
|
}
|
}
|
|
|
bool EqualFP32(float expected, const RegisterDump*, float result) {
|
if (FloatToRawbits(expected) == FloatToRawbits(result)) {
|
return true;
|
} else {
|
if (IsNaN(expected) || (expected == 0.0)) {
|
printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
|
FloatToRawbits(expected),
|
FloatToRawbits(result));
|
} else {
|
printf("Expected %.9f (0x%08" PRIx32
|
")\t "
|
"Found %.9f (0x%08" PRIx32 ")\n",
|
expected,
|
FloatToRawbits(expected),
|
result,
|
FloatToRawbits(result));
|
}
|
return false;
|
}
|
}
|
|
|
bool EqualFP64(double expected, const RegisterDump*, double result) {
|
if (DoubleToRawbits(expected) == DoubleToRawbits(result)) {
|
return true;
|
}
|
|
if (IsNaN(expected) || (expected == 0.0)) {
|
printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
|
DoubleToRawbits(expected),
|
DoubleToRawbits(result));
|
} else {
|
printf("Expected %.17f (0x%016" PRIx64
|
")\t "
|
"Found %.17f (0x%016" PRIx64 ")\n",
|
expected,
|
DoubleToRawbits(expected),
|
result,
|
DoubleToRawbits(result));
|
}
|
return false;
|
}
|
|
|
bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg) {
|
VIXL_ASSERT(reg.Is32Bits());
|
// Retrieve the corresponding X register so we can check that the upper part
|
// was properly cleared.
|
int64_t result_x = core->xreg(reg.GetCode());
|
if ((result_x & 0xffffffff00000000) != 0) {
|
printf("Expected 0x%08" PRIx32 "\t Found 0x%016" PRIx64 "\n",
|
expected,
|
result_x);
|
return false;
|
}
|
uint32_t result_w = core->wreg(reg.GetCode());
|
return Equal32(expected, core, result_w);
|
}
|
|
|
bool Equal64(uint64_t expected, const RegisterDump* core, const Register& reg) {
|
VIXL_ASSERT(reg.Is64Bits());
|
uint64_t result = core->xreg(reg.GetCode());
|
return Equal64(expected, core, result);
|
}
|
|
|
bool Equal128(uint64_t expected_h,
|
uint64_t expected_l,
|
const RegisterDump* core,
|
const VRegister& vreg) {
|
VIXL_ASSERT(vreg.Is128Bits());
|
vec128_t expected = {expected_l, expected_h};
|
vec128_t result = core->qreg(vreg.GetCode());
|
return Equal128(expected, core, result);
|
}
|
|
|
bool EqualFP16(Float16 expected,
|
const RegisterDump* core,
|
const FPRegister& fpreg) {
|
VIXL_ASSERT(fpreg.Is16Bits());
|
// Retrieve the corresponding D register so we can check that the upper part
|
// was properly cleared.
|
uint64_t result_64 = core->dreg_bits(fpreg.GetCode());
|
if ((result_64 & 0xfffffffffff0000) != 0) {
|
printf("Expected 0x%04" PRIx16 " (%f)\t Found 0x%016" PRIx64 "\n",
|
Float16ToRawbits(expected),
|
FPToFloat(expected, kIgnoreDefaultNaN),
|
result_64);
|
return false;
|
}
|
return EqualFP16(expected, core, core->hreg(fpreg.GetCode()));
|
}
|
|
|
bool EqualFP32(float expected,
|
const RegisterDump* core,
|
const FPRegister& fpreg) {
|
VIXL_ASSERT(fpreg.Is32Bits());
|
// Retrieve the corresponding D register so we can check that the upper part
|
// was properly cleared.
