# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
#
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
# you may not use this file except in compliance with the License.
|
# You may obtain a copy of the License at
|
#
|
# http://www.apache.org/licenses/LICENSE-2.0
|
#
|
# Unless required by applicable law or agreed to in writing, software
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# See the License for the specific language governing permissions and
|
# limitations under the License.
|
# ==============================================================================
|
"""Tests for stateless random-number generation ops."""
|
|
from __future__ import absolute_import
|
from __future__ import division
|
from __future__ import print_function
|
|
import math
|
|
import numpy as np
|
|
from tensorflow.compiler.tests import xla_test
|
from tensorflow.python.framework import dtypes
|
from tensorflow.python.ops import array_ops
|
from tensorflow.python.ops import stateless_random_ops as stateless
|
from tensorflow.python.ops.distributions import special_math
|
from tensorflow.python.platform import test
|
|
|
class StatelessRandomOpsTest(xla_test.XLATestCase):
|
"""Test cases for stateless random-number generator operators."""
|
|
def _random_types(self, include_int=False):
|
allowed_types = {dtypes.float32, dtypes.float64, dtypes.bfloat16}
|
if include_int:
|
allowed_types.update({dtypes.int32, dtypes.int64})
|
return self.all_tf_types & allowed_types
|
|
def testDeterminism(self):
|
# Stateless values should be equal iff the seeds are equal (roughly)
|
with self.cached_session(), self.test_scope():
|
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
|
seeds = [(x, y) for x in range(5) for y in range(5)] * 3
|
for stateless_op in [
|
stateless.stateless_random_uniform, stateless.stateless_random_normal
|
]:
|
for shape in (), (3,), (2, 5):
|
for dtype in self._random_types():
|
# Skip bfloat16. The result of bfloat16 is truncated from 32-bit
|
# result. With different seeds, the 32-bit results are different,
|
# but the truncated 16-bit results might be the same.
|
if dtype == dtypes.bfloat16:
|
continue
|
pure = stateless_op(shape, seed=seed_t, dtype=dtype)
|
values = [(seed, pure.eval(feed_dict={
|
seed_t: seed
|
})) for seed in seeds]
|
for s0, v0 in values:
|
for s1, v1 in values:
|
self.assertEqual(s0 == s1, np.all(v0 == v1))
|
|
def testRandomUniformIsInRange(self):
|
with self.cached_session() as sess, self.test_scope():
|
for dtype in self._random_types(include_int=True):
|
maxval = 1
|
if dtype.is_integer:
|
maxval = 100
|
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
|
x = stateless.stateless_random_uniform(
|
shape=[1000], seed=seed_t, maxval=maxval, dtype=dtype)
|
y = sess.run(x, {seed_t: [0x12345678, 0xabcdef12]})
|
self.assertTrue(np.all(y >= 0))
|
self.assertTrue(np.all(y < maxval))
|
|
def _chi_squared(self, x, bins):
|
"""Pearson's Chi-squared test."""
|
x = np.ravel(x)
|
n = len(x)
|
histogram, _ = np.histogram(x, bins=bins, range=(0, 1))
|
expected = n / float(bins)
|
return np.sum(np.square(histogram - expected) / expected)
|
|
def testDistributionOfStatelessRandomUniform(self):
|
"""Use Pearson's Chi-squared test to test for uniformity."""
|
with self.cached_session() as sess, self.test_scope():
|
for dtype in self._random_types(include_int=True):
|
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
|
n = 1000
|
maxval = 1
|
if dtype.is_integer:
|
maxval = 100
|
x = stateless.stateless_random_uniform(
|
shape=[n], seed=seed_t, maxval=maxval, dtype=dtype)
|
y = sess.run(x, {seed_t: [565656, 121212]})
|
if maxval > 1:
