/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
you may not use this file except in compliance with the License.
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
distributed under the License is distributed on an "AS IS" BASIS,
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
See the License for the specific language governing permissions and
|
limitations under the License.
|
==============================================================================*/
|
|
#include "tensorflow/cc/ops/const_op.h"
|
#include "tensorflow/cc/ops/image_ops.h"
|
#include "tensorflow/cc/ops/nn_ops.h"
|
#include "tensorflow/cc/ops/standard_ops.h"
|
#include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h"
|
#include "tensorflow/core/framework/fake_input.h"
|
#include "tensorflow/core/framework/node_def_builder.h"
|
#include "tensorflow/core/framework/tensor.h"
|
#include "tensorflow/core/framework/types.h"
|
#include "tensorflow/core/kernels/conv_ops_gpu.h"
|
#include "tensorflow/core/kernels/ops_testutil.h"
|
#include "tensorflow/core/kernels/ops_util.h"
|
#include "tensorflow/core/platform/test.h"
|
#include "tensorflow/core/platform/test_benchmark.h"
|
#include "tensorflow/core/public/session.h"
|
|
namespace tensorflow {
|
namespace {
|
class DepthwiseConvOpTest : public OpsTestBase {
|
protected:
|
enum class Device { CPU, GPU };
|
|
template <typename T>
|
void Run(Device device) {
|
if (device == Device::GPU) {
|
SetDevice(DEVICE_GPU,
|
std::unique_ptr<tensorflow::Device>(DeviceFactory::NewDevice(
|
"GPU", {}, "/job:a/replica:0/task:0")));
|
}
|
DataType dtype = DataTypeToEnum<T>::value;
|
TF_EXPECT_OK(NodeDefBuilder("depthwise_conv2d", "DepthwiseConv2dNative")
|
.Input(FakeInput(dtype))
|
.Input(FakeInput(dtype))
|
.Attr("T", dtype)
|
.Attr("strides", {1, 1, 1, 1})
|
.Attr("padding", "SAME")
|
.Finalize(node_def()));
|
TF_EXPECT_OK(InitOp());
|
const int depth = 2;
|
const int image_width = 2;
|
const int image_height = 3;
|
const int batch_count = 1;
|
// The image matrix is ('first/second' channel):
|
// | 1/2 | 3/4 |
|
// | 5/6 | 7/8 |
|
// | 9/10 | 11/12 |
|
Tensor image(dtype, {batch_count, image_height, image_width, depth});
|
test::FillValues<T>(&image, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12});
|
|
// The filter matrix is:
|
// | 1/2 | 7/8 | 13/14 |
|
// | 3/4 | 9/10 | 15/16 |
|
// | 5/6 | 11/12 | 17/18 |
|
const int filter_size = 3;
|
const int filter_count = 1;
|
Tensor filter(dtype, {filter_size, filter_size, depth, filter_count});
|
test::FillValues<T>(&filter, {1, 2, 7, 8, 13, 14, 3, 4, 9, 10, 15, 16, 5, 6,
|
11, 12, 17, 18});
|
|
AddInputFromArray<T>(image.shape(), image.flat<T>());
|
AddInputFromArray<T>(filter.shape(), filter.flat<T>());
|
TF_ASSERT_OK(RunOpKernel());
|
|
// We're sliding two 3x3 filters across the 3x2 image, with accesses outside
|
// the input set to zero because we're using the 'SAME' padding mode.
|
// This means we should end up with this matrix:
|
// | 105/150 | 183/95 |
|
// | 235/312 | 357/178 |
|
// | 187/234 | 261/121 |
|
Tensor expected(dtype, image.shape());
|
test::FillValues<T>(&expected, {228, 300, 132, 180, 482, 596, 266, 344, 372,
|
452, 180, 236});
|
const Tensor& output = *GetOutput(0);
|
// TODO(csigg): This should happen as part of GetOutput.
|
TF_EXPECT_OK(device_->Sync());
|
test::ExpectTensorNear<T>(expected, output, 1e-5);
|
}
|
};
|
|
TEST_F(DepthwiseConvOpTest, DepthwiseConvFloatCpu) { Run<float>(Device::CPU); }
|
TEST_F(DepthwiseConvOpTest, DepthwiseConvDoubleCpu) {
|
Run<double>(Device::CPU);
|
}
|
TEST_F(DepthwiseConvOpTest, DepthwiseConvHalfCpu) {
|
Run<Eigen::half>(Device::CPU);
|
}
|
|
#ifdef GOOGLE_CUDA
|
TEST_F(DepthwiseConvOpTest, DepthwiseConvFloatGpu) { Run<float>(Device::GPU); }
|
TEST_F(DepthwiseConvOpTest, DepthwiseConvDoubleGpu) {
|
Run<double>(Device::GPU);
|
}
|
TEST_F(DepthwiseConvOpTest, DepthwiseConvHalfGpu) {
|
Run<Eigen::half>(Device::GPU);
|
}
|
#endif
|
|
} // namespace
|
} // namespace tensorflow
|