|
uint64_t result_64 = core->dreg_bits(fpreg.GetCode());
|
if ((result_64 & 0xffffffff00000000) != 0) {
|
printf("Expected 0x%08" PRIx32 " (%f)\t Found 0x%016" PRIx64 "\n",
|
FloatToRawbits(expected),
|
expected,
|
result_64);
|
return false;
|
}
|
|
return EqualFP32(expected, core, core->sreg(fpreg.GetCode()));
|
}
|
|
|
bool EqualFP64(double expected,
|
const RegisterDump* core,
|
const FPRegister& fpreg) {
|
VIXL_ASSERT(fpreg.Is64Bits());
|
return EqualFP64(expected, core, core->dreg(fpreg.GetCode()));
|
}
|
|
|
bool Equal64(const Register& reg0,
|
const RegisterDump* core,
|
const Register& reg1) {
|
VIXL_ASSERT(reg0.Is64Bits() && reg1.Is64Bits());
|
int64_t expected = core->xreg(reg0.GetCode());
|
int64_t result = core->xreg(reg1.GetCode());
|
return Equal64(expected, core, result);
|
}
|
|
|
bool Equal64(uint64_t expected,
|
const RegisterDump* core,
|
const VRegister& vreg) {
|
VIXL_ASSERT(vreg.Is64Bits());
|
uint64_t result = core->dreg_bits(vreg.GetCode());
|
return Equal64(expected, core, result);
|
}
|
|
|
static char FlagN(uint32_t flags) { return (flags & NFlag) ? 'N' : 'n'; }
|
|
|
static char FlagZ(uint32_t flags) { return (flags & ZFlag) ? 'Z' : 'z'; }
|
|
|
static char FlagC(uint32_t flags) { return (flags & CFlag) ? 'C' : 'c'; }
|
|
|
static char FlagV(uint32_t flags) { return (flags & VFlag) ? 'V' : 'v'; }
|
|
|
bool EqualNzcv(uint32_t expected, uint32_t result) {
|
VIXL_ASSERT((expected & ~NZCVFlag) == 0);
|
VIXL_ASSERT((result & ~NZCVFlag) == 0);
|
if (result != expected) {
|
printf("Expected: %c%c%c%c\t Found: %c%c%c%c\n",
|
FlagN(expected),
|
FlagZ(expected),
|
FlagC(expected),
|
FlagV(expected),
|
FlagN(result),
|
FlagZ(result),
|
FlagC(result),
|
FlagV(result));
|
return false;
|
}
|
|
return true;
|
}
|
|
|
bool EqualRegisters(const RegisterDump* a, const RegisterDump* b) {
|
for (unsigned i = 0; i < kNumberOfRegisters; i++) {
|
if (a->xreg(i) != b->xreg(i)) {
|
printf("x%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
|
i,
|
a->xreg(i),
|
b->xreg(i));
|
return false;
|
}
|
}
|
|
for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
|
uint64_t a_bits = a->dreg_bits(i);
|
uint64_t b_bits = b->dreg_bits(i);
|
if (a_bits != b_bits) {
|
printf("d%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
|
i,
|
a_bits,
|
b_bits);
|
return false;
|
}
|
}
|
|
return true;
|
}
|
|
|
RegList PopulateRegisterArray(Register* w,
|
Register* x,
|
Register* r,
|
int reg_size,
|
int reg_count,
|
RegList allowed) {
|
RegList list = 0;
|
int i = 0;
|
for (unsigned n = 0; (n < kNumberOfRegisters) && (i < reg_count); n++) {
|
if (((UINT64_C(1) << n) & allowed) != 0) {
|
// Only assign allowed registers.
|
if (r) {
|
r[i] = Register(n, reg_size);
|
}
|
if (x) {
|
x[i] = Register(n, kXRegSize);
|
}
|
if (w) {
|
w[i] = Register(n, kWRegSize);
|
}
|
list |= (UINT64_C(1) << n);
|
i++;
|
}
|
}
|
// Check that we got enough registers.
|
VIXL_ASSERT(CountSetBits(list, kNumberOfRegisters) == reg_count);
|
|
return list;
|
}
|
|
|
RegList PopulateFPRegisterArray(FPRegister* s,
|
FPRegister* d,
|
FPRegister* v,
|
int reg_size,
|
int reg_count,
|
RegList allowed) {
|
RegList list = 0;
|
int i = 0;
|
for (unsigned n = 0; (n < kNumberOfFPRegisters) && (i < reg_count); n++) {
|
if (((UINT64_C(1) << n) & allowed) != 0) {
|
// Only assigned allowed registers.
