/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
you may not use this file except in compliance with the License.
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
distributed under the License is distributed on an "AS IS" BASIS,
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
See the License for the specific language governing permissions and
|
limitations under the License.
|
==============================================================================*/
|
|
#ifndef TENSORFLOW_CORE_KERNELS_MKL_QUANTIZED_CONV_OPS_H_
|
#define TENSORFLOW_CORE_KERNELS_MKL_QUANTIZED_CONV_OPS_H_
|
|
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
|
#include "tensorflow/core/framework/tensor.h"
|
|
#ifdef INTEL_MKL
|
|
namespace tensorflow {
|
template <class T>
|
float MklFloatForOneQuantizedLevel(float range_min, float range_max) {
|
int64 highest = static_cast<int64>(Eigen::NumTraits<T>::highest());
|
int64 lowest = static_cast<int64>(Eigen::NumTraits<T>::lowest());
|
|
// Adjusting for having a symmetric range.
|
// for example: for 8-bit [-127, 127] as opposed to [-128, 127].
|
if (lowest < -highest) ++lowest;
|
|
const float float_for_one_quantized_level =
|
(range_max - range_min) / (highest - lowest);
|
return float_for_one_quantized_level;
|
}
|
|
template <class T1, class T2, class T3>
|
void MklQuantizationRangeForMultiplication(float min_a, float max_a,
|
float min_b, float max_b,
|
float* min_c, float* max_c) {
|
const float a_float_for_one_quant_level =
|
MklFloatForOneQuantizedLevel<T1>(min_a, max_a);
|
const float b_float_for_one_quant_level =
|
MklFloatForOneQuantizedLevel<T2>(min_b, max_b);
|
|
const int64 c_highest = static_cast<int64>(Eigen::NumTraits<T3>::highest());
|
const int64 c_lowest = static_cast<int64>(Eigen::NumTraits<T3>::lowest());
|
const float c_float_for_one_quant_level =
|
a_float_for_one_quant_level * b_float_for_one_quant_level;
|
|
*min_c = c_float_for_one_quant_level * c_lowest;
|
*max_c = c_float_for_one_quant_level * c_highest;
|
}
|
|
template <class T1, class T2, class T3>
|
void MklQuantizationRangeForMultiplication(float min_a, float max_a,
|
const Tensor& min_b_vector,
|
const Tensor& max_b_vector,
|
Tensor** min_c_vector,
|
Tensor** max_c_vector) {
|
DCHECK(min_b_vector.NumElements() == (*min_c_vector)->NumElements());
|
DCHECK(max_b_vector.NumElements() == (*max_c_vector)->NumElements());
|
size_t n_channel = min_b_vector.NumElements();
|
const int64 c_highest = static_cast<int64>(Eigen::NumTraits<T3>::highest());
|
const int64 c_lowest = static_cast<int64>(Eigen::NumTraits<T3>::lowest());
|
const float* min_b = min_b_vector.flat<float>().data();
|
const float* max_b = max_b_vector.flat<float>().data();
|
float* min_c = (*min_c_vector)->flat<float>().data();
|
float* max_c = (*max_c_vector)->flat<float>().data();
|
#pragma omp parallel for
|
for (size_t n = 0; n < n_channel; ++n) {
|
float a_float_for_one_quant_level =
|
MklFloatForOneQuantizedLevel<T1>(min_a, max_a);
|
float b_float_for_one_quant_level =
|
MklFloatForOneQuantizedLevel<T2>(min_b[n], max_b[n]);
|
float c_float_for_one_quant_level =
|
a_float_for_one_quant_level * b_float_for_one_quant_level;
|
min_c[n] = c_float_for_one_quant_level * c_lowest;
|
max_c[n] = c_float_for_one_quant_level * c_highest;
|
}
|
}
|
|
} // namespace tensorflow
|
|
#endif // INTEL_MKL
|
|
#endif // TENSORFLOW_CORE_KERNELS_MKL_QUANTIZED_CONV_OPS_H_
|