/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
you may not use this file except in compliance with the License.
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
distributed under the License is distributed on an "AS IS" BASIS,
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
See the License for the specific language governing permissions and
|
limitations under the License.
|
==============================================================================*/
|
|
#include <random>
|
|
#include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h"
|
#include "tensorflow/core/framework/tensor.h"
|
#include "tensorflow/core/platform/test.h"
|
#include "tensorflow/core/platform/test_benchmark.h"
|
|
namespace tensorflow {
|
namespace {
|
|
Tensor VecShape(int64 v) {
|
if (v >= std::numeric_limits<int32>::max()) {
|
Tensor shape(DT_INT64, TensorShape({1}));
|
shape.vec<int64>()(0) = v;
|
return shape;
|
} else {
|
Tensor shape(DT_INT32, TensorShape({1}));
|
shape.vec<int32>()(0) = v;
|
return shape;
|
}
|
}
|
|
Tensor VecLam32(int64 n, int magnitude) {
|
std::mt19937 gen(0x12345);
|
std::uniform_real_distribution<float> dist(0.0, 1.0);
|
Tensor lams(DT_FLOAT, TensorShape({n}));
|
for (int i = 0; i < n; i++) {
|
// Generate in range (magnitude, 2 * magnitude)
|
lams.vec<float>()(i) = magnitude * (1 + dist(gen));
|
}
|
return lams;
|
}
|
|
Tensor VecLam64(int64 n, int magnitude) {
|
std::mt19937 gen(0x12345);
|
std::uniform_real_distribution<double> dist(0.0, 1.0);
|
Tensor lams(DT_DOUBLE, TensorShape({n}));
|
for (int i = 0; i < n; i++) {
|
// Generate in range (magnitude, 2 * magnitude)
|
lams.vec<double>()(i) = magnitude * (1 + dist(gen));
|
}
|
return lams;
|
}
|
|
#define BM_Poisson(DEVICE, BITS, MAGNITUDE) \
|
static void BM_##DEVICE##_RandomPoisson_lam_##MAGNITUDE##_##BITS( \
|
int iters, int nsamp, int nlam) { \
|
testing::ItemsProcessed(static_cast<int64>(iters) * nsamp * nlam); \
|
Graph* g = new Graph(OpRegistry::Global()); \
|
test::graph::RandomPoisson( \
|
g, test::graph::Constant(g, VecShape(nsamp)), \
|
test::graph::Constant(g, VecLam##BITS(nlam, MAGNITUDE))); \
|
test::Benchmark(#DEVICE, g).Run(iters); \
|
} \
|
BENCHMARK(BM_##DEVICE##_RandomPoisson_lam_##MAGNITUDE##_##BITS) \
|
->RangePair(1, 64, 2, 50);
|
|
BM_Poisson(cpu, 32, 1);
|
BM_Poisson(cpu, 32, 8);
|
BM_Poisson(cpu, 32, 32);
|
|
BM_Poisson(cpu, 64, 1);
|
BM_Poisson(cpu, 64, 8);
|
BM_Poisson(cpu, 64, 32);
|
|
} // namespace
|
} // namespace tensorflow
|