1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
| # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
| #
| # Licensed under the Apache License, Version 2.0 (the "License");
| # you may not use this file except in compliance with the License.
| # You may obtain a copy of the License at
| #
| # http://www.apache.org/licenses/LICENSE-2.0
| #
| # Unless required by applicable law or agreed to in writing, software
| # distributed under the License is distributed on an "AS IS" BASIS,
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
| # See the License for the specific language governing permissions and
| # limitations under the License.
| # ==============================================================================
| """Test cases for ternary operators."""
|
| from __future__ import absolute_import
| from __future__ import division
| from __future__ import print_function
|
| import numpy as np
|
| from tensorflow.compiler.tests import xla_test
| from tensorflow.python.framework import dtypes
| from tensorflow.python.ops import array_ops
| from tensorflow.python.ops import gen_math_ops
| from tensorflow.python.ops import math_ops
| from tensorflow.python.platform import googletest
|
|
| class TernaryOpsTest(xla_test.XLATestCase):
|
| def _testTernary(self, op, a, b, c, expected):
| with self.cached_session() as session:
| with self.test_scope():
| pa = array_ops.placeholder(dtypes.as_dtype(a.dtype), a.shape, name="a")
| pb = array_ops.placeholder(dtypes.as_dtype(b.dtype), b.shape, name="b")
| pc = array_ops.placeholder(dtypes.as_dtype(c.dtype), c.shape, name="c")
| output = op(pa, pb, pc)
| result = session.run(output, {pa: a, pb: b, pc: c})
| self.assertAllClose(result, expected, rtol=1e-3)
|
| def testLinspace(self):
| self._testTernary(
| math_ops.linspace,
| np.float32(1),
| np.float32(2),
| np.int32(1),
| expected=np.array([1], dtype=np.float32))
| self._testTernary(
| math_ops.linspace,
| np.float32(1),
| np.float32(4),
| np.int32(3),
| expected=np.array([1, 2.5, 4], dtype=np.float32))
|
| def testRange(self):
| self._testTernary(
| math_ops.range,
| np.int32(1),
| np.int32(2),
| np.int32(1),
| expected=np.array([1], dtype=np.int32))
| self._testTernary(
| math_ops.range,
| np.int32(1),
| np.int32(7),
| np.int32(2),
| expected=np.array([1, 3, 5], dtype=np.int32))
|
| def testSelect(self):
| for dtype in self.numeric_types:
| self._testTernary(
| array_ops.where,
| np.array(0, dtype=np.bool),
| np.array(2, dtype=dtype),
| np.array(7, dtype=dtype),
| expected=np.array(7, dtype=dtype))
|
| self._testTernary(
| array_ops.where,
| np.array(1, dtype=np.bool),
| np.array([1, 2, 3, 4], dtype=dtype),
| np.array([5, 6, 7, 8], dtype=dtype),
| expected=np.array([1, 2, 3, 4], dtype=dtype))
|
| self._testTernary(
| array_ops.where,
| np.array(0, dtype=np.bool),
| np.array([[1, 2], [3, 4], [5, 6]], dtype=dtype),
| np.array([[7, 8], [9, 10], [11, 12]], dtype=dtype),
| expected=np.array([[7, 8], [9, 10], [11, 12]], dtype=dtype))
|
| self._testTernary(
| array_ops.where,
| np.array([0, 1, 1, 0], dtype=np.bool),
| np.array([1, 2, 3, 4], dtype=dtype),
| np.array([5, 6, 7, 8], dtype=dtype),
| expected=np.array([5, 2, 3, 8], dtype=dtype))
|
| self._testTernary(
| array_ops.where,
| np.array([0, 1, 0], dtype=np.bool),
| np.array([[1, 2], [3, 4], [5, 6]], dtype=dtype),
| np.array([[7, 8], [9, 10], [11, 12]], dtype=dtype),
| expected=np.array([[7, 8], [3, 4], [11, 12]], dtype=dtype))
|
| def testSlice(self):
| for dtype in self.numeric_types:
| self._testTernary(
| array_ops.slice,
| np.array([[], [], []], dtype=dtype),
| np.array([1, 0], dtype=np.int32),
| np.array([2, 0], dtype=np.int32),
| expected=np.array([[], []], dtype=dtype))
|
| self._testTernary(
| array_ops.slice,
| np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=dtype),
| np.array([0, 1], dtype=np.int32),
| np.array([2, 1], dtype=np.int32),
| expected=np.array([[2], [5]], dtype=dtype))
|
| def testClipByValue(self):
| for dtype in self.numeric_types - self.complex_types:
| test_cases = [
| (np.array([2, 4, 5], dtype=dtype), dtype(7)), #
| (dtype(1), np.array([2, 4, 5], dtype=dtype)), #
| (np.array([-2, 7, 7], dtype=dtype), np.array([-2, 9, 8], dtype=dtype))
| ]
| x = np.array([-2, 10, 6], dtype=dtype)
| for lower, upper in test_cases:
| self._testTernary(
| gen_math_ops._clip_by_value,
| x,
| lower,
| upper,
| expected=np.minimum(np.maximum(x, lower), upper))
|
|
| if __name__ == "__main__":
| googletest.main()
|
|