|
if (v) {
|
v[i] = FPRegister(n, reg_size);
|
}
|
if (d) {
|
d[i] = FPRegister(n, kDRegSize);
|
}
|
if (s) {
|
s[i] = FPRegister(n, kSRegSize);
|
}
|
list |= (UINT64_C(1) << n);
|
i++;
|
}
|
}
|
// Check that we got enough registers.
|
VIXL_ASSERT(CountSetBits(list, kNumberOfFPRegisters) == reg_count);
|
|
return list;
|
}
|
|
|
void Clobber(MacroAssembler* masm, RegList reg_list, uint64_t const value) {
|
Register first = NoReg;
|
for (unsigned i = 0; i < kNumberOfRegisters; i++) {
|
if (reg_list & (UINT64_C(1) << i)) {
|
Register xn(i, kXRegSize);
|
// We should never write into sp here.
|
VIXL_ASSERT(!xn.Is(sp));
|
if (!xn.IsZero()) {
|
if (!first.IsValid()) {
|
// This is the first register we've hit, so construct the literal.
|
__ Mov(xn, value);
|
first = xn;
|
} else {
|
// We've already loaded the literal, so re-use the value already
|
// loaded into the first register we hit.
|
__ Mov(xn, first);
|
}
|
}
|
}
|
}
|
}
|
|
|
void ClobberFP(MacroAssembler* masm, RegList reg_list, double const value) {
|
FPRegister first = NoFPReg;
|
for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
|
if (reg_list & (UINT64_C(1) << i)) {
|
FPRegister dn(i, kDRegSize);
|
if (!first.IsValid()) {
|
// This is the first register we've hit, so construct the literal.
|
__ Fmov(dn, value);
|
first = dn;
|
} else {
|
// We've already loaded the literal, so re-use the value already loaded
|
// into the first register we hit.
|
__ Fmov(dn, first);
|
}
|
}
|
}
|
}
|
|
|
void Clobber(MacroAssembler* masm, CPURegList reg_list) {
|
if (reg_list.GetType() == CPURegister::kRegister) {
|
// This will always clobber X registers.
|
Clobber(masm, reg_list.GetList());
|
} else if (reg_list.GetType() == CPURegister::kVRegister) {
|
// This will always clobber D registers.
|
ClobberFP(masm, reg_list.GetList());
|
} else {
|
VIXL_UNREACHABLE();
|
}
|
}
|
|
|
void RegisterDump::Dump(MacroAssembler* masm) {
|
VIXL_ASSERT(__ StackPointer().Is(sp));
|
|
// Ensure that we don't unintentionally clobber any registers.
|
UseScratchRegisterScope temps(masm);
|
temps.ExcludeAll();
|
|
// Preserve some temporary registers.
|
Register dump_base = x0;
|
Register dump = x1;
|
Register tmp = x2;
|
Register dump_base_w = dump_base.W();
|
Register dump_w = dump.W();
|
Register tmp_w = tmp.W();
|
|
// Offsets into the dump_ structure.
|
const int x_offset = offsetof(dump_t, x_);
|
const int w_offset = offsetof(dump_t, w_);
|
const int d_offset = offsetof(dump_t, d_);
|
const int s_offset = offsetof(dump_t, s_);
|
const int h_offset = offsetof(dump_t, h_);
|
const int q_offset = offsetof(dump_t, q_);
|
const int sp_offset = offsetof(dump_t, sp_);
|
const int wsp_offset = offsetof(dump_t, wsp_);
|
const int flags_offset = offsetof(dump_t, flags_);
|
|
__ Push(xzr, dump_base, dump, tmp);
|
|
// Load the address where we will dump the state.
|
__ Mov(dump_base, reinterpret_cast<uintptr_t>(&dump_));
|
|
// Dump the stack pointer (sp and wsp).
|
// The stack pointer cannot be stored directly; it needs to be moved into
|
// another register first. Also, we pushed four X registers, so we need to
|
// compensate here.
