/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
you may not use this file except in compliance with the License.
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
distributed under the License is distributed on an "AS IS" BASIS,
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
See the License for the specific language governing permissions and
|
limitations under the License.
|
==============================================================================*/
|
|
#include <functional>
|
#include <memory>
|
|
#include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h"
|
#include "tensorflow/core/framework/allocator.h"
|
#include "tensorflow/core/framework/fake_input.h"
|
#include "tensorflow/core/framework/node_def_builder.h"
|
#include "tensorflow/core/framework/op_kernel.h"
|
#include "tensorflow/core/framework/tensor.h"
|
#include "tensorflow/core/framework/types.h"
|
#include "tensorflow/core/framework/types.pb.h"
|
#include "tensorflow/core/graph/node_builder.h"
|
#include "tensorflow/core/graph/testlib.h"
|
#include "tensorflow/core/kernels/ops_testutil.h"
|
#include "tensorflow/core/kernels/ops_util.h"
|
#include "tensorflow/core/lib/core/status_test_util.h"
|
#include "tensorflow/core/lib/random/simple_philox.h"
|
#include "tensorflow/core/lib/strings/str_util.h"
|
#include "tensorflow/core/platform/test.h"
|
#include "tensorflow/core/platform/test_benchmark.h"
|
|
namespace tensorflow {
|
namespace {
|
|
class DynamicPartitionOpTest : public OpsTestBase {
|
protected:
|
void MakeOp() {
|
TF_ASSERT_OK(NodeDefBuilder("myop", "DynamicPartition")
|
.Input(FakeInput(DT_FLOAT))
|
.Input(FakeInput(DT_INT32))
|
.Attr("num_partitions", 4)
|
.Finalize(node_def()));
|
TF_ASSERT_OK(InitOp());
|
}
|
};
|
|
TEST_F(DynamicPartitionOpTest, Simple_OneD) {
|
MakeOp();
|
|
// Similar to how we would use this to split embedding ids to be looked up
|
|
// Feed and run
|
AddInputFromArray<float>(TensorShape({6}), {0, 13, 2, 39, 4, 17});
|
AddInputFromArray<int32>(TensorShape({6}), {0, 0, 2, 3, 2, 1});
|
TF_ASSERT_OK(RunOpKernel());
|
|
// Check the output sizes
|
{ // Output 0
|
Tensor expected(allocator(), DT_FLOAT, TensorShape({2}));
|
test::FillValues<float>(&expected, {0, 13});
|
test::ExpectTensorEqual<float>(expected, *GetOutput(0));
|
}
|
{ // Output 1
|
Tensor expected(allocator(), DT_FLOAT, TensorShape({1}));
|
test::FillValues<float>(&expected, {17});
|
test::ExpectTensorEqual<float>(expected, *GetOutput(1));
|
}
|
{ // Output 2
|
Tensor expected(allocator(), DT_FLOAT, TensorShape({2}));
|
test::FillValues<float>(&expected, {2, 4});
|
test::ExpectTensorEqual<float>(expected, *GetOutput(2));
|
}
|
{ // Output 3
|
Tensor expected(allocator(), DT_FLOAT, TensorShape({1}));
|
test::FillValues<float>(&expected, {39});
|
test::ExpectTensorEqual<float>(expected, *GetOutput(3));
|
}
|
}
|
|
TEST_F(DynamicPartitionOpTest, Simple_TwoD) {
|
MakeOp();
|
|
// Feed and run
|
AddInputFromArray<float>(
|
TensorShape({6, 3}),
|
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17});
|
AddInputFromArray<int32>(TensorShape({6}), {0, 0, 2, 3, 2, 1});
|
TF_ASSERT_OK(RunOpKernel());
|
|
// Check the output sizes
|
{ // Output 0
|
Tensor expected(allocator(), DT_FLOAT, TensorShape({2, 3}));
|
test::FillValues<float>(&expected, {0, 1, 2, 3, 4, 5});
|
test::ExpectTensorEqual<float>(expected, *GetOutput(0));
|
}
|
{ // Output 1
|
Tensor expected(allocator(), DT_FLOAT, TensorShape({1, 3}));
|
test::FillValues<float>(&expected, {15, 16, 17});
|
test::ExpectTensorEqual<float>(expected, *GetOutput(1));
|
}
|
{ // Output 2
|
Tensor expected(allocator(), DT_FLOAT, TensorShape({2, 3}));