|
# Normalize y to range [0, 1).
|
y = y.astype(float) / maxval
|
# Tests that the values are distributed amongst 10 bins with equal
|
# probability. 16.92 is the Chi^2 value for 9 degrees of freedom with
|
# p=0.05. This test is probabilistic and would be flaky if the random
|
# seed were not fixed.
|
self.assertTrue(self._chi_squared(y, 10) < 16.92)
|
|
def testRandomNormalIsFinite(self):
|
with self.cached_session() as sess, self.test_scope():
|
for dtype in self._random_types():
|
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
|
x = stateless.stateless_random_normal(
|
shape=[10000], seed=seed_t, dtype=dtype)
|
y = sess.run(x, {seed_t: [0x12345678, 0xabcdef12]})
|
self.assertTrue(np.all(np.isfinite(y)))
|
|
def _normal_cdf(self, x):
|
"""Cumulative distribution function for a standard normal distribution."""
|
return 0.5 + 0.5 * np.vectorize(math.erf)(x / math.sqrt(2))
|
|
def _anderson_darling(self, x):
|
"""Anderson-Darling test for a standard normal distribution."""
|
x = np.sort(np.ravel(x))
|
n = len(x)
|
i = np.linspace(1, n, n)
|
z = np.sum((2 * i - 1) * np.log(self._normal_cdf(x)) +
|
(2 * (n - i) + 1) * np.log(1 - self._normal_cdf(x)))
|
return -n - z / n
|
|
def testDistributionOfStatelessRandomNormal(self):
|
"""Use Anderson-Darling test to test distribution appears normal."""
|
with self.cached_session() as sess, self.test_scope():
|
for dtype in self._random_types():
|
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
|
n = 1000
|
x = stateless.stateless_random_normal(
|
shape=[n], seed=seed_t, dtype=dtype)
|
y = sess.run(x, {seed_t: [25252, 314159]})
|
# The constant 2.492 is the 5% critical value for the Anderson-Darling
|
# test where the mean and variance are known. This test is probabilistic
|
# so to avoid flakiness the seed is fixed.
|
self.assertTrue(self._anderson_darling(y.astype(float)) < 2.492)
|
|
def testTruncatedNormalIsInRange(self):
|
for dtype in self._random_types():
|
with self.cached_session() as sess, self.test_scope():
|
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
|
n = 10000000
|
x = stateless.stateless_truncated_normal(
|
shape=[n], seed=seed_t, dtype=dtype)
|
y = sess.run(x, {seed_t: [0x12345678, 0xabcdef12]})
|
|
def normal_cdf(x):
|
return .5 * math.erfc(-x / math.sqrt(2))
|
|
def normal_pdf(x):
|
return math.exp(-(x**2) / 2.) / math.sqrt(2 * math.pi)
|
|
def probit(x, sess=sess):
|
return self.evaluate(special_math.ndtri(x))
|
|
a = -2.
|
b = 2.
|
mu = 0.
|
sigma = 1.
|
|
alpha = (a - mu) / sigma
|
beta = (b - mu) / sigma
|
z = normal_cdf(beta) - normal_cdf(alpha)
|
|
self.assertEqual((y >= a).sum(), n)
|
self.assertEqual((y <= b).sum(), n)
|
|
# For more information on these calculations, see:
|
# Burkardt, John. "The Truncated Normal Distribution".
|
# Department of Scientific Computing website. Florida State University.
|
expected_mean = mu + (normal_pdf(alpha) - normal_pdf(beta)) / z * sigma
|
y = y.astype(float)
|
actual_mean = np.mean(y)
|
self.assertAllClose(actual_mean, expected_mean, atol=5e-4)
|
|
expected_median = mu + probit(
|
(normal_cdf(alpha) + normal_cdf(beta)) / 2.) * sigma
|
actual_median = np.median(y)
|
self.assertAllClose(actual_median, expected_median, atol=8e-4)
|
|
expected_variance = sigma**2 * (1 + (
|
(alpha * normal_pdf(alpha) - beta * normal_pdf(beta)) / z) - (
|
(normal_pdf(alpha) - normal_pdf(beta)) / z)**2)
|
actual_variance = np.var(y)
|
self.assertAllClose(actual_variance, expected_variance,
|
rtol=5e-3 if dtype == dtypes.bfloat16 else 1e-3)
|
|
|
if __name__ == '__main__':
|
test.main()
|