/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
you may not use this file except in compliance with the License.
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
distributed under the License is distributed on an "AS IS" BASIS,
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
See the License for the specific language governing permissions and
|
limitations under the License.
|
==============================================================================*/
|
|
#ifndef TENSORFLOW_CORE_FRAMEWORK_OPS_UTIL_H_
|
#define TENSORFLOW_CORE_FRAMEWORK_OPS_UTIL_H_
|
|
// This file contains utilities for various operations.
|
|
#include <array>
|
|
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
|
#include "tensorflow/core/framework/common_shape_fns.h"
|
#include "tensorflow/core/framework/tensor_shape.h"
|
#include "tensorflow/core/framework/tensor_types.h"
|
#include "tensorflow/core/lib/core/status.h"
|
#include "tensorflow/core/util/padding.h"
|
|
namespace tensorflow {
|
|
// Calculates broadcast starting index and size. For SAME padding, addition
|
// padding could be applied to right, left, top and bottom. Depending on the
|
// current index, input size, kernel size, stride, padding size, the starting
|
// index and size for broadcast for that dimension are different from the
|
// current index and kernel size.
|
// This is mainly used by gradient algorithms for pooling operations.
|
Status GetBroadcastSize(const int index, const int in_size, const int ksize,
|
const int stride, const int pad_size, int* bindex,
|
int* bsize);
|
|
// Converts Brain's Padding to Eigen's PaddingType.
|
Eigen::PaddingType BrainPadding2EigenPadding(Padding padding);
|
|
// Given a shape 's' of a tensor of type T. Returns true iff the
|
// number of bytes occupied by each dim 0 (i.e., &tensor(i + 1, ...) -
|
// &tensor(i, ...)) is multiple of EIGEN_MAX_ALIGN_BYTES.
|
template <typename T>
|
bool IsInnerDimsSizeAligned(const TensorShape& s) {
|
if (s.dims() == 0) return false;
|
const int64 dim0_size = s.dim_size(0);
|
if (dim0_size == 0) return false;
|
#if EIGEN_MAX_ALIGN_BYTES == 0
|
return true;
|
#else
|
const int64 bytes_per_dim0 = (s.num_elements() / dim0_size) * sizeof(T);
|
return bytes_per_dim0 % EIGEN_MAX_ALIGN_BYTES == 0;
|
#endif
|
}
|
|
// Given a shape 's' of a tensor of type T and the `start` and `end` index of a
|
// dim 0 slice, returns true iff slice is aligned with respect to original
|
// tensor. Here aligned implies the address is a multiple of
|
// EIGEN_MAX_ALIGN_BYTES.
|
template <typename T>
|
bool IsDim0SliceAligned(const TensorShape& s, int64 start, int64 end_or_size) {
|
if (s.dims() == 1) {
|
#if EIGEN_MAX_ALIGN_BYTES == 0
|
return true;
|
#else
|
bool start_aligned = (start * sizeof(T)) % EIGEN_MAX_ALIGN_BYTES == 0;
|
// End is aligned if either the explicit end index is passed and is a
|
// a multiple of EIGEN_MAX_ALIGN_BYTES, or the start index is aligned and
|
// the size is aligned. So for convenience we can either pass start and
|
// index, or start and size.
|
bool end_aligned = (end_or_size * sizeof(T)) % EIGEN_MAX_ALIGN_BYTES == 0;
|
return start_aligned && end_aligned;
|
#endif
|
} else {
|
return IsInnerDimsSizeAligned<T>(s);
|
}
|
}
|
|
// Returns <suffix> sanitized to have only [a-zA-Z0-9-_].
|
string SanitizeThreadSuffix(string suffix);
|
|
// Helper to compute 'strides' given a tensor 'shape'. I.e.,
|
// strides[i] = prod(shape.dim_size[(i+1):])
|
template <typename T>
|
gtl::InlinedVector<T, 8> ComputeStride(const TensorShape& shape) {
|
const int ndims = shape.dims();
|
gtl::InlinedVector<T, 8> strides(ndims);
|
T stride = 1;
|
for (int i = ndims - 1; i >= 0; --i) {
|
strides[i] = stride;
|
stride *= static_cast<T>(shape.dim_size(i));
|
}
|
return strides;
|
}
|
|
// Helper to compute 'strides' given an Eigen TensorDimensions
|
template <typename T, typename EigenDimensions>
|
gtl::InlinedVector<T, 8> ComputeEigenStrides(const EigenDimensions& shape) {
|
const int ndims = shape.rank();
|
gtl::InlinedVector<T, 8> strides(ndims);
|
T stride = 1;
|
for (int i = ndims - 1; i >= 0; --i) {
|
strides[i] = stride;
|
stride *= static_cast<T>(shape[i]);
|
}
|
return strides;
|
}
|
|
} // namespace tensorflow
|
|
#endif // TENSORFLOW_CORE_FRAMEWORK_OPS_UTIL_H_
|