# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
#
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
# you may not use this file except in compliance with the License.
|
# You may obtain a copy of the License at
|
#
|
# http://www.apache.org/licenses/LICENSE-2.0
|
#
|
# Unless required by applicable law or agreed to in writing, software
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# See the License for the specific language governing permissions and
|
# limitations under the License.
|
# ==============================================================================
|
"""Tests for Local Response Normalization ops."""
|
|
from __future__ import absolute_import
|
from __future__ import division
|
from __future__ import print_function
|
|
import copy
|
|
import numpy as np
|
|
from tensorflow.compiler.tests import xla_test
|
from tensorflow.python.framework import constant_op
|
from tensorflow.python.framework import dtypes
|
from tensorflow.python.framework import ops
|
from tensorflow.python.ops import array_ops
|
from tensorflow.python.ops import gen_nn_ops
|
from tensorflow.python.ops import nn
|
from tensorflow.python.platform import googletest
|
|
CPU_DEVICE = "/job:localhost/replica:0/task:0/cpu:0"
|
|
|
# Local response normalization tests. The forward tests are copied from
|
# tensorflow/python/kernel_tests/lrn_op_test.py
|
class LRNTest(xla_test.XLATestCase):
|
|
def _LRN(self, input_image, lrn_depth_radius=5, bias=1.0, alpha=1.0,
|
beta=0.5):
|
"""Compute expected result."""
|
output = copy.deepcopy(input_image)
|
batch_size = input_image.shape[0]
|
rows = input_image.shape[1]
|
cols = input_image.shape[2]
|
depth = input_image.shape[3]
|
for b in range(batch_size):
|
for r in range(rows):
|
for c in range(cols):
|
for d in range(depth):
|
begin = max(0, d - lrn_depth_radius)
|
end = min(depth, d + lrn_depth_radius + 1)
|
patch = input_image[b, r, c, begin:end]
|
output[b, r, c, d] /= (
|
np.power(bias + alpha * np.sum(patch * patch), beta))
|
return output
|
|
def _RunAndVerify(self, dtype):
|
with self.cached_session():
|
# random shape
|
shape = np.random.randint(1, 16, size=4)
|
# Make depth at least 2 to make it meaningful
|
shape[3] += 1
|
p = array_ops.placeholder(dtype, shape=shape)
|
# random depth_radius, bias, alpha, beta
|
lrn_depth_radius = np.random.randint(1, shape[3])
|
bias = 1.0 + np.random.rand()
|
alpha = 2.0 * np.random.rand()
|
beta = 2.0 * np.random.rand()
|
with self.test_scope():
|
lrn_t = nn.local_response_normalization(
|
p,
|
name="lrn",
|
depth_radius=lrn_depth_radius,
|
bias=bias,
|
alpha=alpha,
|
beta=beta)
|
params = {p: np.random.rand(*shape).astype("f")}
|
result = lrn_t.eval(feed_dict=params)
|
expected = self._LRN(
|
params[p],
|
lrn_depth_radius=lrn_depth_radius,
|
bias=bias,
|
alpha=alpha,
|
beta=beta)
|
err = np.amax(np.abs(result - expected))
|
print("LRN error for bias ", bias, "alpha ", alpha, " beta ", beta, " is ",
|
err)
|
if dtype == dtypes.float32:
|
self.assertTrue(err < 1e-4)
|
else:
|
self.assertTrue(err < 1e-2)
|
self.assertShapeEqual(expected, lrn_t)
|
|
def testCompute(self):
|
for _ in range(2):
|
self._RunAndVerify(dtypes.float32)
|
|
def testLrnGrad(self):
|
# Test for LRNGrad that compares against the CPU implementation.
|
shape = [1, 2, 3, 4]
|
total_size = np.prod(shape)
|
in_image_vals = np.arange(1, total_size + 1, dtype=np.float32)
|
out_image_vals = np.arange(1, total_size + 1, dtype=np.float32)
|
out_grads_vals = np.arange(1, total_size + 1, dtype=np.float32)
|
depth_radius = np.random.randint(1, shape[3])
|
bias = 1.0 + np.random.rand()
|
alpha = 1.0 * np.random.rand()
|
beta = 1.0 * np.random.rand()
|
|
with self.cached_session():
|
in_image = constant_op.constant(in_image_vals, shape=shape)
|
out_image = constant_op.constant(out_image_vals, shape=shape)
|
out_grads = constant_op.constant(out_grads_vals, shape=shape)
|
with ops.device(CPU_DEVICE):
|
expected = gen_nn_ops.lrn_grad(out_grads, in_image, out_image,
|
depth_radius, bias, alpha, beta)
|
with self.test_scope():
|
actual = gen_nn_ops.lrn_grad(out_grads, in_image, out_image,
|
depth_radius, bias, alpha, beta)
|
expected_val = self.evaluate(expected)
|
actual_val = self.evaluate(actual)
|
self.assertAllClose(actual_val, expected_val, rtol=1e-3)
|
|
|
if __name__ == "__main__":
|
googletest.main()
|