/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
you may not use this file except in compliance with the License.
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
distributed under the License is distributed on an "AS IS" BASIS,
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
See the License for the specific language governing permissions and
|
limitations under the License.
|
==============================================================================*/
|
|
#ifndef TENSORFLOW_CORE_KERNELS_PARAMETERIZED_TRUNCATED_NORMAL_OP_H_
|
#define TENSORFLOW_CORE_KERNELS_PARAMETERIZED_TRUNCATED_NORMAL_OP_H_
|
|
#include "tensorflow/core/framework/tensor_types.h"
|
#include "tensorflow/core/lib/random/random_distributions.h"
|
|
namespace tensorflow {
|
|
class OpKernelContext;
|
|
namespace functor {
|
|
// Sample a truncated normal random variable, with mean, stddev, minval, and
|
// maxval parameters for each batch. Uses two rejection sampling algorithms
|
// described in http://rd.springer.com/article/10.1007/BF00143942 and a randn
|
// rejection sampler when most of the normal is inside the bounds.
|
//
|
// Either minval may be -infinity, or maxval may be +infinity. If the interval
|
// (minval, maxval) is empty, the result is NaN.
|
template <typename Device, typename T>
|
struct TruncatedNormalFunctor {
|
void operator()(OpKernelContext* ctx, const Device& d, int64 num_batches,
|
int64 samples_per_batch, int64 num_elements,
|
typename TTypes<T>::ConstFlat means,
|
typename TTypes<T>::ConstFlat stddevs,
|
typename TTypes<T>::ConstFlat minvals,
|
typename TTypes<T>::ConstFlat maxvals,
|
const random::PhiloxRandom& gen,
|
typename TTypes<T>::Flat output);
|
};
|
|
} // namespace functor
|
} // namespace tensorflow
|
|
#endif // TENSORFLOW_CORE_KERNELS_PARAMETERIZED_TRUNCATED_NORMAL_OP_H_
|