/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
you may not use this file except in compliance with the License.
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
distributed under the License is distributed on an "AS IS" BASIS,
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
See the License for the specific language governing permissions and
|
limitations under the License.
|
==============================================================================*/
|
|
#include "tensorflow/core/util/saved_tensor_slice_util.h"
|
|
#include "tensorflow/core/lib/core/errors.h"
|
#include "tensorflow/core/lib/strings/ordered_code.h"
|
#include "tensorflow/core/lib/strings/str_util.h"
|
|
namespace tensorflow {
|
|
namespace checkpoint {
|
|
const char kSavedTensorSlicesKey[] = "";
|
|
string EncodeTensorNameSlice(const string& name, const TensorSlice& slice) {
|
string buffer;
|
// All the tensor slice keys will start with a 0
|
tensorflow::strings::OrderedCode::WriteNumIncreasing(&buffer, 0);
|
tensorflow::strings::OrderedCode::WriteString(&buffer, name);
|
tensorflow::strings::OrderedCode::WriteNumIncreasing(&buffer, slice.dims());
|
for (int d = 0; d < slice.dims(); ++d) {
|
// A trivial extent (meaning we take EVERYTHING) will default to -1 for both
|
// start and end. These will be properly parsed.
|
tensorflow::strings::OrderedCode::WriteSignedNumIncreasing(&buffer,
|
slice.start(d));
|
tensorflow::strings::OrderedCode::WriteSignedNumIncreasing(&buffer,
|
slice.length(d));
|
}
|
return buffer;
|
}
|
|
Status DecodeTensorNameSlice(const string& code, string* name,
|
tensorflow::TensorSlice* slice) {
|
StringPiece src(code);
|
uint64 x;
|
if (!tensorflow::strings::OrderedCode::ReadNumIncreasing(&src, &x)) {
|
return errors::Internal("Failed to parse the leading number: src = ", src);
|
}
|
if (x != 0) {
|
return errors::Internal(
|
"The leading number should always be 0 for any valid key: src = ", src);
|
}
|
if (!tensorflow::strings::OrderedCode::ReadString(&src, name)) {
|
return errors::Internal("Failed to parse the tensor name: src = ", src);
|
}
|
if (!tensorflow::strings::OrderedCode::ReadNumIncreasing(&src, &x)) {
|
return errors::Internal("Failed to parse the tensor rank: src = ", src);
|
}
|
if (x == 0) {
|
return errors::Internal("Expecting positive rank of the tensor, got ", x,
|
", src = ", src);
|
}
|
if (x >= kint32max) {
|
return errors::Internal("Too many elements ", x);
|
}
|
slice->SetFullSlice(x);
|
for (int d = 0; d < static_cast<int32>(x); ++d) {
|
// We expected 2x integers
|
int64 start, length;
|
if (!tensorflow::strings::OrderedCode::ReadSignedNumIncreasing(&src,
|
&start)) {
|
return errors::Internal("Failed to parse start: src = ", src);
|
}
|
if (!tensorflow::strings::OrderedCode::ReadSignedNumIncreasing(&src,
|
&length)) {
|
return errors::Internal("Failed to parse length: src = ", src);
|
}
|
if (length >= 0) {
|
// a non-trivial extent
|
slice->set_start(d, start);
|
slice->set_length(d, length);
|
}
|
}
|
return Status::OK();
|
}
|
|
Status ParseShapeAndSlice(const string& shape_and_slice, TensorShape* shape,
|
TensorSlice* slice, TensorShape* shape_slice) {
|
CHECK(!shape_and_slice.empty());
|
// Syntax: dim0 dim1 dim2 ... <slice string>
|
// Where slice string is defined in core/framework/tensor_slice.h
|
std::vector<string> splits = str_util::Split(shape_and_slice, ' ');
|
|
// Must have at least 2 strings.
|
if (splits.size() < 2) {
|
return errors::InvalidArgument(
|
"Need least two elements in shape_and_slice specification: ",
|
shape_and_slice);
|
}
|
|
// The last split is the slice specification.
|
slice->Clear();
|
auto status = slice->Parse(splits.back(), slice);
|
if (!status.ok()) return status;
|
|
// The first n-1 are the shape specification.
|
splits.pop_back();
|
shape->Clear();
|
for (const auto& s : splits) {
|
int64 dim;
|
if (!strings::safe_strto64(s, &dim)) {
|
return errors::InvalidArgument(
|
"Non numerical dimension in shape_and_slice: ", shape_and_slice);
|
}
|
shape->AddDim(dim);
|
}
|
|
// The specified slice must be compatible with the specified shape.
|
return slice->SliceTensorShape(*shape, shape_slice);
|
}
|
|
} // namespace checkpoint
|
|
} // namespace tensorflow
|