/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
you may not use this file except in compliance with the License.
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
distributed under the License is distributed on an "AS IS" BASIS,
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
See the License for the specific language governing permissions and
|
limitations under the License.
|
==============================================================================*/
|
|
// See docs in ../ops/linalg_ops.cc.
|
|
#include "third_party/eigen3/Eigen/Core"
|
#include "third_party/eigen3/Eigen/Eigenvalues"
|
#include "tensorflow/core/framework/kernel_def_builder.h"
|
#include "tensorflow/core/framework/op_kernel.h"
|
#include "tensorflow/core/framework/tensor_shape.h"
|
#include "tensorflow/core/kernels/linalg_ops_common.h"
|
#include "tensorflow/core/lib/core/errors.h"
|
#include "tensorflow/core/platform/denormal.h"
|
#include "tensorflow/core/platform/logging.h"
|
#include "tensorflow/core/platform/types.h"
|
|
namespace tensorflow {
|
|
template <class Scalar>
|
class SelfAdjointEigOp : public LinearAlgebraOp<Scalar> {
|
public:
|
typedef LinearAlgebraOp<Scalar> Base;
|
|
explicit SelfAdjointEigOp(OpKernelConstruction* context) : Base(context) {}
|
|
using TensorShapes = typename Base::TensorShapes;
|
using Matrix = typename Base::Matrix;
|
using MatrixMaps = typename Base::MatrixMaps;
|
using ConstMatrixMap = typename Base::ConstMatrixMap;
|
using ConstMatrixMaps = typename Base::ConstMatrixMaps;
|
|
TensorShapes GetOutputMatrixShapes(
|
const TensorShapes& input_matrix_shapes) const final {
|
int64 d = input_matrix_shapes[0].dim_size(0);
|
return TensorShapes({TensorShape({d + 1, d})});
|
}
|
|
void ComputeMatrix(OpKernelContext* context, const ConstMatrixMaps& inputs,
|
MatrixMaps* outputs) final {
|
const int64 rows = inputs[0].rows();
|
if (rows == 0) {
|
// If X is an empty matrix (0 rows, 0 col), X * X' == X.
|
// Therefore, we return X.
|
return;
|
}
|
|
// This algorithm relies on denormals, so switch them back on locally.
|
port::ScopedDontFlushDenormal dont_flush_denormals;
|
|
Eigen::SelfAdjointEigenSolver<
|
Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
|
es(inputs[0]);
|
OP_REQUIRES(context, es.info() == Eigen::Success,
|
errors::InvalidArgument("Self Adjoint Eigen decomposition was"
|
"not successful. "
|
"The input might not be valid."));
|
outputs->at(0).row(0) = es.eigenvalues().transpose();
|
outputs->at(0).bottomRows(rows) = es.eigenvectors();
|
}
|
};
|
|
REGISTER_LINALG_OP("SelfAdjointEig", (SelfAdjointEigOp<float>), float);
|
REGISTER_LINALG_OP("SelfAdjointEig", (SelfAdjointEigOp<double>), double);
|
REGISTER_LINALG_OP("BatchSelfAdjointEig", (SelfAdjointEigOp<float>), float);
|
REGISTER_LINALG_OP("BatchSelfAdjointEig", (SelfAdjointEigOp<double>), double);
|
} // namespace tensorflow
|