|
test::FillValues<float>(&expected, {6, 7, 8, 12, 13, 14});
|
test::ExpectTensorEqual<float>(expected, *GetOutput(2));
|
}
|
{ // Output 3
|
Tensor expected(allocator(), DT_FLOAT, TensorShape({1, 3}));
|
test::FillValues<float>(&expected, {9, 10, 11});
|
test::ExpectTensorEqual<float>(expected, *GetOutput(3));
|
}
|
}
|
|
TEST_F(DynamicPartitionOpTest, SomeOutputsEmpty) {
|
MakeOp();
|
|
// Feed and run
|
AddInputFromArray<float>(TensorShape({6}), {0, 13, 2, 39, 4, 17});
|
AddInputFromArray<int32>(TensorShape({6}), {0, 0, 2, 2, 0, 2});
|
TF_ASSERT_OK(RunOpKernel());
|
|
TensorShape empty_one_dim;
|
empty_one_dim.AddDim(0);
|
Tensor expected_empty(allocator(), DT_FLOAT, empty_one_dim);
|
|
// Check the output sizes
|
{ // Output 0
|
Tensor expected(allocator(), DT_FLOAT, TensorShape({3}));
|
test::FillValues<float>(&expected, {0, 13, 4});
|
test::ExpectTensorEqual<float>(expected, *GetOutput(0));
|
}
|
{ // Output 1
|
test::ExpectTensorEqual<float>(expected_empty, *GetOutput(1));
|
}
|
{ // Output 2
|
Tensor expected(allocator(), DT_FLOAT, TensorShape({3}));
|
test::FillValues<float>(&expected, {2, 39, 17});
|
test::ExpectTensorEqual<float>(expected, *GetOutput(2));
|
}
|
{ // Output 3
|
test::ExpectTensorEqual<float>(expected_empty, *GetOutput(3));
|
}
|
}
|
|
TEST_F(DynamicPartitionOpTest, Error_IndexOutOfRange) {
|
MakeOp();
|
|
// Feed and run
|
AddInputFromArray<float>(TensorShape({5, 3}),
|
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14});
|
AddInputFromArray<int32>(TensorShape({5}), {0, 2, 99, 2, 2});
|
Status s = RunOpKernel();
|
EXPECT_TRUE(str_util::StrContains(s.ToString(),
|
"partitions[2] = 99 is not in [0, 4)"))
|
<< s;
|
}
|
|
Node* DynamicPartitionNode(Graph* g, Node* in0, Node* in1, int num_partitions) {
|
Node* ret;
|
TF_CHECK_OK(NodeBuilder(g->NewName("n"), "DynamicPartition")
|
.Input(in0)
|
.Input(in1)
|
.Attr("num_partitions", num_partitions)
|
.Finalize(g, &ret));
|
return ret;
|
}
|
|
template <typename T>
|
static Graph* DynamicPartition(int num_partitions, int dim) {
|
Graph* g = new Graph(OpRegistry::Global());
|
// Always use a 128MB buffer.
|
const int kRows = ((128 << 20) / sizeof(T)) / dim;
|
Tensor data(DataTypeToEnum<T>::value, TensorShape({kRows, dim}));
|
data.flat<T>().setRandom();
|
|
random::PhiloxRandom philox(301, 17);
|
random::SimplePhilox rnd(&philox);
|
Tensor partitions(DT_INT32, TensorShape({kRows}));
|
for (int i = 0; i < kRows; i++) {
|
partitions.flat<int32>()(i) = rnd.Uniform(num_partitions);
|
}
|
DynamicPartitionNode(g, test::graph::Constant(g, data),
|
test::graph::Constant(g, partitions), num_partitions);
|
return g;
|
}
|
|
#define BM_DYNAMIC_PARTITION(DEVICE, T, num) \
|
static void BM_##DEVICE##_dynpart_##T##_##num(int iters, int dim) { \
|
const int64 items = ((128 << 20) / sizeof(T)); \
|
const int64 tot = static_cast<int64>(iters) * items; \
|
testing::ItemsProcessed(tot); \
|
testing::UseRealTime(); \
|
test::Benchmark(#DEVICE, DynamicPartition<T>(num, dim)).Run(iters); \
|
} \
|
BENCHMARK(BM_##DEVICE##_dynpart_##T##_##num)->Arg(1)->Arg(256)
|
|
BM_DYNAMIC_PARTITION(cpu, float, 2);
|
BM_DYNAMIC_PARTITION(cpu, float, 100);
|
BM_DYNAMIC_PARTITION(cpu, double, 2);
|
BM_DYNAMIC_PARTITION(cpu, double, 100);
|
BM_DYNAMIC_PARTITION(cpu, complex64, 2);
|
BM_DYNAMIC_PARTITION(cpu, complex64, 100);
|
|
BM_DYNAMIC_PARTITION(gpu, float, 2);
|
BM_DYNAMIC_PARTITION(gpu, float, 100);
|
BM_DYNAMIC_PARTITION(gpu, double, 2);
|
BM_DYNAMIC_PARTITION(gpu, double, 100);
|
BM_DYNAMIC_PARTITION(gpu, complex64, 2);
|
BM_DYNAMIC_PARTITION(gpu, complex64, 100);
|
|
} // namespace
|
} // namespace tensorflow
|