|
__ Add(tmp, sp, 4 * kXRegSizeInBytes);
|
__ Str(tmp, MemOperand(dump_base, sp_offset));
|
__ Add(tmp_w, wsp, 4 * kXRegSizeInBytes);
|
__ Str(tmp_w, MemOperand(dump_base, wsp_offset));
|
|
// Dump X registers.
|
__ Add(dump, dump_base, x_offset);
|
for (unsigned i = 0; i < kNumberOfRegisters; i += 2) {
|
__ Stp(Register::GetXRegFromCode(i),
|
Register::GetXRegFromCode(i + 1),
|
MemOperand(dump, i * kXRegSizeInBytes));
|
}
|
|
// Dump W registers.
|
__ Add(dump, dump_base, w_offset);
|
for (unsigned i = 0; i < kNumberOfRegisters; i += 2) {
|
__ Stp(Register::GetWRegFromCode(i),
|
Register::GetWRegFromCode(i + 1),
|
MemOperand(dump, i * kWRegSizeInBytes));
|
}
|
|
// Dump D registers.
|
__ Add(dump, dump_base, d_offset);
|
for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) {
|
__ Stp(FPRegister::GetDRegFromCode(i),
|
FPRegister::GetDRegFromCode(i + 1),
|
MemOperand(dump, i * kDRegSizeInBytes));
|
}
|
|
// Dump S registers.
|
__ Add(dump, dump_base, s_offset);
|
for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) {
|
__ Stp(FPRegister::GetSRegFromCode(i),
|
FPRegister::GetSRegFromCode(i + 1),
|
MemOperand(dump, i * kSRegSizeInBytes));
|
}
|
|
#ifdef VIXL_INCLUDE_SIMULATOR_AARCH64
|
// Dump H registers. Note: Stp does not support 16 bits.
|
__ Add(dump, dump_base, h_offset);
|
for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
|
__ Str(FPRegister::GetHRegFromCode(i),
|
MemOperand(dump, i * kHRegSizeInBytes));
|
}
|
#else
|
USE(h_offset);
|
#endif
|
|
// Dump Q registers.
|
__ Add(dump, dump_base, q_offset);
|
for (unsigned i = 0; i < kNumberOfVRegisters; i += 2) {
|
__ Stp(VRegister::GetQRegFromCode(i),
|
VRegister::GetQRegFromCode(i + 1),
|
MemOperand(dump, i * kQRegSizeInBytes));
|
}
|
|
// Dump the flags.
|
__ Mrs(tmp, NZCV);
|
__ Str(tmp, MemOperand(dump_base, flags_offset));
|
|
// To dump the values that were in tmp amd dump, we need a new scratch
|
// register. We can use any of the already dumped registers since we can
|
// easily restore them.
|
Register dump2_base = x10;
|
Register dump2 = x11;
|
VIXL_ASSERT(!AreAliased(dump_base, dump, tmp, dump2_base, dump2));
|
|
// Don't lose the dump_ address.
|
__ Mov(dump2_base, dump_base);
|
|
__ Pop(tmp, dump, dump_base, xzr);
|
|
__ Add(dump2, dump2_base, w_offset);
|
__ Str(dump_base_w,
|
MemOperand(dump2, dump_base.GetCode() * kWRegSizeInBytes));
|
__ Str(dump_w, MemOperand(dump2, dump.GetCode() * kWRegSizeInBytes));
|
__ Str(tmp_w, MemOperand(dump2, tmp.GetCode() * kWRegSizeInBytes));
|
|
__ Add(dump2, dump2_base, x_offset);
|
__ Str(dump_base, MemOperand(dump2, dump_base.GetCode() * kXRegSizeInBytes));
|
__ Str(dump, MemOperand(dump2, dump.GetCode() * kXRegSizeInBytes));
|
__ Str(tmp, MemOperand(dump2, tmp.GetCode() * kXRegSizeInBytes));
|
|
// Finally, restore dump2_base and dump2.
|
__ Ldr(dump2_base,
|
MemOperand(dump2, dump2_base.GetCode() * kXRegSizeInBytes));
|
__ Ldr(dump2, MemOperand(dump2, dump2.GetCode() * kXRegSizeInBytes));
|
|
completed_ = true;
|
}
|
|
} // namespace aarch64
|
} // namespace vixl
|