1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
| # Copyright 2018 The TensorFlow Authors. All Rights Reserved.
| #
| # Licensed under the Apache License, Version 2.0 (the "License");
| # you may not use this file except in compliance with the License.
| # You may obtain a copy of the License at
| #
| # http://www.apache.org/licenses/LICENSE-2.0
| #
| # Unless required by applicable law or agreed to in writing, software
| # distributed under the License is distributed on an "AS IS" BASIS,
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
| # See the License for the specific language governing permissions and
| # limitations under the License.
| # ==============================================================================
| """Tests for xla.reduce_window."""
|
| from __future__ import absolute_import
| from __future__ import division
| from __future__ import print_function
|
| import numpy as np
|
| from tensorflow.compiler.tests import xla_test
| from tensorflow.compiler.tf2xla.python import xla
| from tensorflow.python.framework import dtypes
| from tensorflow.python.framework import function
| from tensorflow.python.ops import array_ops
| from tensorflow.python.platform import googletest
|
|
| class ReduceWindowTest(xla_test.XLATestCase):
| """Test cases for xla.reduce_window."""
|
| def _reduce_window(self, operand, init, reducer, **kwargs):
| with self.cached_session():
| placeholder = array_ops.placeholder(operand.dtype)
| with self.test_scope():
| output = xla.reduce_window(placeholder, init, reducer, **kwargs)
| return output.eval(feed_dict={placeholder: operand})
|
| def testReduceWindow(self):
|
| # TODO(b/77644762): float16 and float64 ReduceWindow are unimplemented.
| for dtype in set(self.numeric_types).intersection(
| set([dtypes.bfloat16.as_numpy_dtype, np.float32])):
|
| @function.Defun(dtype, dtype)
| def sum_reducer(x, y):
| return x + y
|
| @function.Defun(dtype, dtype)
| def mul_reducer(x, y):
| return x * y
|
| self.assertAllClose(
| np.array([3, 5, 7, 9, 11, 13], dtype=dtype),
| self._reduce_window(
| np.array([1, 2, 3, 4, 5, 6, 7], dtype=dtype),
| 0.0,
| sum_reducer,
| window_dimensions=[2]))
|
| self.assertAllClose(
| np.array([3, 7, 11], dtype=dtype),
| self._reduce_window(
| np.array([1, 2, 3, 4, 5, 6, 7], dtype=dtype),
| 0.0,
| sum_reducer,
| window_dimensions=[2],
| window_strides=[2]))
|
| self.assertAllClose(
| np.array([1, 4, 7], dtype=dtype),
| self._reduce_window(
| np.array([1, 2, 3, 4, 5, 6, 7], dtype=dtype),
| 0.0,
| sum_reducer,
| window_dimensions=[1],
| window_strides=[3]))
|
| self.assertAllClose(
| np.array([[24, 36, 24], [96, 0, 0]], dtype=dtype),
| self._reduce_window(
| np.array([[1, 2, 3, 4], [4, 3, 2, 1], [2, 4, 0, 1]], dtype=dtype),
| 1.0,
| mul_reducer,
| window_dimensions=[2, 2],
| window_strides=[1, 1]))
|
| self.assertAllClose(
| np.array([[0, 0, 0], [5, 10, 5], [2, 4, 1], [0, 0, 0]], dtype=dtype),
| self._reduce_window(
| np.array([[1, 2, 3, 4], [4, 3, 2, 1], [2, 4, 0, 1]], dtype=dtype),
| 0.0,
| sum_reducer,
| window_dimensions=[2, 2],
| window_strides=[2, 2],
| padding=[[2, 3], [1, 2]]))
|
|
| if __name__ == '__main__':
| googletest.main()
|
|